
Introduction

HPC Fall 2010
Prof. Robert van Engelen

HPC Fall 2010 2 8/25/10

Syllabus
  Title: “High Performance Computing” (ISC5318 and CIS5930-1)
  Classes: Monday and Wednesday 12:30PM to 1:45PM in 103 LOV
  Evaluation: projects (40%), homework (20%), midterm exam (20%),

and final exam (20%)
  Prerequisites: experience programming in either Java, C, C++, or

Fortran
  Accounts: you need an SCS account to access machines
  Instructor: Prof. Robert van Engelen, office hour Tuesday from

12:30PM to 1:30PM in 160 LOV and upon request

http://www.cs.fsu.edu/~engelen/courses/HPC

HPC Fall 2010 3 8/25/10

Books
  [HPC] "Software Optimization for High Performance Computing:

Creating Faster Applications" by K.R. Wadleigh and I.L. Crawford,
Hewlett-Packard professional books, Prentice Hall.

  [OPT] "The Software Optimization Cookbook" (2nd ed.) by R.
Gerber, A. Bik, K. Smith, and X. Tian, Intel Press.

  [PP2] "Parallel Programming: Techniques and Applications using
Networked Workstations and Parallel Computers" (2nd ed.) by B.
Wilkinson and M. Allen, Prentice Hall.

  [PSC] "Parallel Scientific Computing in C++ and MPI" by G.
Karniadakis and R. Kirby II, Cambridge University Press.

  [SPC] "Scientific Parallel Computing" by L.R. Scott, T. Clark, and B.
Bagheri, Princeton University Press.

  [SRC] "Sourcebook of Parallel Programming" by J. Dongara, I.
Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White
(eds), Morgan Kaufmann.

HPC Fall 2010 4 8/25/10

Course Outline
  Introduction
  Architecture and Compilers

  E.g. levels of parallelism, CPU and memory resources, types of
(parallel) computers, compilation techniques to improve CPU and
memory access

  Performance Analysis
  E.g. timing code, finding hotspots, profiling, measuring message latency

  Programming Models
  Programming with Shared Memory

  E.g. threads, openMP, locks, barriers, automatic parallelization
  Programming with Message Passing

  E.g. MPI, communications, MPE and jumpshot, debugging
  Algorithms

  E.g. embarrassingly parallel, synchronous, pipelined, partitioning and
divide and conquer strategies, parallel numerical algorithms

  High-Performance Libraries, Programming Languages and Tools

HPC Fall 2010 5 8/25/10

Introduction

  Why parallel?
  … and why not!
  Speedup, efficiency, and scalability of parallel algorithms
  Laws
  Limitations to speedup
  The future of computing
  Lessons Learned
  Further reading

HPC Fall 2010 6 8/25/10

Why Parallel?

  A programmer should first ask “why parallel?”

  It is not always obvious that a parallel algorithm has
benefits, unless we want to do things …
  faster: doing the same amount of work in less time
  bigger: doing more work in the same amount of time

  Both of these reasons can be argued to produce better
results, which is the only meaningful outcome of program
parallelization

HPC Fall 2010 7 8/25/10

Why Parallel?
Faster, Bigger!

  There is an ever increasing demand for computational
power to improve the speed or accuracy of solutions to
real-world problems through faster computations and/or
bigger simulations

  Computations must be completed in acceptable time
(real-time computation), hence must be “fast enough”

HPC Fall 2010 8 8/25/10

Why Parallel?
Faster, Bigger!

  An illustrative example: a weather prediction simulation
should not take more time than the real event

  Suppose the atmosphere of the earth is divided into
5×108 cubes, each 1×1×1 mile and stacked 10 miles high

  It takes 200 floating point operations per cube to
complete one time step

  104 time steps are needed for a 7 day forecast
  Then 1015 floating point operations must be performed
  This takes 106 seconds (= 10 days) on a 1 GFLOP

machine

HPC Fall 2010 9 8/25/10

Why Parallel?
Grand Challenge Problems

  Big problems
  A “Grand Challenge” problem is a problem that cannot be solved

in a reasonable amount of time with today’s computers
  Examples of Grand Challenge problems:

  Applied Fluid Dynamics
  Meso- to Macro-Scale Environmental Modeling
  Ecosystem Simulations
  Biomedical Imaging and Biomechanics
  Molecular Biology
  Molecular Design and Process Optimization
  Fundamental Computational Sciences
  Nuclear power and weapons simulations

HPC Fall 2010 10 8/25/10

Why Parallel?
Physical Limits

  Which tasks are fundamentally too big to compute with one CPU?
  Suppose we have to calculate in one second

 for (i = 0; i < ONE_TRILLION; i++)
 z[i] = x[i] + y[i];

  Then we have to perform 3x1012 memory moves per second
  If data travels at the speed of light (3x108 m/s) between the CPU

and memory and r is the average distance between the CPU and
memory, then r must satisfy

 3×1012 r = 3×108 m/s × 1 s
which gives r = 10-4 meters

  To fit the data into a square so that the average distance from the
CPU in the middle is r, then the length of each memory cell will be

 2×10-4 m / (√3×106) = 10-10 m
which is the size of a relatively small atom

HPC Fall 2010 11 8/25/10

Why Parallel?
Important Factors

  Important considerations in parallel computing
  Physical limitations: the speed of light, CPU heat dissipation
  Economic factors: cheaper components can be used to achieve

comparable levels of aggregate performance
  Scalability: allow problem sizes to be subdivided to obtain a

better match between algorithms and resources (CPU, memory)
to increase performance

  Memory: allow aggregate memory bandwidth to be increased
together with processing power at a reasonable cost

HPC Fall 2010 12 8/25/10

… and Why not Parallel?
  Bad parallel programs can be worse than their

sequential counterparts
  Slower: because of communication overhead
  Scalability: some parallel algorithms are only faster when the

problem size is very large

  Understand the problem and use common sense

  Not all problems are amenable to parallelism

  In this course we will focus a significant part on non-
parallel optimizations

HPC Fall 2010 13 8/25/10

… and Why not Parallel?
  Some algorithms are inherently sequential
  Consider for example the Collatz conjecture, implemented by

 int Collatz(int n)
 { int step;
 for (step = 1; n != 1; step++)
 { if (n % 2 == 0) // is n is even?
 n = n / 2;
 else
 n = 3*n + 1;
 }
 return step;
 }

  Given n, Collatz returns the number of steps to reach n = 1
  Conjecture: algorithm terminates for any integer n > 0
  This algorithm is clearly sequential
  Note: given a vector of k values, we can compute k Collatz

numbers in parallel

HPC Fall 2010 14 8/25/10

Speedup
  Suppose we want to compute in parallel

 for (i = 0; i < N; i++)
 z[i] = x[i] + y[i];

  Then the obvious choice is to split the iteration space in
P equal-sized N/P chunks and let each processor share
the work (worksharing) of the loop:

 for each processor p from 0 to P-1 do:
 for (i = p*N/P; i < (p+1)*(N/P); i++)
 z[i] = x[i] + y[i];

  We would assume that this parallel version runs P times
faster, that is, we hope for linear speedup

  Unfortunately, in practice this is not the case because of
processor overhead, communication, and
synchronization

HPC Fall 2010 15 8/25/10

Speedup

  Definition: the speedup of an algorithm using P
processors is defined as

 SP = ts / tP
where ts is the execution time of the best available
sequential algorithm and tP is the execution time of the
parallel algorithm

  The speedup is linear (perfect or ideal speedup) if SP ≈ P

  The speedup is superlinear when SP > P

HPC Fall 2010 16 8/25/10

Relative Speedup

  Definition: The relative speedup is defined as
 S1

P = t1 / tP
where t1 is the execution time of the parallel algorithm on
one processor

  Similarly, Sk
P = tk / tP is the relative speedup with respect

to k processors, where k < P

  The relative speedup Sk
P is used when k is the smallest

number of processors on which the problem will run

HPC Fall 2010 17 8/25/10

An Example
  Search in parallel by partitioning

the search space into P chunks
  SP = ((x × ts/P) + Δt) / Δt
  Worst case for sequential search

(item in last chunk): SP→∞ as Δt
tends to zero

  Best case for sequential search
(item in first chunk): SP = 1

Sequential search

Parallel search

HPC Fall 2010 18 8/25/10

Effects that can Cause
Superlinear Speedup

  Cache effects: when data is partitioned and distributed
over P processors, then the individual data items are
(much) smaller and may fit entirely in the data cache of
each processor

  For an algorithm with linear speedup, the extra reduction
in cache misses may lead to superlinear speedup

HPC Fall 2010 19 8/25/10

Efficiency
  Definition: the efficiency of an algorithm using P

processors is
 EP = SP / P

  Efficiency estimates how well-utilized the processors are
in solving the problem, compared to how much effort is
lost in communication and synchronization

  Algorithms with ideal speedup and algorithms running on
a single processor have EP = 1

  Many difficult-to-parallelize algorithms have efficiency
that approaches zero as P increases

HPC Fall 2010 20 8/25/10

Scalability

  Speedup describes how the parallel algorithm’s
performance changes with increasing P

  Scalability concerns the efficiency of the algorithm with
changing problem size N by choosing P dependent on N
so that the efficiency of the algorithm is bounded below

  Definition: an algorithm is scalable if there is minimal
efficiency ε > 0 such that given any problem size N there
is a number of processors P(N) which tends to infinity as
N tends to infinity, such that the efficiency EP(N) > ε > 0 as
N is made arbitrarily large

HPC Fall 2010 21 8/25/10

Amdahl’s Law
  Several factors can limit

the speedup
  Processors may be idle
  Extra computations are

performed in the
parallel version

  Communication and
synchronization
overhead

  Let f be the fraction of
the computation that is
sequential and cannot
be divided into
concurrent tasks

HPC Fall 2010 22 8/25/10

Amdahl’s Law
  Amdahl’s law states that the speedup given P processors is

 SP = ts / (f × ts + (1-f)ts / P) = P / (1 + (P-1)f)
  As a consequence, the maximum speedup is limited by

 SP = f -1
as P → ∞

HPC Fall 2010 23 8/25/10

Gustafson’s Law
  Amdahl's law is based on a fixed workload or fixed problem size

  Gustafson’s law defines the scaled speedup by keeping the parallel
execution time constant by adjusting P as the problem size N
changes

 SP,N = P + (1-P)α(N)
where α(N) is the non-parallelizable fraction of the normalized
parallel time tP,N = 1 given problem size N

  To see this, let β(N) = 1- α(N) be the parallelizable fraction
 tP,N = α(N) + β(N) = 1

then, the scaled sequential time is
 ts,N = α(N) + P β(N)
giving

 SP,N = α(N) + P (1- α(N)) = P + (1-P)α(N)

HPC Fall 2010 24 8/25/10

Limitations to Speedup:
Data Dependences

  The Collatz iteration loop has a loop-carried dependence
  The value of n is carried over to the next iteration
  Therefore, the algorithm is inherently sequential

  Loops with loop-carried dependences cannot be
parallelized

  To find parallelism in an application
  Change the loops to remove dependences (if possible!)
  Apply algorithmic changes by rewriting the algorithm (this may

change the result of the output)

HPC Fall 2010 25 8/25/10

Limitations to Speedup:
Data Dependences

  Consider for example the update step in a Gauss-Seidel iteration for
solving a two-point boundary-value problem:

 do i=1,n
 soln(i)=(f(i)-soln(i+1)*offdiag(i)
 -soln(i-1)*offdiag(i-1))/diag(i)
 enddo

  By contrast, the Jacobi iteration for solving a two-point boundary-
value problem does not exhibit loop-carried dependences:

 do i=1,n
 snew(i)=(f(i)-soln(i+1)*offdiag(i)
 -soln(i-1)*offdiag(i-1))/diag(i)
 enddo
 do i=1,n
 soln(i)=snew(i)
 enddo

  In this case the iteration space of the loops can be partitioned and
each processor given a chunk of the iteration space

HPC Fall 2010 26 8/25/10

Limitations to Speedup:
Data Dependences

1.   do i=1,n
 diag(i)=(1.0/h(i))+(1.0/h(i+1))
 offdiag(i)=-(1.0/h(i+1))
enddo

2.   do i=1,n
 dxo=1.0/h(i)
 dxi=1.0/h(i+1)
 diag(i)=dxo+dxi
 offdiag(i)=-dxi
enddo

3.   dxi=1.0/h(1)
do i=1,n
 dxo=dxi
 dxi=1.0/h(i+1)
 diag(i)=dxo+dxi
 offdiag(i)=-dxi
enddo

  Three example loops
to initialize a finite
difference matrix

  Which loop(s) can be
parallelized?

  Which loop probably
runs more efficient on
a sequential
machine?

HPC Fall 2010 27 8/25/10

Efficient Parallel Execution
  Trying to construct a parallel version of an algorithm is

not the end-all do-all of high-performance computing
  Recall Amdahl’s law: the maximum speedup is bounded by

 SP = f -1 as P → ∞
  Thus, efficient execution of the non-parallel fraction f is

extremely important
  We can reduce f by improving the sequential code execution

(e.g. algorithm initialization parts), I/O, communication, and
synchronization

  To achieve high performance, we should highly optimize
the per-node sequential code and use profiling
techniques to analyze the performance of our code to
investigate the causes of overhead

HPC Fall 2010 28 8/25/10

Efficient Sequential Execution
  Memory effects are the greatest concern for optimal

sequential execution
  Store-load dependences, where data has to flow through

memory
  Cache misses
  TLB misses
  Page faults

  CPU resource effects can limit performance
  Limited number of floating point units
  Unpredictable branching (if-then-else, loops, etc) in the program

  Use common sense when allocating and accessing data
  Use compiler optimizations effectively
  Execution best analyzed with performance analyzers

HPC Fall 2010 29 8/25/10

Lessons Learned from the Past

  Applications
  Parallel computing can transform science and engineering and

answer challenges in society
  To port or not to port is NOT the question: a complete redesign

of an application may be necessary
  The problem is not the hardware: hardware can be significantly

underutilized when software and applications are suboptimal

  Software and algorithms
  Portability remains elusive
  Parallelism isn’t everything
  Community acceptance is essential to the success of software
  Good commercial software is rare at the high end

HPC Fall 2010 30 8/25/10

Future of Computing
  Moore’s law tells us that we will continue to enjoy improvements of

transistor cost and speed (but not CPU clock frequency!) for another
decade

HPC Fall 2010 31 8/25/10

Future of Computing
  The peak performance of supercomputers follows Moore’s law

HPC Fall 2010 32 8/25/10

Future of Computing
  Performance growth at fixed Top500 rankings

HPC Fall 2010 33 8/25/10

Future of Computing
  With increased transistor density we face huge CPU

energy consumption and heat dissipation issues
  This puts fundamental limits on CPU clock frequencies
  Therefore, single CPU performance will be relatively flat

  This will mean that
  Computers will get a lot cheaper but not faster
  On-chip parallelism will increase with multiple cores to sustain

continued performance improvement

  High-performance computing power will be available on
the desktop, requiring parallel algorithms to utilize the full
potential of these machines

HPC Fall 2010 34 8/25/10

Writing Efficient Programs

  How to program multiprocessor systems that employ
multiple processors (often with multiple memory banks)
  Understand the problem to be solved
  Understand the machine architecture constraints
  Redesign the algorithm when needed
  Partition the data when applicable
  Use parallel programming languages
  … or programming language extensions to support parallelism
  Debugging is much more complicated
  Performance analysis is no longer optional

HPC Fall 2010 35 8/25/10

Further Reading

  [PP2] pages 3-12
  [SRC] pages 3-13
  [SPC] pages 11-15, 37-45, 48-52, 110-112
  Optional:

  More on Moore’s law
  http://en.wikipedia.org/wiki/Moore%27s_law

  Grand Challenge problems
  http://en.wikipedia.org/wiki/Grand_Challenge_problem

  Collatz conjecture and implementation on the Cell BE:
  http://en.wikipedia.org/wiki/Collatz_conjecture http://www.ibm.com/

developerworks/library/pa-tacklecell3/

