Overview

- IEEE 754 Floating point
- IEEE 754 Exceptions
- FPU control and status registers
- Language and compiler issues with IEEE floating point
- Tricks
- Error analysis
- SIMD short vector extensions
- Programming with SIMD extensions
- GNU multi-precision library (GMP)
Floating Point

Definitions

- Notation: \(s \ d.d\ldots d \times r^e \)
- Sign: \(s \) (+ or -)
- Significand: \(d.d\ldots d \) with \(p \) digits (precision \(p \))
- Radix: \(r \) (typically 2 or 10)
- Signed exponent: \(e \) where \(e_{\text{min}} < e < e_{\text{max}} \)

Represents a floating point number (a rational value)

\[
\pm (d_0 + d_1 r^{-1} + d_2 r^{-2} + \ldots + d_{p-1} r^{-(p-1)}) \ r^e
\]

where \(0 \leq d_i < r \)
IEEE 754 Floating Point

- The IEEE 754 standard species
 - Binary floating point format ($r = 2$)
 - Single, double, extended, and double extended precision
 - Representations for indefinite values (NaN) and infinity (INF)
 - Signed zero and denormalized numbers
 - Masked exceptions
 - Roundoff control
 - Specifies algorithms for arithmetic to ensure accuracy and bit-precise portability

- Note:
 - Programs that rely on IEEE 754 **may not** be bit-precise portable, because math function libraries are not identical across systems
IEEE 754 Floating Point Formats

Four formats:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
</tr>
<tr>
<td>p</td>
<td>24</td>
</tr>
<tr>
<td>e_{max}</td>
<td>+127</td>
</tr>
<tr>
<td>e_{min}</td>
<td>-126</td>
</tr>
<tr>
<td>Exponent width</td>
<td>8 bits</td>
</tr>
<tr>
<td>Format width</td>
<td>32 bits</td>
</tr>
</tbody>
</table>
IEEE 754 Floating Point

- Most significant bit of the significand d_0 not stored
- **Normalized numbers**: $\pm 1.dd\ldots d 2^e$
- **Denormalized numbers**: $\pm 0.dd\ldots d 2^{emin-1}$
IEEE 754 Floating Point
Overflow and Underflow

- Arithmetic operations can **overflow** or **underflow**

 - **Overflow**: result value requires $e > e_{\text{max}}$
 - Raise exception or return $\pm\text{infinity}$
 - Infinity (INF) represented by zero significand and $e = e_{\text{max}} + 1$

 - **Underflow**: result value requires $e < e_{\text{min}}$
 - Raise exception or return denorm or return **signed** zero
 - Denorm represented by with $e = e_{\text{min}} - 1$

- Why bother returning a denorm?

  ```
  if (a != b) then \text{x} = a/(a-b);
  ```

- Why bother distinguishing $+0$ from -0?

  ```
  if (a > b) then \text{x} = \log(a-b);
  ```
IEEE 754 Floating Point NaN

- **Not-a-number** (NaN) represented by all 1 bits in exponent $e = e_{\text{max}} + 1$ (e is **biased** by $+2^{\text{exp_width}-1}-1$)
- Sign and significand>0 are irrelevant (but may carry info)
- Generated by indeterminate and other operations
 - 0/0
 - sqrt(-1)
 - INF-INF, INF/INF, 0*INF

- Two kinds of NaN
 - **Quiet**: propagates NaN through operations without raising exception
 - **Signaling**: raise an exception when touched

- Fortran initializes reals to NaN by default
 - Signaling NaN automatically detects uninitialized data
IEEE 754 Floating Point Exceptions

- Exceptions
 - Invalid operation: raised by a signaling NaN or illegal operation on infinity
 - Divide by zero
 - Denormal operand: indicates loss of precision
 - Numeric overflow or underflow
 - Inexact result or precision: can be safely ignored

- Exceptions can be masked using hardware control registers of an FPU
 - Masking means that quiet NaN and INF are returned and propagated
Intel x87 FPU FPCW

- Masking exceptions on the Intel x87 FPU using the FPCW control word

```c
uint16_t setexc = ...;
uint16_t oldctrl, newctrl;
asm {
    FSTCW oldctrl
    mov ax, oldctrl
    and ax, 0ffc0h
    or ax, setexc
    mov newctrl,ax
    FLDCW newctrl
}
```
The Intel x87 FPU uses a pre-specified precision for all internal floating point operations
- Extended double (80 bits) for Linux
- Double (64 bits) for Windows

Using `float` and `double` in C only affects storage, not the internal arithmetic precision
- Changing the FPU precision can speedup div, rem, and sqrt

```c
uint16_t prec = 0x0000; // 0x0000=sgl, 0x0200=dbl, 0x0300=ext
uint16_t oldctrl, newctrl;
_asm {
  FSTCW oldctrl
  mov ax, oldctrl
  and ax, 0fcffh
  or ax, prec
  mov newctrl,ax
  FLDCW newctrl
}
```
Language and Compiler Issues with IEEE Floating Point

- Associative rule does not hold: \((x + y) + z \neq x + (y + z)\)
 - Take \(x = 10^{30}\), \(y = -10^{30}\), and \(z = 1\)
- Cannot replace division by multiplication: \(x/10.0 \neq 0.1 \times x\)
 - 0.1 is not accurately represented
- Distributive rule does no hold: \(x \times y + x \times z \neq x \times (y + z)\)
 - Take \(y \approx -z\)
- Negation is not subtraction: \(-x \neq 0 - x\)
 - Take \(x = 0\) (recall zeros are signed)
- NaN is unordered, which affects comparisons
 - Any comparison to NaN returns false, thus when \(x < \text{NaN}\) fails this does not imply \(x \geq \text{NaN}\)
 - Cannot sort array of floats with NaNs
 - !(\(x < y\)) is not identical to \(x \geq y\)
 - \(x == x\) is not true when \(x = \text{NaN}\)
- IEEE rounding modes may differ from language’s rounding
Language and Compiler Issues with IEEE Floating Point (cont)

- Exceptions (e.g. signaling NaN) disallow expression optimization
 - These two instructions have no dependence and can be reordered:
 \[
 x = y \times z; \\
 a = b + c;
 \]
 but each may trigger an exception and the reorder destroys relationship

- A change in rounding mode affects common sub-expressions
 - The expression \(a \times b\) is not common in this code:
 \[
 x = a \times b; \\
 \text{set_round_mode} = \text{UP}; \\
 y = a \times b;
 \]

- Narrowing and widening type conversions
 - Use the type of the destination of the assignment
 - Obey type of operands, widen intermediate values when necessary, and then narrow final value to destination type

- IEEE ensures the following are valid for all values of \(x\) and \(y\):
 \[
 x+y = y+x, \ x+x = 2 \times x, \ 1.0 \times x = x, \ 0.5 \times x = x/2.0
 \]
IEEE 754 Floating Point Manipulation Tricks

- Fast FP-to-integer conversion (rounds towards $-\infty$)

```c
#define FLOAT_FTOI_MAGIC_NUM (float)(3<<21)
#define IT_FTOI_MAGIC_NUM (0x4ac00000)
inline int FastFloatToInt(float f)
{
    f += FLOAT_FTOI_MAGIC_NUM;
    return *((int*)&f) - IT_FTOI_MAGIC_NUM>>1;
}
```

- Fast square root approximation with 5% error

```c
inline float FastInvSqrt(float x)
{
    int t = *(int*)&x;
    t -= 0x3f800000;
    t >>= 1;
    t += 0x3f800000;
    return *(float*)&t;
}
```
Floating Point Error Analysis

- Error analysis formula
 - \(fl(a \text{ op } b) = (a \text{ op } b)*(1 + \varepsilon) \)
 - \(\text{op is +, -, *, /} \)
 - \(|\varepsilon| \leq \text{machine eps} = 2^{\#\text{significant bits}} = \text{relative error in each op} \)
 - Assumes no overflow, underflow, or divide by zero occurs
 - Really a worst-case upper bound, no error cancellation

- Example
 - \(fl(x + y + z) \)
 - \(= fl(fl(x + y) + z) \)
 - \(= ((x + y)*(1+\varepsilon) + z)*(1+\varepsilon) \)
 - \(= x + 2\varepsilon x + \varepsilon^2 x + y + 2\varepsilon y + \varepsilon^2 y + z + \varepsilon z \)
 - \(\approx x*(1+2\varepsilon) + y*(1+2\varepsilon) + z*(1+\varepsilon) \)
Numerical Stability

- **Numerical stability** is an algorithm design goal
- **Backward error analysis** is applied to determine if algorithm gives the exact result for slightly changed input values

- Extensive literature, not further discussed here…
Conditioning

- An algorithm is **well conditioned** (or **insensitive**) if relative change in input causes commensurate relative change in result

\[
Cond = \frac{|\text{relative change in solution}|}{|\text{relative change in input}|} = \frac{|(f(x+h) - f(x)) / f(x)|}{|h/x|}
\]

- Problem is **sensitive** or **ill-conditioned** if \(Cond >> 1 \)

- **Definitions**
 - Absolute error \(= f(x+h) - f(x) \approx h f'(x) \)
 - Relative error \(= (f(x+h) - f(x)) / f(x) \approx h f'(x) / f(x) \)
An Ill-Conditioned Example

- Let $x = \pi/2$ and let h be a small perturbation to x
 - Absolute error $= \cos(x+h) - \cos(x) \approx -h \sin(x) \approx -h$
 - Relative error $= (\cos(x+h) - \cos(x)) / \cos(x) \approx -h \tan(x) \approx -\infty$
- Small change in x near $\pi/2$ causes relative large change in $\cos(x)$
 - $\cos(1.57078) = 1.63268 \times 10^{-5}$
 - $\cos(1.57079) = 0.63268 \times 10^{-5}$
SIMD Short Vector Extensions

- The use of **SIMD short vector extensions** can result in large performance gains
 - Instruction set extensions execute fast
 - New wide registers to hold short vectors of ints, floats, doubles
 - Parallel operations on short vectors
 - Typical vector length is 128 bit, which holds 4 floats, 2 doubles, or 1 to 16 ints (128 bit to 8 bit)

- Technologies:
 - MMX and SSE (Intel)
 - 3DNow! (AMD)
 - AltiVec (PowerPC)
 - PA-RISC MAX (HP)
Intel SSE Programming

- Programming languages such as C, C++, and Fortran do not natively support SIMD instructions
- The Intel compiler supports four methods to use SSE:
 - **Assembly**: direct control, but hard to use and processor-specific
 - **Intrinsics**: similar to assembly instructions with operands that are C expressions, but may be processor-specific
 - **C++ class libraries**: easy to use and portable, but limited support for instructions and gives lower performance
 - **Automatic vectorization**: no source code changes needed, new instruction sets automatically used, but compiler may fail to vectorize code
C++ Class Libraries for SSE

- Integer class types \textit{Ibvecn}

 \texttt{I8vec8} (8 8bit) \hspace{1cm} \texttt{I8vec16} (16 8bit)
 \texttt{I16vec4} (4 16bit) \hspace{1cm} \texttt{I16vec8} (8 16bit)
 \texttt{I32vec2} (2 32bit) \hspace{1cm} \texttt{I32vec4} (4 32bit)
 \texttt{I64vec1} (1 64bit) \hspace{1cm} \texttt{I64vec2} (2 64bit)
 \hspace{1cm} \texttt{I128vec1} (1 128bit)

 Note: use ‘s’ or ‘u’ after ‘I’ for packed signed or unsigned integers, e.g. \texttt{Is32vec4}

- Floating point class types \textit{Fbvecn}

 \texttt{F32vec4} (4 32bit) \hspace{1cm} \texttt{F64vec2} (2 64bit)
C++ Class Library Example

#include <dvec.h> // SSE2

... // array of ints, 16-byte aligned
__declspec(align(16)) int array[len];

... Is32vec4 *array4 = (Is32vec4*)array;
for (int i = 0; i < len/4; i++)
 array4[i] = array4[i] + 1; // increments 4 ints
SIMD Instruction Intrinsics

- Use `#include <emmintrin.h>` (SSE2) or `#include <pmmintrin.h>` (SSE3)
- Data types:

 - `__m64` MM register
 - `__m128` packed single precision (XMM register)
 - `__m128d` packed double precision (XMM register)
 - `__m128i` packed integer (XMM register)
- Intrinsics operate on these types and have the format:

 `_mm_op_suffix(...)`

 where `op` is an operation and `suffix` denotes the packed (`p`), extended packed (`ep`), or scalar (`s`) data operated on followed by
 the operation type:

 - `s` single precision
 - `d` double precision
 - `i#` integer of # bits (8, 16, 32, 64, 128)
 - `u#` unsigned integer of # bits (8, 16, 32, 64, 128)
SIMD Instruction Intrinsics

Examples

- Load two doubles in a vector:
  ```c
  double a[2] = {1.0, 2.0};
  __m128d x = _mm_load_pd(a);
  ```

- Add two vectors containing two doubles:
  ```c
  __m128d a, b;
  __m128d x = _mm_add_pd(a, b);
  ```

- Multiply two vectors containing four floats:
  ```c
  __m128 a, b;
  __m128 x = _mm_mul_ps(a, b);
  ```

- Add two vectors of 8 16-bit signed ints using saturating arithmetic
  ```c
  __m128i a, b;
  __m128i x = _mm_adds_epi16(a, b);
  ```

- Compare two vectors of 16 8-bit signed integers
  ```c
  __m128i a, b;
  __m128i x = _mm_cmpgt_epi8(a, b);
  ```

- Note: rounding modes and exception handling are set by masking the MXCSR register
Intrinsics Example

```c
#include <emmintrin.h> // SSE2

...  
// array of ints, 16-byte aligned  
__declspec(align(16)) int array[len];  
...
__m128i ones4 = _mm_set1_epi32(1);  
__m128i *array4 = (__m128i*)array;  
for (int i = 0; i < len/4; i++)  
    array4[i] = _mm_add_epi32(array4[i], ones4);
```
Memory Alignment

- Memory operands must be **aligned** for maximum performance
 - 8-byte aligned for MMX
 - 16-byte aligned for SSE
 - Use `declspec(align(8))` and `declspec(align(16))`

- Aligned memory load/store operations segfault on unaligned memory operands
 - `__m128d x = _mm_load_pd(aligned_address);`

- Unaligned memory load/store operations are safe to use but incur high cost
 - `__m128d x = _mm_loadu_pd(unaligned_address);`

- Use `_mm_malloc(len, 16)` for dynamic allocation
Data Layout

- Application’s data layout may need to be reconsidered to use SIMD instructions effectively
- Vector operations require consecutively stored operands in memory
 - Cannot vectorize row-wise with row-major matrix layout
 - Cannot vectorize column-wise with column-major matrix layout
- Aligned structs may have members that are unaligned
 - ```
 struct node {
 int x[7];
 int dummy; // padding to make a[] aligned
 float a[4];
 }
  ```
GMP:

GNU Multi-Precision Library

- GMP is a portable library written in C for arbitrary precision arithmetic on integers, rational numbers, and floating-point numbers
- GMP aims to provide the fastest possible arithmetic for all applications that need higher precision than is directly supported by the basic C types
- Used by many projects, including computer algebra systems
- Programming language bindings: C, C++, Fortran, Java, Prolog, Lisp, ML, Perl, …
- License: LGPL
GMP Usage

- Introduces three types (C language binding):
  - `mpz_t` bigint
  - `mpq_t` big rational
  - `mpf_t` bignum

- Use (similar for `mpq` and `mpf`):
  ```c
 #include <gmp.h>
 mpz_t n;
 mpz_init(n);
 mpz_init2(n, 123);
 mpz_init_set_str(n, "6", 10);
 ...
 mpz_clear(n);
  ```

- Link with `-lgmp`
GMP

- Dynamic memory allocation
  - Efficient implementation limits the need for frequent resizing
  - Configurable
- 150 integer operations on unlimited length bigint
  - Arithmetic
  - Comparison
  - Logic and bit-wise operations
  - Number theoretic functions
  - Random numbers
- 60 floating point operations on high-precision bignum
  - Arithmetic
  - Comparison
GMP C Example

```c
void myfunction(mpz_t result, mpz_t param, unsigned long n) {
 unsigned long i;

 mpz_mul_ui(result, param, n);
 for (i = 1; i < n; i++)
 mpz_add_ui(result, result, i*7);
}

int main(void)
{
 mpz_t r, n;
 mpz_init(r);
 mpz_init_set_str(n, "123456", 0);

 myfunction(r, n, 20L);
 mpz_out_str(stdout, 10, r); printf("\n");

 return 0;
}
```
GMP C++ Bindings

- Defines three classes:
  - `mpz_class` for bigint
  - `mpq_class` for big rationals
  - `mpf_class` for bignum

- Most GMP functions have C++ wrappers, but not all
  - Root of 0.2 in 1000 bit precision:
    ```
 mpf_class x(0.2, 1000), y(sqrt(x));
    ```
  - GCD of two bigints:
    ```
 mpz_class a, b, c;
 ...
 mpz_gcd(a.get_mpz_t(), b.get_mpz_t(), c.get_mpz_t());
    ```

- Use `#include <gmpxx.h>` and link `-lgmpxx -lgmp`
#include <gmpxx.h>

mpz_class a, b, c; // integers

a = 1234;
b = "-5678";
c = a+b;
cout << "sum is " << c << "\n";
cout << "absolute value is " << abs(c) << "\n";

Expression like a=b+c results in a single call to the corresponding mpz_add, without using a temporary for the b+c part.

The classes can be freely intermixed in float, double, int/long, expressions.
Further Reading

  http://docs.sun.com/source/806-3568/ncg_goldberg.html

- Chapters 11 and 12 of “The Software Optimization Cookbook” 2nd ed by R. Gerber, A. Bik, K, Smith, and X. Tan, Intel Press.

- Intel Compiler intrinsics reference:

- GNU GMP: http://gmplib.org