Overview

- IEEE 754 Floating point
- IEEE 754 Exceptions
- FPU control and status registers
- Language and compiler issues with IEEE floating point
- FP tricks
- FP error analysis
- SIMD short vector extensions
- Programming with SSE
- GNU multi-precision library (GMP)
- GPU programming (next topic)
Floating Point

Definitions

- Notation: $s \ d.dd\ldots d \times r^e$
- **Sign**: s (+ or -)
- **Significand**: $d.d\ldots d$ with p digits (precision p)
- **Radix**: r (typically 2 or 10)
- Signed **exponent**: e where $e_{\min} < e \leq e_{\max}$

Represents a floating point value (really a *rational* value!)

$$\pm (d_0 + d_1 r^{-1} + d_2 r^{-2} + \ldots + d_{p-1} r^{-(p-1)}) \ r^e$$

where $0 \leq d_i < r$
IEEE 754 Floating Point

- The IEEE 754 standard specifies
 - Binary floating point format ($r = 2$)
 - Single, double, extended, and double extended precision
 - Representations for indefinite values (NaN) and infinity (INF)
 - Signed zero and denormalized numbers
 - Masked exceptions
 - Roundoff control
 - Standardized algorithms for arithmetic to ensure accuracy and bit-precise portability
IEEE 754 Floating Point

- **Standardized algorithms for arithmetic to ensure accuracy and bit-precise portability**

- But programs that rely on IEEE 754 **may still not** be bit-precise portable, because many math function libraries are not identical across systems

- Unless you write your own libraries
IEEE 754 Floating Point versus Binary Coded Decimal (BCD)

- Binary floating point (radix \(r = 2 \)) with limited precision \(p \) cannot represent decimal values accurately
 - \[0.10000 \approx 2^{-4} + 2^{-5} + 2^{-8} + \ldots \]
 - `for (float x = 0.0; x < 1.0; x += 0.01) { ... }` will not work correctly! (\(x = 0.999999 < 1.0 \))
 - `DO X = 0.0, 1.0, 0.01` will work: Fortran determines number of iter’s from loop bounds
 - Use `if (fabs(x-y) < 0.0001)` instead of `if (x == y)`

- Packed binary coded decimal (BCD) encodes decimal digits in groups of 4 bits (nibbles): 0000 (0) … 1001 (9)
 - 351.20 = 0011 0101 0001 . 0010 0000
 - Used by calculators, some spreadsheet programs (not Excel!), and many business/financial data processing systems, COBOL
IEEE 754 Floating Point Formats

- Four formats:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Format</th>
<th>Single</th>
<th>Single-Extended</th>
<th>Double</th>
<th>Double-Extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td></td>
<td>24</td>
<td>>32</td>
<td>53</td>
<td>>64</td>
</tr>
<tr>
<td>e_{max}</td>
<td></td>
<td>+127</td>
<td>>+1023</td>
<td>+1023</td>
<td>>16383</td>
</tr>
<tr>
<td>e_{min}</td>
<td></td>
<td>-126</td>
<td><-1022</td>
<td>-1022</td>
<td><16382</td>
</tr>
<tr>
<td>Exponent width</td>
<td></td>
<td>8 bits</td>
<td>>11 bits</td>
<td>11 bits</td>
<td>>15 bits</td>
</tr>
<tr>
<td>Format width</td>
<td></td>
<td>32 bits</td>
<td>>43 bits</td>
<td>64 bits</td>
<td>>79 bits</td>
</tr>
</tbody>
</table>
IEEE 754 Floating Point

- Most significant bit of the significand d_0 not stored
- **Normalized numbers**: $\pm 1.dd\ldots d 2^e$
- **Denormalized numbers**: $\pm 0.dd\ldots d 2^{emin-1}$

Diagram:
- Normalized negative numbers
- Normalized positive numbers
- Denormalized numbers

Thresholds:
- Underflow threshold: 2^{-126}
- Overflow threshold: $2^{127} \times (2 - 2^{-23})$
IEEE 754 Floating Point
Overflow and Underflow

- Arithmetic operations can **overflow** or **underflow**
- **Overflow**: result value requires $e > e_{\text{max}}$
 - Raise exception or return $\pm\infty$
 - Infinity (INF) represented by zero significand and $e = e_{\text{max}} + 1$
 - $1/0.0$ gives INF, $-1/0.0$ gives $-\infty$, $3/\text{INF}$ gives 0
- **Underflow**: result value requires $e < e_{\text{min}}$
 - Raise exception or return denorm or return **signed** zero
 - Denorm represented by with $e = e_{\text{min}} - 1$
- Why bother returning a denorm? Consider:

  ```plaintext
  if (a != b) then x = a/(a-b);
  ```
- Why bother distinguishing +0 from -0? Consider:

  ```plaintext
  if (a > b) then x = \log(a-b);
  ```
IEEE 754 Floating Point NaN

- **Not-a-number** (NaN) represented by all 1 bits in exponent $e = e_{\text{max}} + 1$ (e is **biased** by $+2^{\text{exp_width}-1}-1$)
- Sign and significand >0 are irrelevant (but may carry info)
- Generated by indeterminate and other operations
 - $0/0$
 - $\sqrt{-1}$
 - $\text{INF-INF, INF/INF, 0*INF}$
- Two kinds of NaN
 - **Quiet**: propagates NaN through operations without raising exception
 - **Signaling**: raise an exception when touched
- Fortran initializes reals to NaN by default
 - Signaling NaN automatically detects uninitialized data
IEEE 754 Floating Point Exceptions

- Exceptions
 - **Invalid operation**: raised by a signaling NaN or illegal operation on infinity
 - **Divide by zero**
 - **Denormal operand**: indicates loss of precision
 - **Numeric overflow** or **underflow**
 - **Inexact result or precision**: result of operation cannot be accurately represented, e.g. \(3.5 \times 4.3 = 15.0\) for \(r=10\) and \(p=3\)

- Exceptions can be masked using hardware control registers of an FPU
 - Masking means that quiet NaN and INF are returned and propagated
Intel x87 FPU FPCW

- Masking exceptions on the Intel x87 FPU using the FPCW control word

```
uint16_t setmask = ...;
uint16_t oldctrl, newctrl;
asm {
    FSTCW oldctrl
    mov ax, oldctrl
    and ax, 0ffc0h
    or ax, setmask
    mov newctrl,ax
    FLDCW newctrl
} 
```
Intel x87 FPU FPCW

- The Intel x87 FPU uses a pre-specified precision for all internal floating point operations
 - Extended double (80 bits) for Linux
 - Double (64 bits) for Windows

- Using float and double in C only affects storage, not the internal arithmetic precision
 - Changing the FPU precision can speed up div, rem, and sqrt

```c
uint16_t prec = 0x0000; // 0x0000=sgl, 0x0200=dbl, 0x0300=ext
uint16_t oldctrl, newctrl;
_asm {
    FSTCW oldctrl
    mov ax, oldctrl
    and ax, 0fcffh
    or ax, prec
    mov newctrl,ax
    FLDCW newctrl
}
```
Language and Compiler Issues with IEEE Floating Point

- Associative rule does not hold: \((x + y) + z \neq x + (y + z)\)
 - Take \(x = 10^{30}, y = -10^{30},\) and \(z = 1\) then result is 1 or 0, respectively

- Cannot replace division by multiplication: \(x/10.0 \neq 0.1 \times x\)
 - 0.1 is not accurately represented
 - But \(x/2.0 == 0.5 \times x\) is okay

- Distributive rule does not hold: \(x \times y + x \times z \neq x \times (y + z)\)
 - Take for example \(y \approx -z\)

- Negation is not subtraction, since zero is signed: \(-x \neq 0-x\)
 - Take \(x = 0\), then \(-x == -0\) and \(0-x == +0\)
 - Note: FP hardware returns true when comparing \(-0 == +0\)

- IEEE rounding modes may differ from language’s rounding
Language and Compiler Issues with IEEE Floating Point

- NaN is unordered, which affects comparisons
 - Any comparison to NaN returns false, thus when $x < \text{NaN}$ fails this does not imply $x \geq \text{NaN}$
 - Cannot sort array of floats that includes NaNs
 - !(x < y) is not identical to $x \geq y$
 - $x == x$ is not true when $x = \text{NaN}$

- Preserving the evaluation of comparisons matters, similar to preserving parenthesis

```c
eps = 1;
do eps = 0.5*eps;
while (eps + 1 > 1);
```

Correct

$$ (\text{eps} + 1) = 1 $$
when eps is small

```c
eps = 1;
do eps = 0.5*eps;
while (eps > 0);
```

Incorrect
Language and Compiler Issues with IEEE Floating Point (cont)

- Exceptions (e.g. signaling NaN) disallow expression optimization
 - These two instructions have no dependence and can potentially be reordered:
 \[x = y \times z; \]
 \[a = b + c; \]
 but each may trigger an exception and the reorder destroys relationship (what if \(b + c \) triggers exception and exception handler wants to read \(x \)?)

- A change in rounding mode affects common sub-expressions
 - The expression \(a \times b \) is not common in this code:
 \[x = a \times b; \]
 \[\text{set_round_mode} = \text{UP}; \]
 \[y = a \times b; \]
Language and Compiler Issues with IEEE Floating Point (cont)

- Programming languages differ in narrowing and widening type conversions
 - Use the type of the destination of the assignment to evaluate operands
    ```
    float x = n/m; // causes n and m to be widened to float first
    ```
 - Obey type of operands, widen intermediate values when necessary, and then narrow final value to destination type
 - More common, e.g. C, Java

- IEEE ensures the following are valid for all values of x and y:
 - x+y = y+x
 - x+x = 2*x
 - 1.0*x = x
 - 0.5*x = x/2.0
IEEE 754 Floating Point Manipulation Tricks

- Fast FP-to-integer conversion (rounds towards $-\infty$)

```c
#define FLOAT_FTOI_MAGIC_NUM (float)(3<<21)
#define IT_FTOI_MAGIC_NUM (0x4ac00000)
inline int FastFloatToInt(float f)
{
    f += FLOAT_FTOI_MAGIC_NUM;
    return (*((int*)&f) - IT_FTOI_MAGIC_NUM)>>1;
}
```
IEEE 754 Floating Point Manipulation Tricks

- Fast square root approximation with only <5% error

```c
inline float FastSqrt(float x) {
  int t = *(int*)&x;
  t -= 0x3f800000;
  t >>= 1;
  t += 0x3f800000;
  return *(float*)&t;
}
```
IEEE 754 Floating Point Manipulation Tricks

- Fast reciprocal square root approximation for \(x > 0.25 \) with only <0.6% error

```c
inline float FastInvSqrt(float x)
{
    int tmp = ((0x3f800000 << 1) +
                0x3f800000 - *(long*)&x) >> 1;
    float y = *(float*)&tmp;
    return y * (1.47f - 0.47f * x * y * y);
}
```
Floating Point Error Analysis

- Error analysis formula
 - \(fl(a \ op b) = (a \ op b) \times (1 + \varepsilon) \)
 - \(\varepsilon \) is +, -, *, /
 - \(|\varepsilon| \leq \text{machine eps} = 2^{-\text{#significant bits}} \) = relative error in each op
 - Assumes no overflow, underflow, or divide by zero occurs
 - Really a worst-case upper bound, no error cancellation

- Example
 - \(fl(x + y + z) \)
 - \(= fl(fl(x + y) + z) \)
 - \(= ((x + y) \times (1+\varepsilon) + z) \times (1+\varepsilon) \)
 - \(= x + 2\varepsilon x + \varepsilon^2 x + y + 2\varepsilon y + \varepsilon^2 y + z + \varepsilon z \)
 - \(\approx x \times (1+2\varepsilon) + y \times (1+2\varepsilon) + z \times (1+\varepsilon) \)

- Series of \(n \) operations: \(\text{result} \times (1+n\varepsilon) \)
Numerical Stability

- **Numerical stability** is an algorithm design goal
- **Backward error analysis** is applied to determine if algorithm gives the exact result for slightly changed input values

- Extensive literature, not further discussed here…
Conditioning

- An algorithm is **well conditioned** (or **insensitive**) if relative change in input causes commensurate relative change in result
 \[\text{Cond} = \frac{| \text{relative change in solution} |}{| \text{relative change in input} |} \]
 \[= \frac{| (f(x+h) - f(x)) |}{| f(x) |} \cdot \frac{| h/x |}{| h/x |} \]
 if the derivative f' of f is known:
 \[\text{Cond} = \frac{| x |}{| f'(x) |} \cdot \frac{| f(x) |}{| f(x) |} \]
- Problem is **sensitive** or **ill-conditioned** if $\text{Cond} >> 1$

- Other definitions
 - **Absolute error** \[= f(x+h) - f(x) \approx h f'(x)\]
 - **Relative error** \[= \frac{(f(x+h) - f(x))}{f(x)} \approx h f'(x) / f(x)\]
Conditioning Examples

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>x</td>
<td>f(x)</td>
<td>f'(x)</td>
<td>cond</td>
</tr>
<tr>
<td>exp</td>
<td>1</td>
<td>e</td>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td>exp</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>exp</td>
<td>-1</td>
<td>1/e</td>
<td>1/e</td>
<td>1</td>
</tr>
<tr>
<td>log</td>
<td>e</td>
<td>1</td>
<td>1/e</td>
<td>1</td>
</tr>
<tr>
<td>log</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>∞</td>
</tr>
<tr>
<td>log</td>
<td>1/e</td>
<td>-1</td>
<td>e</td>
<td>1</td>
</tr>
<tr>
<td>sin</td>
<td>π</td>
<td>0</td>
<td>-1</td>
<td>∞</td>
</tr>
<tr>
<td>sin</td>
<td>π/2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sin</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Example

- Let $x = \pi/2$ and let h be a small perturbation to x
 - Absolute error = $\cos(x+h) - \cos(x) \approx -h \sin(x) \approx -h$
 - Relative error = $(\cos(x+h) - \cos(x)) / \cos(x) \approx -h \tan(x) \approx -\infty$

- Small change in x near $\pi/2$ causes relative large change in $\cos(x)$
 - $\cos(1.57078) = 1.63268 \times 10^{-5}$
 - $\cos(1.57079) = 0.63268 \times 10^{-5}$

- $\text{Cond} = |\pi/2| \cdot |\sin(\pi/2)| / |\cos(\pi/2)|$
 $$= \pi/2 \cdot 1/0 = \infty$$
SIMD Short Vector Extensions

- Using **SIMD short vector extensions** can result in large performance gains
 - Instruction set extensions execute fast
 - New wide registers to hold short vectors of ints, floats, doubles
 - Parallel operations on short vectors
 - Typical vector length is 128 bit
 - Vector of 4 floats, 2 doubles, or 1 to 16 ints (128 bit to 8 bit ints)

- Technologies:
 - MMX and SSE (Intel)
 - 3DNow! (AMD)
 - AltiVec (PowerPC)
 - PA-RISC MAX (HP)
SSE SIMD Technology History

<table>
<thead>
<tr>
<th>Technology</th>
<th>First appeared</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMX</td>
<td>Pentium with MMX</td>
<td>Introduced 8-byte packed integers</td>
</tr>
<tr>
<td>SSE</td>
<td>Pentium III</td>
<td>Added 16-byte packed single precision floating point numbers</td>
</tr>
<tr>
<td>SSE2</td>
<td>Pentium 4</td>
<td>Added 16-byte packed double precision floating point numbers and integers</td>
</tr>
<tr>
<td>SSE3</td>
<td>Pentium 4 with HT</td>
<td>Added horizontal operations on packed single and double precision floating point numbers</td>
</tr>
<tr>
<td>SSE4</td>
<td>P4 & Core i7</td>
<td>Added various instructions not specifically intended for multimedia</td>
</tr>
<tr>
<td>SSE5</td>
<td>AMD</td>
<td>Added fused/accumulate and permutation instructions, and precision control</td>
</tr>
</tbody>
</table>
SSE Instruction Set

- Eight 128 bit registers xmm0 … xmm7
- Each register packs
 - 16 bytes (8 bit int)
 - 8 words (16 bit int)
 - 4 doublewords (32 bit int)
 - 2 quadwords (64 bit int)
 - 4 floats (IEEE 754 single precision)
 - 2 doubles (IEEE 754 double precision)
- Note: integer operations are signed or unsigned
SSE Instruction Set

- Instruction format:

 \textit{instruction}<\textit{suffix}> \textit{xmm, xmm/m128, [imm8/r32]}

 m128 is a 128-bit memory location (16-byte aligned address), imm8 is an 8-bit immediate operand, r32 a 32-bit register operand

- Instruction suffix for floating-point operations:
 - \textit{ps}: packed single precision float
 - \textit{pd}: packed double precision float
 - \textit{ss}: scalar (applies to lower data element) single precision float
 - \textit{sd}: scalar (applies to lower data element) double precision float

- Instruction suffix for integer operations:
 - \textit{b}: byte
 - \textit{w}: word
 - \textit{d}: doubleword
 - \textit{q}: quadword
 - \textit{dq}: double quadword
SSE Data Movement

- Little endian order

a+14	W7
a+14	W6
a+10	W5
a+8	W4
a+6	W3
a+4	W2
a+2	W1
a	W0

xmm0: \(\begin{array}{cccccccc} W7 & W6 & W5 & W4 & W3 & W2 & W1 & W0 \end{array} \)

movdqa xmm0, [a]
Use when a is 16-byte aligned

movdqu xmm0, [a]
Use when a is not aligned (expensive!)
SSE Data Movement

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>movdqa</td>
<td></td>
<td>Move double quadword aligned</td>
</tr>
<tr>
<td>movdqu</td>
<td></td>
<td>Move double quadword unaligned</td>
</tr>
<tr>
<td>mova</td>
<td>ps, pd</td>
<td>Move single/double precision float aligned</td>
</tr>
<tr>
<td>movu</td>
<td></td>
<td>Move single/double precision float unaligned</td>
</tr>
<tr>
<td>movhl</td>
<td>ps</td>
<td>Move packed float high to low</td>
</tr>
<tr>
<td>movlh</td>
<td>ps</td>
<td>Move packed float low to high</td>
</tr>
<tr>
<td>moveh</td>
<td>ps, pd</td>
<td>Move high packed float (single/double)</td>
</tr>
<tr>
<td>movel</td>
<td>ps, pd</td>
<td>Move low packed float (single/double)</td>
</tr>
<tr>
<td>mov</td>
<td>d, q, ss, sd</td>
<td>Move scalar data</td>
</tr>
<tr>
<td>lddqu</td>
<td></td>
<td>Load double quadword unaligned</td>
</tr>
<tr>
<td>movqddup</td>
<td></td>
<td>Move quadword and duplicate</td>
</tr>
<tr>
<td>movshdup</td>
<td></td>
<td>Move doubleword and duplicate into high position</td>
</tr>
<tr>
<td>movsldup</td>
<td></td>
<td>Move doubleword and duplicate into low position</td>
</tr>
</tbody>
</table>
SSE Data Movement

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pextr</td>
<td>w</td>
<td>Extract word to r32</td>
</tr>
<tr>
<td>pinsr</td>
<td>w</td>
<td>Insert word from r32</td>
</tr>
<tr>
<td>pmovmsk</td>
<td>b</td>
<td>Move mask</td>
</tr>
<tr>
<td>movmsk</td>
<td>ps,pd</td>
<td>Move mask</td>
</tr>
</tbody>
</table>

Note:
Instructions that start with ‘p’ historically operate on 64-bit MM registers
Some of these are upgraded by SSE to operate on 128-bit XMM registers
SSE Integer Arithmetic

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>padd</td>
<td>b,w,d,q</td>
<td>Packed addition (signed/unsigned)</td>
</tr>
<tr>
<td>psub</td>
<td>b,w,d,q</td>
<td>Packed subtraction (signed/unsigned)</td>
</tr>
<tr>
<td>padds</td>
<td>b,w</td>
<td>Packed addition with saturation (signed)</td>
</tr>
<tr>
<td>paddus</td>
<td>b,w</td>
<td>Packed addition with saturation (unsigned)</td>
</tr>
<tr>
<td>psubbs</td>
<td>b,w</td>
<td>Packed subtraction with saturation (signed)</td>
</tr>
<tr>
<td>psubbus</td>
<td>b,w</td>
<td>Packed subtraction with saturation (unsigned)</td>
</tr>
<tr>
<td>pmins</td>
<td>w</td>
<td>Packed minimum (signed)</td>
</tr>
<tr>
<td>pminu</td>
<td>b</td>
<td>Packed minimum (unsigned)</td>
</tr>
<tr>
<td>pmaxs</td>
<td>w</td>
<td>Packed maximum (signed)</td>
</tr>
<tr>
<td>pmaxu</td>
<td>b</td>
<td>Packed maximum (unsigned)</td>
</tr>
</tbody>
</table>
SSE Floating-Point Arithmetic

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>ss,ps,sd,pd</td>
<td>Addition (scalar/packed, single/double)</td>
</tr>
<tr>
<td>sub</td>
<td>ss,ps,sd,pd</td>
<td>Subtraction (scalar/packed, single/double)</td>
</tr>
<tr>
<td>mul</td>
<td>ss,ps,sd,pd</td>
<td>Multiplication (scalar/packed, single/double)</td>
</tr>
<tr>
<td>div</td>
<td>ss,ps,sd,pd</td>
<td>Division (scalar/packed, single/double)</td>
</tr>
<tr>
<td>min</td>
<td>ss,ps,sd,pd</td>
<td>Minimum (scalar/packed, single/double)</td>
</tr>
<tr>
<td>max</td>
<td>ss,ps,sd,pd</td>
<td>Maximum (scalar/packed, single/double)</td>
</tr>
<tr>
<td>sqrt</td>
<td>ss,ps,sd,pd</td>
<td>Square root (scalar/packed, single/double)</td>
</tr>
<tr>
<td>rcp</td>
<td>ss,ps</td>
<td>Approximate reciprocal</td>
</tr>
<tr>
<td>rsqrt</td>
<td>ss,ps</td>
<td>Approximate reciprocal square root</td>
</tr>
</tbody>
</table>
SSE Idiomatic Arithmetic

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pavg</td>
<td>b,w</td>
<td>Packed average with rounding (unsigned)</td>
</tr>
<tr>
<td>pmulh</td>
<td>w</td>
<td>Packed multiplication high (signed)</td>
</tr>
<tr>
<td>pmulhu</td>
<td>w</td>
<td>Packed multiplication high (unsigned)</td>
</tr>
<tr>
<td>pmull</td>
<td>w</td>
<td>Packed multiplication low (signed/unsigned)</td>
</tr>
<tr>
<td>psad</td>
<td>bw</td>
<td>Packed sum of absolute differences (unsigned)</td>
</tr>
<tr>
<td>pmadd</td>
<td>wd</td>
<td>Packed multiplication and addition (signed)</td>
</tr>
<tr>
<td>addsub</td>
<td>ps,pd</td>
<td>Floating point addition and subtraction</td>
</tr>
<tr>
<td>hadd</td>
<td>ps,pd</td>
<td>Floating point horizontal addition</td>
</tr>
<tr>
<td>hsub</td>
<td>ps,pd</td>
<td>Floating point horizontal subtraction</td>
</tr>
</tbody>
</table>
SSE Logical Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pand</td>
<td></td>
<td>Bitwise logical AND</td>
</tr>
<tr>
<td>pandn</td>
<td></td>
<td>Bitwise logical AND-NOT</td>
</tr>
<tr>
<td>por</td>
<td></td>
<td>Bitwise logical OR</td>
</tr>
<tr>
<td>pxor</td>
<td></td>
<td>Bitwise logical XOR</td>
</tr>
<tr>
<td>and</td>
<td>ps, pd</td>
<td>Bitwise logical AND</td>
</tr>
<tr>
<td>andn</td>
<td>ps, pd</td>
<td>Bitwise logical AND-NOT</td>
</tr>
<tr>
<td>or</td>
<td>ps, pd</td>
<td>Bitwise logical OR</td>
</tr>
<tr>
<td>xor</td>
<td>ps, pd</td>
<td>Bitwise logical XOR</td>
</tr>
</tbody>
</table>
SSE Comparison Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcmpeq</td>
<td>b,w,d</td>
<td>Packed compare equal</td>
</tr>
<tr>
<td>pcmpgt</td>
<td>b,w,d</td>
<td>Packed compare greater than</td>
</tr>
<tr>
<td>cmp</td>
<td>ss,ps,sd,pd</td>
<td>Floating-point compare imm8 field is eq, lt, le, unord, neq, nlt, nle, ord</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use intrinsic _mm_cmp<cc>_x</td>
</tr>
</tbody>
</table>
SSE Conversion Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>packss</code></td>
<td><code>wb, dw wb</code></td>
<td>Pack with saturation (signed) Pack with saturation (unsigned)</td>
</tr>
<tr>
<td><code>packus</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conversion Instructions

- **cvt<c>**
 - `cvt<c>`
 - Conversion
 - Conversion with truncation
 - `c = dq2pd` two signed doublewords to two double FP
 - `c = pd2dq` (vice versa)
 - `c = dq2ps` four signed doublewords to four single FP
 - `c = ps2dq` (vice versa)
 - `c = pd2ps` two double FP to two single FP
 - `c = ps2pd` (vice versa)
 - `c = sd2ss` one double FP to one single FP
 - `c = ss2sd` (vice versa)
SSE Shift and Shuffle Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>psll</code></td>
<td><code>w,d,q,dq</code></td>
<td>Shift left logical (zero in)</td>
</tr>
<tr>
<td><code>psra</code></td>
<td><code>w,d</code></td>
<td>Shift right arithmetic (sign in)</td>
</tr>
<tr>
<td><code>psrl</code></td>
<td><code>w,d,q,dq</code></td>
<td>Shift right logical (zero in)</td>
</tr>
<tr>
<td><code>pshuf</code></td>
<td><code>w,d</code></td>
<td>Packed shuffle</td>
</tr>
<tr>
<td><code>pshufh</code></td>
<td><code>w</code></td>
<td>Packed shuffle high</td>
</tr>
<tr>
<td><code>pshufl</code></td>
<td><code>w</code></td>
<td>Packed shuffle low</td>
</tr>
<tr>
<td><code>shuf</code></td>
<td><code>ps, pd</code></td>
<td>Shuffle, imm8 contains sequence of two (pd) or four (ps) 2-bit encodings of which source operand is stored in the destination operand</td>
</tr>
</tbody>
</table>
SSE Unpack Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>punpckh</td>
<td>bw,wd,dq,qdq</td>
<td>Unpack high</td>
</tr>
<tr>
<td>punpckl</td>
<td>bw,wd,dq,qdq</td>
<td>Unpack low</td>
</tr>
<tr>
<td>unpckh</td>
<td>ps, pd</td>
<td>Unpack high</td>
</tr>
<tr>
<td>unpckl</td>
<td>ps, pd</td>
<td>Unpack low</td>
</tr>
</tbody>
</table>
MXCSR Control/Status Register

```
uint32_t setmask = ...;
uint32_t oldctrl, newctrl;
asm {
  STMXCSR oldctrl
  mov eax, oldctrl
  and eax, 0xffffe07fh
  or eax, setmask
  mov newctrl, eax
  LDMXCSR newctrl
}
```

Note: FZ and DAZ improve performance but are not IEEE 754 compatible.
Intel SSE Programming

- Programming languages such as C, C++, and Fortran do not natively support SIMD instructions.

- The Intel compiler supports four methods to use SSE, from hard (top) to easy (bottom) they are:
 - **Assembly**: direct control, but hard to use and processor-specific.
 - **Intrinsics**: similar to assembly instructions with operands that are C expressions, but may be processor-specific.
 - **C++ class libraries**: easier to use and portable, but limited support for instructions and gives lower performance.
 - **Automatic vectorization**: no source code changes needed, new instruction sets automatically used, but compiler may fail to automatically vectorize code when dependences cannot be disproved.
SSE Instruction Intrinsics

- Use `#include <emmintrin.h>` (SSE2) or `#include <pmmintrin.h>` (SSE3)

- Data types:
 - `__m64` MM register
 - `__m128` packed single precision (XMM register)
 - `__m128d` packed double precision (XMM register)
 - `__m128i` packed integer (XMM register)

- Intrinsics operate on these types and have the format:
 - `_mm_instruction_suffix(…)`

 where `op` is an operation and `suffix` is:
 - `ss, ps` scalar/packed single precision
 - `sd, pd` scalar/packed double precision
 - `si#` scalar integer (8, 16, 32, 64, 128 bits)
 - `su#` scalar unsigned integer (8, 16, 32, 64, 128 bits)
 - `[e]pi#` packed integer (8, 16, 32, 64, 128 bits)
 - `[e]pu#` packed unsigned integer (8, 16, 32, 64, 128 bits)
SSE Instruction Intrinsics

Intrinsics add a number of shorthands for common composite instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Suffix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm_setzero
mm_set1
mm_set
mm_setr
</td>
<td>si64,si128,ps,pd pi8,pi16,pi32,ps,pd epi8,epi16,epi32,epi64 (as above) (as above)</td>
<td>Set to zero
Set all elements to a value
Set elements from scalars
Set in reverse order</td>
</tr>
<tr>
<td>mm_load
mm_loadu
mm_loadr
mm_loadh
mm_loadl
mm_loadl</td>
<td>MOV A (aligned)
MOV U (unaligned)
M O V A and shuffles to rev
M O V H
M O V L
M O V and shuffles</td>
<td></td>
</tr>
</tbody>
</table>
SIMD Instruction Intrinsics

Examples

- Load (movapd) two 16-byte aligned doubles in a vector:
  ```
  double a[2] = {1.0, 2.0}; // a must be 16-byte aligned
  __m128d x = _mm_load_pd(a);
  ```

- Add two vectors containing two doubles:
  ```
  __m128d a, b;
  __m128d x = _mm_add_pd(a, b);
  ```

- Multiply two vectors containing four floats:
  ```
  __m128 a, b;
  __m128 x = _mm_mul_ps(a, b);
  ```

- Add two vectors of 8 16-bit signed ints using saturating arithmetic
  ```
  __m128i a, b;
  __m128i x = _mm_adds_epi16(a, b);
  ```

- Compare two vectors of 16 8-bit signed integers
  ```
  __m128i a, b;
  __m128i x = _mm_cmpgt_epi8(a, b);
  ```

- Note: rounding modes and exception handling are set by masking
 the MXCSR register
Intrinsics Example 1

```c
#include <emmintrin.h> // SSE2

__declspec(align(16)) int array[len];
for (int i = 0; i < len; i++)
    array[i] = array[i] + 1;
...
```

```c
#include <emmintrin.h> // SSE2

// array of ints, 16-byte aligned
__declspec(align(16)) int array[len];
...
__m128i ones4 = _mm_set1_epi32(1);
__m128i *array4 = (__m128i*)array;
for (int i = 0; i < len/4; i++)
    array4[i] = _mm_add_epi32(array4[i], ones4);
```
Memory Alignment

- Memory operands must be **aligned** for maximum performance
 - 8-byte aligned for MMX
 - 16-byte aligned for SSE
 - Use `_declspec(align(8))` and `_declspec(align(16))`
- Aligned memory load/store operations segfault on unaligned memory operands
 - `__m128d x = _mm_load_pd(aligned_address);`
- Unaligned memory load/store operations are safe to use but incur high cost
 - `__m128d x = _mm_loadu_pd(unaligned_address);`
- Use `_mm_malloc(len, 16)` for dynamic allocation
Data Layout

- Application’s data layout may need to be reconsidered to use SIMD instructions effectively
- Vector operations require consecutively stored operands in memory
 - Cannot vectorize row-wise with row-major matrix layout
 - Cannot vectorize column-wise with column-major matrix layout
- Aligned structs may have members that are unaligned
  ```c
  struct node {
    int x[7];
    int dummy; // padding to make a[] aligned
    float a[4];
  }
  ```
C++ Class Libraries for SSE

- Integer class types of the form I_{bvecn}
 - I_{8vec8} (8 8bit) I_{8vec16} (16 8bit)
 - I_{16vec4} (4 16bit) I_{16vec8} (8 16bit)
 - I_{32vec2} (2 32bit) I_{32vec4} (4 32bit)
 - I_{64vec1} (1 64bit) I_{64vec2} (2 64bit)
 - $I_{128vec1}$ (1 128bit)

Note: place an ‘s’ or ‘u’ after ‘I’ for packed signed or packed unsigned integers, e.g. $I_{s32vec4}$

- Floating point class types of the form F_{bvecn}
 - F_{32vec4} (4 32bit) F_{64vec2} (2 64bit)
#include <dvec.h> // SSE2
...
// array of ints, 16-byte aligned
__declspec(align(16)) int array[len];
...
Is32vec4 *array4 = (Is32vec4*)array;
for (int i = 0; i < len/4; i++)
 array4[i] = array4[i] + 1; // increment 4 ints
GMP:
GNU Multi-Precision Library

- GMP is a portable library written in C for arbitrary precision arithmetic on integers, rational numbers, and floating-point numbers
- GMP aims to provide the fastest possible arithmetic for all applications that need higher precision than is directly supported by the basic C types
- Used by many projects, including computer algebra systems
- Programming language bindings: C, C++, Fortran, Java, Prolog, Lisp, ML, Perl, ...
- License: LGPL
GMP Usage

- Introduces three types (C language binding):
 - `mpz_t` bigint
 - `mpq_t` big rational
 - `mpf_t` bignum

- Use (similar for `mpq` and `mpf`):
  ```c
  #include <gmp.h>
  mpz_t n;
  mpz_init(n);
  mpz_init2(n, 123);
  mpz_init_set_str(n, "6", 10);
  ...
  mpz_clear(n);
  ```

- Link with `-lmpg`

 Use one of these to initialize.
 Note: `mpf_init2` sets precision

 base
GMP

- Dynamic memory allocation
 - Efficient implementation limits the need for frequent resizing
 - Configurable
- 150 integer operations on unlimited length bigint
 - Arithmetic
 - Comparison
 - Logic and bit-wise operations
 - Number theoretic functions
 - Random numbers
- 60 floating point operations on high-precision bignum
 - Arithmetic
 - Comparison
GMP C Example

```c
void myfunction(mpz_t result, mpz_t param, unsigned long n)
{
    unsigned long  i;

    mpz_mul_ui(result, param, n);
    for (i = 1; i < n; i++)
        mpz_add_ui(result, result, i*7);
}

int main(void)
{
    mpz_t  r, n;
    mpz_init(r);
    mpz_init_set_str(n, "123456", 0);

    myfunction(r, n, 20L);
    mpz_out_str(stdout, 10, r); printf("\n");

    return 0;
}
```
GMP C++ Bindings

- Defines three classes:
 - `mpz_class` for bigint
 - `mpq_class` for big rationals
 - `mpf_class` for bignum

- Most GMP functions have C++ wrappers, but not all
 - Root of 0.2 in 1000 bit precision:
    ```cpp
    mpf_class x(0.2, 1000), y(sqrt(x));
    ```
 - GCD of two bigints:
    ```cpp
    mpz_class a, b, c;
    ...
    mpz_gcd(a.get_mpz_t(), b.get_mpz_t(), c.get_mpz_t());
    ```

- Use `#include <gmpxx.h>` and link `-lgmpxx -lgmp`
GMP C++ Example

```cpp
#include <gmpxx.h>

mpz_class a, b, c; // integers
a = 1234;
b = "-5678";
c = a+b;
cout << "sum is " << c << "\n";
cout << "absolute value is " << abs(c) << "\n";
```

Expression like a=b+c results in a single call to the corresponding `mpz_add`, without using a temporary for the b+c part.

The classes can be freely intermixed in float, double, int/long, expressions.
Further Reading

 http://docs.sun.com/source/806-3568/ncg_goldberg.html

- Chapters 11 and 12 of “The Software Optimization Cookbook” 2nd ed by R. Gerber, A. Bik, K. Smith, and X. Tian, Intel Press.

- Intel Compiler intrinsics reference:

- GNU GMP: http://gmplib.org