Syllabus

- “High Performance Computing” (ISC5318/CIS5930-3)
- Classes: Monday and Wednesday 3:35PM to 4:50PM in 301 LOV
- Evaluation: projects (40%), homework (20%), midterm exam (20%), and final exam (20%)
- Prerequisites: experience programming in either Java, C, C++, or Fortran
- Accounts: FSU HPC account
- Instructor: Prof. Robert van Engelen, office hours Tuesdays and Thursdays 1:30PM 259LOV and upon request

http://www.cs.fsu.edu/~engelen/courses/HPC
Books

- [SRC] "Sourcebook of Parallel Programming" by J. Dongara, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White (eds), Morgan Kaufmann.
A (Very Rough) Course Outline

- **Introduction** - what is this course about?
- **Architecture and Compilers** - levels of parallelism, CPU and memory resources, types of (parallel) computers, compilation techniques to improve CPU utilization and memory access
- **Performance Analysis** - timing your code, finding hotspots, profiling tools and techniques, measuring message latency
- **Programming Models** - different ways to code the same
 - **Programming with Shared Memory** - threads, openMP, locks, barriers, automatic parallelization
 - **Programming with Message Passing** - MPI, communications, MPE and jumpshot, debugging
- **Algorithms** - embarrassingly parallel, synchronous, pipelined, partitioning and divide and conquer strategies, parallel numerical algorithms
- **High-Performance Libraries, Programming Languages and Tools**
Introduction

- Why parallel?
- … and why not!
- Benefit depends on speedup, efficiency, and scalability of parallel algorithms
- What are the limitations to parallel speedup?
- The future of computing
- Lessons Learned
- Further reading
Why Parallel?

- It is not always obvious that a parallel algorithm has benefits, unless we want to do things …
 - faster: doing the same amount of work in less time
 - bigger: doing more work in the same amount of time

- Both of these reasons can be argued to produce *better results*, which is the only meaningful outcome of program parallelization
Faster, Bigger!

- There is an ever increasing demand for computational power to improve the speed or accuracy of solutions to real-world problems through faster computations and/or bigger simulations.

- Computations must be completed in acceptable time (real-time computation), hence must be “fast enough”
Faster, Bigger!

- An illustrative example: a weather prediction simulation should not take more time than the real event.

- Suppose the atmosphere of the earth is divided into 5×10^8 cubes, each $1 \times 1 \times 1$ mile and stacked 10 miles high.

- It takes 200 floating point operations per cube to complete one time step.

- 10^4 time steps are needed for a 7 day forecast.

- Then 10^{15} floating point operations must be performed.

- This takes 10^6 seconds (= 10 days) on a 1 GFLOP machine.
Grand Challenge Problems

- Big problems
 - A “Grand Challenge” problem is a problem that cannot be solved in a reasonable amount of time with today’s computers
 - Examples of Grand Challenge problems:
 - Applied Fluid Dynamics
 - Meso- to Macro-Scale Environmental Modeling
 - Ecosystem Simulations
 - Biomedical Imaging and Biomechanics
 - Molecular Biology
 - Molecular Design and Process Optimization
 - Fundamental Computational Sciences
 - Nuclear power and weapons simulations
Physical Limits

- Which tasks are *fundamentally too big* to compute with one CPU?
- Suppose we have to calculate *in one second*

  ```
  for (i = 0; i < ONE_TRILLION; i++)
  
  z[i] = x[i] + y[i];
  ```

- Then we have to perform 3×10^{12} memory moves per second
- If data travels at the speed of light (3×10^8 m/s) between the CPU and memory and r is the average distance between the CPU and memory, then r must satisfy

 $$3 \times 10^{12} r = 3 \times 10^8 \text{ m/s} \times 1 \text{ s}$$

 which gives $r = 10^{-4}$ meters
- To fit the data into a square so that the average distance from the CPU in the middle is r, then the length of each memory cell will be

 $$2 \times 10^{-4} \text{ m} / (\sqrt{3} \times 10^6) = 10^{-10} \text{ m}$$

 which is the size of a relatively small atom!
“[without revolutionary new technologies …] increased power requirements of newer chips will lead to CPUs that are hotter than the surface of the sun by 2010.” – Intel CTO

Parallelism can help to conserve energy:

\[E \propto f^2 \approx 9 \]

\[E \propto f^2 \approx 4 \]
Important Factors

Important considerations in parallel computing

- **Physical limitations**: the speed of light, CPU heat dissipation
- **Economic factors**: cheaper components can be used to achieve comparable levels of aggregate performance
- **Scalability**: allows data to be subdivided over CPUs to obtain a better match between algorithms and resources to increase performance
- **Memory**: allow aggregate memory bandwidth to be increased together with processing power at a reasonable cost
... and Why not Parallel?

- Bad parallel programs can be worse than their sequential counterparts
 - Slower: because of communication overhead
 - Scalability: some parallel algorithms are only faster when the problem size is very large

- Understand the problem and use common sense!

- Not all problems are amenable to parallelism

- In this course we will also focus a significant part on non-parallel optimizations and how to get better performance from our sequential programs
... and Why not Parallel?

- Some algorithms are inherently sequential
- Consider for example the Collatz conjecture, implemented by

  ```c
  int Collatz(int n)
  { int step;
    for (step = 1; n != 1; step++)
      { if (n % 2 == 0) // is n is even?
          n = n / 2;
        else
          n = 3*n + 1;
      }
  return step;
  }
  ```

- Given n, Collatz returns the number of steps to reach $n = 1$
- Conjecture: algorithm terminates for any integer $n > 0$
- This algorithm is clearly sequential
- Note: given a vector of k values, we can compute k Collatz numbers in parallel
Speedup

- Suppose we want to compute in parallel

  ```c
  for (i = 0; i < N; i++)
      z[i] = x[i] + y[i];
  ```

- Then the obvious choice is to split the iteration space in \(P \) equal-sized \(N/P \) chunks and let each processor share the work (*worksharing*) of the loop:

  ```c
  for each processor p from 0 to P-1 do:
      for (i = p*N/P; i < (p+1)*(N/P); i++)
          z[i] = x[i] + y[i];
  ```

- We would assume that this parallel version runs \(P \) times faster, that is, we hope for *linear speedup*

- Unfortunately, in practice this is not the case because of overhead in communication and synchronization
Speedup

- **Definition:** the speedup of an algorithm using P processors is defined as
 \[S_P = \frac{t_s}{t_P} \]
 where t_s is the execution time of the *best available sequential algorithm* and t_P is the execution time of the parallel algorithm.

- The speedup is *perfect* or *ideal* if $S_P = P$
- The speedup is linear if $S_P \approx P$
- The speedup is *superlinear* when, for some P, $S_P > P$
Relative Speedup

- **Definition**: The *relative speedup* is defined as
 \[S^1_P = \frac{t_1}{t_P} \]
 where \(t_1 \) is the execution time of the parallel algorithm on one processor.

- Similarly, \(S^k_P = \frac{t_k}{t_P} \) is the relative speedup with respect to \(k \) processors, where \(k < P \).

- The relative speedup \(S^k_P \) is used when \(k \) is the smallest number of processors on which the problem will run.
An Example

Parallel search

- Search in parallel by partitioning the search space into P chunks
- \[S_P = \left((x \times t_s/P) + \Delta t \right) / \Delta t \]
- Worst case for sequential search (item in last chunk): \[S_P \rightarrow \infty \text{ as } \Delta t \text{ tends to zero} \]
- Best case for sequential search (item in first chunk): \[S_P = 1 \]

Sequential search

- Start
- Time
- t_s
- t_s/p
- xt_s/p
- Solution found
Effects that can Cause Superlinear Speedup

- **Cache effects**: when data is partitioned and distributed over P processors, then the individual data items are (much) smaller and may fit entirely in the data cache of each processor.

- For an algorithm with linear speedup, the extra reduction in cache misses may lead to superlinear speedup.
Efficiency

- **Definition**: the *efficiency* of an algorithm using P processors is

 \[E_P = \frac{S_P}{P} \]

- Efficiency estimates how well-utilized the processors are in solving the problem, compared to how much effort is lost in idling and communication/synchronization.

- Ideal (or perfect) speedup means 100% efficiency $E_P = 1$.

- Many difficult-to-parallelize algorithms have efficiency that approaches zero as P increases.
Scalability

- Speedup describes how the parallel algorithm’s performance changes with increasing P.

- **Scalability** concerns the efficiency of the algorithm with changing problem size N by choosing P dependent on N so that the efficiency of the algorithm is bounded below.

- **Definition**: an algorithm is *scalable* if there is minimal efficiency $\varepsilon > 0$ such that given any problem size N there is a number of processors $P(N)$ which tends to infinity as N tends to infinity, such that the efficiency $E_{P(N)} \geq \varepsilon > 0$ as N is made arbitrarily large.
Amdahl’s Law

- Several factors can limit the speedup
 - Processors may be idle
 - Extra computations are performed in the parallel version
 - Communication and synchronization overhead
- Let f be the fraction of the computation that is sequential and cannot be divided into concurrent tasks
Amdahl’s Law

- Amdahl’s law states that the speedup given \(P \) processors is
 \[
 S_P = \frac{t_s}{(f \times t_s + (1-f) \frac{t_s}{P})} = P \left(\frac{1}{1 + (P-1)f}\right)
 \]
- As a consequence, the maximum speedup is limited by
 \[S_P \rightarrow f^{-1}\] as \(P \rightarrow \infty\)
Gustafson’s Law

- Amdahl's law is based on a fixed workload or fixed problem size per processor, i.e. analyzes constant problem size scaling.

- Gustafson’s law defines the scaled speedup by keeping the parallel execution time constant (i.e. time-constrained scaling) by adjusting \(P \) as the problem size \(N \) changes.

\[
S_{P,N} = P + (1-P)\alpha(N)
\]

where \(\alpha(N) \) is the non-parallelizable fraction of the normalized parallel time \(t_{P,N} = 1 \) given problem size \(N \).

To see this, let \(\beta(N) = 1 - \alpha(N) \) be the parallelizable fraction.

\[
t_{P,N} = \alpha(N) + \beta(N) = 1
\]

then, the scaled sequential time is

\[
t_{s,N} = \alpha(N) + P \beta(N)
\]

giving

\[
S_{P,N} = \alpha(N) + P (1 - \alpha(N)) = P + (1-P)\alpha(N)
\]
Limitations to Speedup: Data Dependences

- The Collatz iteration loop has a *loop-carried dependence*
 - The value of n is carried over to the next iteration
 - Therefore, the algorithm is inherently sequential

- Loops with loop-carried dependences cannot be parallelized

- To increase parallelism:
 - Change the loops to remove dependences when possible
 - Thread-privatize scalar variables in loops
 - Apply algorithmic changes by rewriting the algorithm (this may slightly change the result of the output or even approximate it)
Limitations to Speedup: Data Dependences

- Consider for example the update step in a Gauss-Seidel iteration for solving a two-point boundary-value problem:

  ```
  do i=1,n
    soln(i)=(f(i)-soln(i+1)*offdiag(i)
             -soln(i-1)*offdiag(i-1))/diag(i)
  enddo
  ```

- By contrast, the Jacobi iteration for solving a two-point boundary-value problem does not exhibit loop-carried dependences:

  ```
  do i=1,n
    snew(i)=(f(i)-soln(i+1)*offdiag(i)
             -soln(i-1)*offdiag(i-1))/diag(i)
  enddo
  do i=1,n
    soln(i)=snew(i)
  enddo
  ```

- In this case the iteration space of the loops can be partitioned and each processor given a chunk of the iteration space
Limitations to Speedup: Data Dependences

1. \[\text{do } i=1,n \]
 \[\text{diag}(i) = \left(1.0/h(i) \right) + \left(1.0/h(i+1) \right) \]
 \[\text{offdiag}(i) = -(1.0/h(i+1)) \]
 \[\text{enddo} \]

2. \[\text{do } i=1,n \]
 \[dxo = 1.0/h(i) \]
 \[dx_i = 1.0/h(i+1) \]
 \[\text{diag}(i) = dxo + dx_i \]
 \[\text{offdiag}(i) = -dx_i \]
 \[\text{enddo} \]

3. \[dx_i = 1.0/h(1) \]
 \[\text{do } i=1,n \]
 \[dxo = dx_i \]
 \[dx_i = 1.0/h(i+1) \]
 \[\text{diag}(i) = dxo + dx_i \]
 \[\text{offdiag}(i) = -dx_i \]
 \[\text{enddo} \]

- Three example loops to initialize a finite difference matrix
- Which loop(s) can be parallelized?
- Which loop probably runs more efficiently on a sequential machine?
Limitations to Speedup: Data Dependences

- The presence of dependences between events in two or more tasks also means that parallelization strategies to conserve energy are limited.
- Say we have two tasks, which can be split up into smaller parts to run in parallel, however:

\[E \propto f^2 \approx 9 \]

\[E \propto (1+\Delta)f^2 \approx 7.2 \]

where \(\Delta = 80\% \) is the CPU idle time.

missed the deadline!
Limitations to Speedup: Data Dependences

- The presence of dependences between events in two or more tasks also means that parallelization strategies to conserve energy are limited.

- Say we have two tasks, which can be split up into smaller parts to run in parallel, however:

\[E \propto f^2 \approx 9 \]

consumes more energy!

\[E \propto (1+\Delta) f^2 \approx 9.11 \]

where \(\Delta = 80\% \) is the CPU idle time.
Efficient Parallel Execution

- Trying to construct a parallel version of an algorithm is not the end-all do-all of high-performance computing
 - Recall Amdahl’s law: the maximum speedup is bounded by $S_P \rightarrow f^{-1}$ as $P \rightarrow \infty$
 - Thus, efficient execution of the non-parallel fraction f is extremely important
 - Efficient execution of the parallel tasks is important since tasks may end at different times (slowest horse in front of the carriage)
 - We can reduce f by improving the sequential code execution (e.g. algorithm initialization parts), I/O, communication, and synchronization

- To achieve high performance, we should highly optimize the per-node sequential code and use profiling techniques to analyze the performance of our code to investigate the causes of overhead
Limitations to Speedup: Locality

- **Memory hierarchy** forms a barrier to performance when locality is poor.

- **Temporal locality**
 - Same memory location accessed frequently and repeatedly
 - Poor temporal locality results from frequent access to fresh new memory locations

- **Spatial locality**
 - Consecutive (or “sufficiently near”) memory locations are accessed
 - Poor spatial locality means that memory locations are accessed in a more random pattern

- **Memory wall** refers to the growing disparity of speed between CPU and memory outside the CPU chip.
Efficient Sequential Execution

- Memory effects are the greatest concern for optimal sequential execution
 - Store-load dependences, where data has to flow through memory
 - Cache misses
 - TLB misses
 - Page faults
- CPU resource effects can limit performance
 - Limited number of floating point units
 - Unpredictable branching (if-then-else, loops, etc) in the program
- Use common sense when allocating and accessing data
- Use compiler optimizations effectively
- Execution best analyzed with performance analyzers
Lessons Learned from the Past

- **Applications**
 - Parallel computing can transform science and engineering and answer challenges in society
 - To port or not to port is NOT the question: a complete redesign of an application may be necessary
 - The problem is not the hardware: hardware can be significantly underutilized when software and applications are suboptimal

- **Software and algorithms**
 - Portability remains elusive
 - Parallelism isn’t everything
 - Community acceptance is essential to the success of software
 - Good commercial software is rare at the high end
Future of Computing

- Moore’s law tells us that we will continue to enjoy improvements of transistor cost and speed (but not CPU clock frequency!) for another decade.
Future of Computing

- The peak performance of supercomputers follows Moore’s law
Future of Computing

- Performance growth at fixed Top500 rankings

<table>
<thead>
<tr>
<th>Year</th>
<th>Mflop/s</th>
<th>GFlop/s</th>
<th>TFlop/s</th>
<th>Pflop/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>'93</td>
<td>0.4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>'94</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>'95</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>'96</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>'97</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>'98</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>'99</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>'00</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>'01</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>'02</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Future of Computing

- With increased transistor density we face huge CPU energy consumption and heat dissipation issues
 - This puts fundamental limits on CPU clock frequencies
 - Therefore, single CPU performance will be relatively flat

- This will mean that
 - Computers will get a lot cheaper but not faster
 - On-chip parallelism will increase with multiple cores to sustain continued performance improvement

- High-performance computing power will be available on the desktop, requiring parallel algorithms to utilize the full potential of these machines
Writing Efficient Programs

How to program *multiprocessor* systems that employ multiple processors (often with multiple memory banks)

- Understand the **problem** to be solved
- Understand the **machine architecture constraints**
- **Redesign** the algorithm when needed
- **Partition the data** when applicable
- Use **parallel programming languages**
- … or programming language extensions to support parallelism
- **Debugging** is much more complicated
- **Performance analysis** is no longer optional
Further Reading

- [PP2] pages 3-12
- [SRC] pages 3-13
- Optional:
 - More on Moore’s law
 - http://en.wikipedia.org/wiki/Moore%27s_law
 - Grand Challenge problems
 - Collatz conjecture and implementation on the Cell BE: