Overview

- Parallel matrix multiplication
 - Parallel direct matrix multiplication with master and workers
 - Parallel blocked matrix multiplication with master and workers
 - Complexity lower bound of parallel matrix multiplication
 - Full recursive parallel blocked matrix multiplication
 - Cannon’s algorithm
 - Systolic arrays
 - Fox’ algorithm

- Iterative solver in MPI
- Heat distribution problem in MPI
- Further reading
Parallel Matrix Multiplication: Direct Implementation

- Basic algorithm, \(n \times l \) matrix \(A \), \(l \times m \) matrix \(B \), \(n \times m \) matrix \(C \)

\[
C = A \times B \quad c_{i,j} = \sum_{k=0}^{l-1} a_{i,k} b_{k,j}
\]

- Assume square matrices, thus \(n = m = l \)

- \(P = n \times n \) worker processors with \(c_{i,j} \) stored locally on \(p_{i,j} \)

- One master processor sends \(2n \) elements \(a_{i,k} \) and \(b_{k,j} \) for \(k = 0, ..., n-1 \) to each worker \(p_{i,j} \)

- Workers compute and return \(c_{i,j} \) to master processor

- Computation: \(t_{\text{comp}} = 2n \)

- Communication: \(t_{\text{comm}} = n^2(t_{\text{startup}} + 2n \ t_{\text{data}}) + n^2(t_{\text{startup}} + t_{\text{data}}) \)
Parallel Matrix Multiplication: Block Matrix Multiplication

- Block matrix multiplication algorithm, with $s \times s$ blocks of size $m \times m$ where $m = n/s$

  ```plaintext
  for p = 0 to s-1
    for q = 0 to s-1
      $C_{p,q} = 0$
      for r = 0 to s-1
        $C_{p,q} = C_{p,q} + A_{p,r} \times B_{r,q}$ // matrix +and × operations
  ```

- $P = s \times s$ worker processors with submatrices $C_{p,q}$ stored locally on $p_{p,q}$
- Master processor sends $2s$ blocks $A_{p,r}$ and $B_{r,q}$ of $m \times m$ for $r = 0, ..., s-1$ to each worker $p_{p,q}$
- Workers compute inner loop and return $C_{p,q}$ to master processor
- Computation: $t_{comp} = s(2m^3 + m^2) = O(sm^3) = O(nm^2)$
- Communication: $t_{comm} = 2s^2 (t_{startup} + nm t_{data}) + s^2 (t_{startup} + m^2 t_{data})$

 - master to workers
 - workers to master
Parallel Matrix Multiplication: Lower Bound on Complexity

- First assume we have \(P = n \times n \) processors
- Each processor computes \(c_{i,j} \) in parallel
- Assume zero communication overhead, so \(a_{i,k} \) and \(b_{k,j} \) for \(k = 0, \ldots, n-1 \) are directly available to all processors
- Now add another dimension of \(n \) processors (\(P = n \times n \times n \)) to compute
 \[
 c_{i,j} = \sum_{k=0}^{n-1} a_{i,k} b_{k,j}
 \]
 using a parallel tree-reduction in \(\log n \) steps
- Computation: \(t_{\text{comp}} = 1 + \log n = O(\log n) \)
- Not cost optimal: \(O(P \log n) = O(n^3 \log n) \neq O(n^3) \)
Parallel Matrix Multiplication: Recursive Implementation

- Block matrix multiplication in recursion by decomposing matrix in 2×2 submatrices and computing the submatrices recursively

```c
Mat matmul(Mat A, Mat B, int s)
{
 if (s == 1)
   C = A * B;
 else
   { s = s/2;
     P0 = matmul(A_{p,p}, B_{p,p}, s);
     P1 = matmul(A_{p,q}, B_{q,p}, s);
     P2 = matmul(A_{p,p}, B_{p,q}, s);
     P3 = matmul(A_{p,q}, B_{q,q}, s);
     P4 = matmul(A_{q,p}, B_{p,p}, s);
     P5 = matmul(A_{q,q}, B_{q,p}, s);
     P6 = matmul(A_{q,p}, B_{p,q}, s);
     P7 = matmul(A_{q,q}, B_{q,q}, s);
     C_{p,p} = P0 + P1;
     C_{p,q} = P2 + P3;
     C_{q,p} = P4 + P5;
     C_{q,q} = P6 + P7;
   }
 return C;
}
```

- Level of parallelism increases with deepening recursion
- Suitable for shared memory systems
- Excessive message passing on distributed memory systems
Parallel Matrix Multiplication: Cannon’s Algorithm

1. Initially each $p_{i,j}$ has $a_{i,j}$ and $b_{i,j}$
2. Align elements $a_{i,j}$ and $b_{i,j}$ by reordering them so that $a_{i,j+i}$ and $b_{i+j,j}$ are on $p_{i,j}$
3. Each $p_{i,j}$ computes $c_{i,j} = a_{i,j+i} * b_{i+j,j}$
 ($a_{i,j+i}$ and $b_{i+j,j}$ are local on $p_{i,j}$)
4. For $k = 1$ to $n-1$ repeat 5-7:
5. Rotate A left by one column
6. Rotate B up by one row
7. Each $p_{i,j}$ computes $c_{i,j} = c_{i,j} + a_{i,j+i+k} * b_{i+j+k,j}$
 ($a_{i,j+i+k}$ and $b_{i+j+k,j}$ are local on $p_{i,j}$ after k rotations)

Note: send-recv wrap around the processor grid

Note: subscripts are modulo n
Parallel Matrix Multiplication: Analysis of Cannon’s Algorithm

- Consider block matrix multiplication with Cannon’s algorithm, with \(s \times s \) blocks of size \(m \times m \) where \(m = n / s \)
- Initial alignment requires \(s - 1 \) rotations of \(A \) and \(B \) each moving \(m \times m \) blocks in parallel
- Algorithm takes \(s \) steps
 - Each processor performs a local matrix multiply on its \(m \times m \) block in \(2m^3 \) time and sums in \(m^2 \) time
 - Rotation of \(A \) and \(B \) on \(m \times m \) blocks, where each processor sends and receives two \(m \times m \) blocks (one per row and one per column)
- Computation: \(t_{\text{comp}} = s(2m^3 + m^2) = O(m^2n) \)
- Communication: \(t_{\text{comm}} = 4(s-1)(t_{\text{startup}} + m^2t_{\text{data}}) = O(m^2s) \)
Parallel Matrix Multiplication: Systolic Array

"Two-dimensional pipeline"

Each processor repeats a "recv-compute-send" stage n times:

recv(a, $p_{i,j-1}$)
recv(b, $p_{i-1,j}$)
c = c + a*b
send(a, $p_{i,j+1}$)
send(b, $p_{i+1,j}$)
Parallel Matrix Multiplication: Fox’ Algorithm

- Similar to Cannon’s algorithm
- No initial alignment
- Combines broadcast of A with rotation of B

1. For $k=0$ to $n-1$ repeat step 2-4:
2. For each row i, broadcast element $a_{i,i+k}$ along that row
3. Compute $c_{i,j} = c_{i,j} + a_{i,i+k} \times b_{i+k,j}$ ($a_{i,i+k}$ and $b_{i+k,j}$ are local on $p_{i,j}$)
4. Rotate B up by one row

For this algorithm, what is t_{comp} and t_{comm}?
Parallel Matrix Multiplication: Fox’ Blocked Algorithm

- Fox’ block matrix multiply with $s \times s$ blocks of size $m \times m$ where $m = n/s$

1. For $k=0$ to $s-1$ repeat 2-4:
2. For each processor row p, broadcast submatrix $A_{p,q+k}$ along processor row p
3. Compute $C_{p,q} = C_{p,q} + A_{p,q+k} \ast B_{p+k,q}$ ($A_{p,q+k} \& B_{p+k,q}$ are local on $p_{p,q}$)
4. Rotate B up by one processor row
Parallel Matrix Multiplication:
Fox’ Algorithm in MPI

```c
void Fox(GridInfo *grid, Matrix *Apq, Matrix *Bpq, Matrix *Cpq, int M) {
    int k, r;
    int dn = (grid->p + 1) % grid->s; ← The “below” and “above” processes
    int up = (grid->p + grid->s - 1) % grid->s;
    MPI_Status stat;
    Matrix Atmp[M*M];

    setzero(C);
    for (k = 0; k < grid->s; k++) {
        r = (grid->p + k) % grid->s;
        if (r == grid->q) {
            MPI_Bcast(Apq, M*M, MPI_DOUBLE, r, grid->row);
            matmul(Apq, Bpq, Cpq, M);
        } else {
            MPI_Bcast(Atmp, M*M, MPI_DOUBLE, r, grid->row);
            matmul(Atmp, Bpq, Cpq, M);
        }
        MPI_Sendrecv_replace(Bpq, M*M, MPI_DOUBLE, up, 0, dn, 0, grid->col, &stat);
    }
}
```

Row and column communicators (these are relative to each process)
typedef struct GridInfo
{
 int s; // The sxs processor grid
 int p, q; // Position (p,q) of the process on the grid
 MPI_Comm row, col; // Row and column communicators
} GridInfo;

void setup(GridInfo *grid)
{
 MPI_Comm comm;
 int numproc, rank, dim[2], wrap[2], coord[2], freecoord[2];
 MPI_Comm_size(MPI_COMM_WORLD, &numproc);
 grid->s = (int)sqrt(numproc);
 dim[0] = dim[1] = grid->s;
 wrap[0] = wrap[1] = 1;
 MPI_Cart_create(MPI_COMM_WORLD, 2, dim, wrap, 1, &comm);
 MPI_Comm_rank(comm, &rank);
 MPI_Cart_coords(comm, rank, 2, coord);
 grid->p = coord[0];
 grid->q = coord[1];
 ...
}

Number of processes should be perfect square

Setup 2 by 2 Cartesian grid

Find process’ location on the grid
Parallel Matrix Multiplication: Fox’ Algorithm in MPI (cont’d)

typedef struct GridInfo
{
 int s; \textit{The }s\times s\textit{ processor grid}
 int p, q; \textit{Position }\textit{(p,q)}\textit{ of the process on the grid}
 MPI_Comm row, col; \textit{Row and column communicators}
} GridInfo;

```c
void setup(GridInfo *grid)
{
    ...
    freecoord[0] = 0;
    freecoord[1] = 1;
    MPI_Cart_sub(comm, freecoord, &grid->row);
    freecoord[0] = 1;
    freecoord[1] = 0;
    MPI_Cart_sub(comm, freecoord, &grid->col);
}
```

Setup row communicator

Setup column communicator
Parallel Iterative Solver: Jacobi Method

\[x_i^k = \frac{1}{a_{i,i}} b_i - \sum_{j \neq i} a_{i,j} x_j^{k-1} \]

for (i = 0; i < m; i++)
 \(x_p[i] = b_p[i] \);
do
{ allGather \(x_p[0...m-1] \) into \(xold[0...n-1] \);
 for (i = 0; i < m; i++)
 { \(x_p[i] = b_p[i] \);
 for (j = 0; j < n; j++)
 if (j != p*m+i)
 \(x_p[i] = x_p[i] - A_p[i,j] * xold[j] \);
 \(x_p[i] = x_p[i] / A_p[i,i] \);
 }
} while (...);

1. Distribute \(n \times n \) matrix \(A \) by rows and vector \(b \) in blocks of size \(m = n/P \) over \(P \) processors into local \(A_p \) and \(b_p \)
2. Assign \(x_p = b_p \)
3. Repeat 4-6 until convergence or max iterations reached:
4. Gather \(x_p \) into \(xold \) \{ allGather \}
5. Broadcast \(xold \)
6. Compute new \(x_p \) using \(A_p \), \(b_p \), \(xold \)
Parallel Iterative Solver: Jocobi Method in MPI – v1

```c
void Jacobi(Matrix *Ap, Vector *bp, Vector *xp, int N, int M)
{
    Vector xold[N];
    int i, j, p;

    MPI_Comm_rank(MPI_COMM_WORLD, &p);
    for (i = 0; i < M; i++)
        xp[i] = bp[i];
    do
    {
        MPI_Allgather(xp, M, MPI_DOUBLE, xold, M, MPI_DOUBLE, MPI_COMM_WORLD);
        for (i = 0; i < M; i++)
        {
            xp[i] = bp[i];
            for (j = 0; j < p*M+i; j++)
                xp[i] = xp[i] - Ap[i][j]*xold[j];
            for (j = p*M+i+1; j < N; j++)
                xp[i] = xp[i] - Ap[i][j]*xold[j];
            xp[i] = xp[i]/Ap[i][i];
        }
    } while (...);
}
```

The global row index $I = pm+i$
void Jacobi(Matrix *Ap, Vector *bp, Vector *xp, int N, int M)
{
 Vector xold[N];
 int i, j, p;

 MPI_Comm_rank(MPI_COMM_WORLD, &p);
 for (i = 0; i < M; i++)
 xp[i] = bp[i];
 do
 {
 MPI_Allgatherv(xp, M, MPI_DOUBLE, xold, M, MPI_DOUBLE, MPI_COMM_WORLD);
 for (i = 0; i < M; i++)
 {
 xp[i] = bp[i] + Ap[i][p*M+i]*xold[p*M+i];
 for (j = 0; j < n; j++)
 xp[i] = xp[i] - Ap[i][j]*xold[j];
 xp[i] = xp[i]/Ap[i][i];
 }
 } while (...);
}
Heat Distribution Problem: Parallel Jacobi Iteration

1. Distribute \(n \times n \) matrix \(h \) block-wise by rows into local \(h_p \)
2. Extend local \(h_p \) with additional top and bottom rows to form “halos” (ghost cells), each block has size \(m \times n \), where \(m = (n-2)/P + 2 \)
3. Repeat 4-5 until convergence:
4. Exchange rows with neighbor processors to update halo rows
5. Compute \(h_{new_p} \)
6. Assign \(h_{new_p} \) to \(h_p \)
Heat Distribution Problem in MPI – v1

```c
void HDStep(Matrix *hp, int N, int M)
{
    int i, j;
    Matrix hnew[M*N];
    MPI_Status s;
    if (p % 2 == 0 && p < P-1)
        MPI_Sendrecv(hp[M-2], N, MPI_FLOAT, p+1, 0,
                      hp[M-1], N, MPI_FLOAT, p+1, 1, MPI_COMM_WORLD, &s);
    else
        MPI_Sendrecv(hp[1], N, MPI_FLOAT, p-1, 1,
                      hp[0], N, MPI_FLOAT, p-1, 0, MPI_COMM_WORLD, &s);
    if (p % 2 == 1 && p < P-1)
        MPI_Sendrecv(hp[M-2], N, MPI_FLOAT, p+1, 2,
                      hp[M-1], N, MPI_FLOAT, p+1, 3, MPI_COMM_WORLD, &s);
    else if (p > 0)
        MPI_Sendrecv(hp[1], N, MPI_FLOAT, p-1, 3,
                      hp[0], N, MPI_FLOAT, p-1, 2, MPI_COMM_WORLD, &s);
    for (i = 1; i < M-1; i++)
        for (j = 1; j < N-1; j++)
            hnew[i][j] = 0.25*(hp[i-1][j]+hp[i+1][j]+hp[i][j-1]+hp[i][j+1]);
    for (i = 1; i < M-1; i++)
        for (j = 1; j < N-1; j++)
            hp[i][j] = hnew[i][j];
}
```
Heat Distribution Problem in MPI – v2

```c
void HDStep(Matrix *hp, int N, int M)
{
    int i, j;
    Matrix hnew[M*N];
    MPI_Status s;
    if (p > 0 && p < P-1)
    {  
        MPI_Sendrecv
           hp[M-2], N, MPI_FLOAT, p+1, 0,
        hp[0], N, MPI_FLOAT, p-1, 0, MPI_COMM_WORLD, &s);
        MPI_Sendrecv
           hp[1], N, MPI_FLOAT, p-1, 1,
        hp[M-1], N, MPI_FLOAT, p+1, 1, MPI_COMM_WORLD, &s);
    }  
    else if (p == 0)
        MPI_Sendrecv(hp[M-2], N, MPI_FLOAT, p+1, 0,
                      hp[M-1], N, MPI_FLOAT, p+1, 1, MPI_COMM_WORLD, &s);
    else
        MPI_Sendrecv(hp[1], N, MPI_FLOAT, p-1, 1,
                      hp[0], N, MPI_FLOAT, p-1, 0, MPI_COMM_WORLD, &s);
    for (i = 1; i < M-1; i++)
        for (j = 1; j < N-1; j++)
        hnew[i][j] = 0.25*(hp[i-1][j]+hp[i+1][j]+hp[i][j-1]+hp[i][j+1]);
    for (i = 1; i < M-1; i++)
        for (j = 1; j < N-1; j++)
        hp[i][j] = hnew[i][j];
}
```
Heat Distribution Problem in MPI – v3

```c
void HDStep(Matrix *hp, int N, int M, int step)
{
    int i, j;
    int dntag = 2*step;  // Tag for “down” sends
    int uptag = 2*step + 1;  // Tag for “up” sends
    Matrix hnew[M*N];
    MPI_Request sndreq[2], rcvreq[2];
    MPI_Status stat[2];
    if (p < P-1)
    {
        MPI_Isend(hp[M-2], N, MPI_FLOAT, p+1, dntag, MPI_COMM_WORLD, &sndreq[0]);
        MPI_Irecv(hp[M-1], N, MPI_FLOAT, p+1, uptag, MPI_COMM_WORLD, &rcvreq[0]);
    }
    if (p > 0)
    {
        MPI_Isend(hp[1], N, MPI_FLOAT, p-1, uptag, MPI_COMM_WORLD, &sndreq[1]);
        MPI_Irecv(hp[0], N, MPI_FLOAT, p-1, dntag, MPI_COMM_WORLD, &rcvreq[1]);
    }
    for (i = 2; i < M-2; i++)
        for (j = 1; j < N-1; j++)
            hnew[i][j] = 0.25*(hp[i-1][j]+hp[i+1][j]+hp[i][j-1]+hp[i][j+1]);
    ...
```

void HDStep(Matrix *hp, int N, int M, int step) {
 ...
 if (p == 0)
 MPI_Wait(&rcvreq[0], stat);
 else if (p == P-1)
 MPI_Wait(&rcvreq[1], stat);
 else
 MPI_Waitall(2, rcvreq, stat);
 for (j = 1; j < N-1; j++)
 { hnew[1][j] = 0.25*(hp[0][j] +hp[2][j] +hp[1][j-1] +hp[1][j+1]);
 }
 if (p == 0)
 MPI_Wait(&sndreq[0], stat);
 else if (p == P-1)
 MPI_Wait(&sndreq[1], stat);
 else
 MPI_Waitall(2, sndreq, stat);
 for (i = 1; i < M-1; i++)
 for (j = 1; j < N-1; j++)
 hp[i][j] = hnew[i][j];
}
Further Reading

- [PP2] pages 340-365