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Syllabus 
  Title: “High Performance Computing” (ISC5318 and CIS5930-1) 
  Classes: Monday and Wednesday 12:30PM to 1:45PM in 103 LOV 
  Evaluation: projects (40%), homework (20%), midterm exam (20%), 

and final exam (20%) 
  Prerequisites: experience programming in either Java, C, C++, or 

Fortran 
  Accounts: you need an SCS account to access machines 
  Instructor: Prof. Robert van Engelen, office hour Tuesday from 

12:30PM to 1:30PM in 160 LOV and upon request 

http://www.cs.fsu.edu/~engelen/courses/HPC 
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Books 
  [HPC] "Software Optimization for High Performance Computing: 

Creating Faster Applications" by K.R. Wadleigh and I.L. Crawford, 
Hewlett-Packard professional books, Prentice Hall. 

  [OPT] "The Software Optimization Cookbook" (2nd ed.) by R. 
Gerber, A. Bik, K. Smith, and X. Tian, Intel Press. 

  [PP2] "Parallel Programming: Techniques and Applications using 
Networked Workstations and Parallel Computers" (2nd ed.) by B. 
Wilkinson and M. Allen, Prentice Hall. 

  [PSC] "Parallel Scientific Computing in C++ and MPI" by G. 
Karniadakis and R. Kirby II, Cambridge University Press. 

  [SPC] "Scientific Parallel Computing" by L.R. Scott, T. Clark, and B. 
Bagheri, Princeton University Press. 

  [SRC] "Sourcebook of Parallel Programming" by J. Dongara, I. 
Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White 
(eds), Morgan Kaufmann. 
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Course Outline 
  Introduction 
  Architecture and Compilers 

  E.g. levels of parallelism, CPU and memory resources, types of 
(parallel) computers, compilation techniques to improve CPU and 
memory access 

  Performance Analysis 
  E.g. timing code, finding hotspots, profiling, measuring message latency 

  Programming Models 
  Programming with Shared Memory 

  E.g. threads, openMP, locks, barriers, automatic parallelization 
  Programming with Message Passing 

  E.g. MPI, communications, MPE and jumpshot, debugging 
  Algorithms 

  E.g. embarrassingly parallel, synchronous, pipelined, partitioning and 
divide and conquer strategies, parallel numerical algorithms  

  High-Performance Libraries, Programming Languages and Tools 
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Introduction 

  Why parallel? 
  … and why not! 
  Speedup, efficiency, and scalability of parallel algorithms 
  Laws 
  Limitations to speedup 
  The future of computing 
  Lessons Learned 
  Further reading 
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Why Parallel? 

  A programmer should first ask “why parallel?” 

  It is not always obvious that a parallel algorithm has 
benefits, unless we want to do things … 
  faster: doing the same amount of work in less time 
  bigger: doing more work in the same amount of time 

  Both of these reasons can be argued to produce better 
results, which is the only meaningful outcome of program 
parallelization 
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Why Parallel? 
Faster, Bigger! 

  There is an ever increasing demand for computational 
power to improve the speed or accuracy of solutions to 
real-world problems through faster computations and/or 
bigger simulations 

  Computations must be completed in acceptable time 
(real-time computation), hence must be “fast enough” 
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Why Parallel? 
Faster, Bigger! 

  An illustrative example: a weather prediction simulation 
should not take more time than the real event 

  Suppose the atmosphere of the earth is divided into 
5×108 cubes, each 1×1×1 mile and stacked 10 miles high 

  It takes 200 floating point operations per cube to 
complete one time step 

  104 time steps are needed for a 7 day forecast 
  Then 1015 floating point operations must be performed 
  This takes 106 seconds (= 10 days) on a 1 GFLOP 

machine 
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Why Parallel? 
Grand Challenge Problems 

  Big problems 
  A “Grand Challenge” problem is a problem that cannot be solved 

in a reasonable amount of time with today’s computers 
  Examples of Grand Challenge problems: 

  Applied Fluid Dynamics 
  Meso- to Macro-Scale Environmental Modeling 
  Ecosystem Simulations 
  Biomedical Imaging and Biomechanics 
  Molecular Biology 
  Molecular Design and Process Optimization 
  Fundamental Computational Sciences 
  Nuclear power and weapons simulations 
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Why Parallel? 
Physical Limits 

  Which tasks are fundamentally too big to compute with one CPU? 
  Suppose we have to calculate in one second 

 for (i = 0; i < ONE_TRILLION; i++) 
   z[i] = x[i] + y[i]; 

  Then we have to perform 3x1012 memory moves per second 
  If data travels at the speed of light (3x108 m/s) between the CPU 

and memory and r is the average distance between the CPU and 
memory, then r must satisfy 

  3×1012 r = 3×108 m/s × 1 s 
which gives r = 10-4 meters 

  To fit the data into a square so that the average distance from the 
CPU in the middle is r, then the length of each memory cell will be 

  2×10-4 m / (√3×106) = 10-10 m 
which is the size of a relatively small atom 
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Why Parallel? 
Important Factors 

  Important considerations in parallel computing 
  Physical limitations: the speed of light, CPU heat dissipation 
  Economic factors: cheaper components can be used to achieve 

comparable levels of aggregate performance 
  Scalability: allow problem sizes to be subdivided to obtain a 

better match between algorithms and resources (CPU, memory) 
to increase performance 

  Memory: allow aggregate memory bandwidth to be increased 
together with processing power at a reasonable cost 
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… and Why not Parallel? 
  Bad parallel programs can be worse than their 

sequential counterparts 
  Slower: because of communication overhead 
  Scalability: some parallel algorithms are only faster when the 

problem size is very large 

  Understand the problem and use common sense 

  Not all problems are amenable to parallelism 

  In this course we will focus a significant part on non-
parallel optimizations 
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… and Why not Parallel? 
  Some algorithms are inherently sequential 
  Consider for example the Collatz conjecture, implemented by 

 int Collatz(int n) 
 { int step; 
   for (step = 1; n != 1; step++) 
   { if (n % 2 == 0) // is n is even? 
       n = n / 2; 
     else 
       n = 3*n + 1; 
   } 
   return step; 
 } 

  Given n, Collatz returns the number of steps to reach n = 1 
  Conjecture: algorithm terminates for any integer n > 0 
  This algorithm is clearly sequential 
  Note: given a vector of k values, we can compute k Collatz 

numbers in parallel 
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Speedup 
  Suppose we want to compute in parallel 

 for (i = 0; i < N; i++) 
   z[i] = x[i] + y[i]; 

  Then the obvious choice is to split the iteration space in 
P equal-sized N/P chunks and let each processor share 
the work (worksharing) of the loop: 

 for each processor p from 0 to P-1 do:  
   for (i = p*N/P; i < (p+1)*(N/P); i++) 
     z[i] = x[i] + y[i]; 

  We would assume that this parallel version runs P times 
faster, that is, we hope for linear speedup 

  Unfortunately, in practice this is not the case because of 
processor overhead, communication, and 
synchronization 
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Speedup 

  Definition: the speedup of an algorithm using P 
processors is defined as 

   SP = ts / tP 
where ts is the execution time of the best available 
sequential algorithm and tP is the execution time of the 
parallel algorithm 

  The speedup is linear (perfect or ideal speedup) if SP ≈ P 

  The speedup is superlinear when SP > P 
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Relative Speedup 

  Definition: The relative speedup is defined as 
    S1

P = t1 / tP 
where t1 is the execution time of the parallel algorithm on 
one processor 

  Similarly, Sk
P = tk / tP is the relative speedup with respect 

to k processors, where k < P 

  The relative speedup Sk
P is used when k is the smallest 

number of processors on which the problem will run 
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An Example 
  Search in parallel by partitioning 

the search space into P chunks 
  SP = ( (x × ts/P) + Δt ) / Δt 
  Worst case for sequential search 

(item in last chunk): SP→∞ as Δt 
tends to zero 

  Best case for sequential search 
(item in first chunk): SP = 1 

Sequential search 

Parallel search 
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Effects that can Cause 
Superlinear Speedup 

  Cache effects: when data is partitioned and distributed 
over P processors, then the individual data items are 
(much) smaller and may fit entirely in the data cache of 
each processor 

  For an algorithm with linear speedup, the extra reduction 
in cache misses may lead to superlinear speedup 
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Efficiency 
  Definition: the efficiency of an algorithm using P 

processors is 
   EP = SP / P 

  Efficiency estimates how well-utilized the processors are 
in solving the problem, compared to how much effort is 
lost in communication and synchronization 

  Algorithms with ideal speedup and algorithms running on 
a single processor have EP = 1 

  Many difficult-to-parallelize algorithms have efficiency 
that approaches zero as P increases 
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Scalability 

  Speedup describes how the parallel algorithm’s 
performance changes with increasing P 

  Scalability concerns the efficiency of the algorithm with 
changing problem size N by choosing P dependent on N 
so that the efficiency of the algorithm is bounded below 

  Definition: an algorithm is scalable if there is minimal 
efficiency ε > 0 such that given any problem size N there 
is a number of processors P(N) which tends to infinity as 
N tends to infinity,  such that the efficiency EP(N) > ε > 0 as 
N is made arbitrarily large 
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Amdahl’s Law 
  Several factors can limit 

the speedup 
  Processors may be idle 
  Extra computations are 

performed in the 
parallel version 

  Communication and 
synchronization 
overhead 

  Let f be the fraction of 
the computation that is 
sequential and cannot 
be divided into 
concurrent tasks 
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Amdahl’s Law 
  Amdahl’s law states that the speedup given P processors is 

  SP = ts / ( f × ts + (1-f)ts / P ) = P / ( 1 + (P-1)f ) 
  As a consequence, the maximum speedup is limited by 

  SP = f -1 
as P → ∞ 
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Gustafson’s Law 
  Amdahl's law is based on a fixed workload or fixed problem size 

  Gustafson’s law defines the scaled speedup by keeping the parallel 
execution time constant by adjusting P as the problem size N 
changes 

  SP,N = P + (1-P)α(N) 
where α(N) is the non-parallelizable fraction of the normalized 
parallel time tP,N = 1 given problem size N 

  To see this, let β(N) = 1- α(N) be the parallelizable fraction 
  tP,N = α(N) + β(N) = 1 

then, the scaled sequential time is 
   ts,N = α(N) + P β(N) 
giving 

  SP,N = α(N) + P (1- α(N)) = P + (1-P)α(N) 
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Limitations to Speedup: 
Data Dependences 

  The Collatz iteration loop has a loop-carried dependence 
  The value of n is carried over to the next iteration 
  Therefore, the algorithm is inherently sequential 

  Loops with loop-carried dependences cannot be 
parallelized 

  To find parallelism in an application 
  Change the loops to remove dependences (if possible!) 
  Apply algorithmic changes by rewriting the algorithm (this may 

change the result of the output) 
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Limitations to Speedup: 
Data Dependences 

  Consider for example the update step in a Gauss-Seidel iteration for 
solving a two-point boundary-value problem: 

 do i=1,n 
   soln(i)=(f(i)-soln(i+1)*offdiag(i) 
                -soln(i-1)*offdiag(i-1))/diag(i) 
 enddo 

  By contrast, the Jacobi iteration for solving a two-point boundary-
value problem does not exhibit loop-carried dependences: 

 do i=1,n 
   snew(i)=(f(i)-soln(i+1)*offdiag(i) 
                -soln(i-1)*offdiag(i-1))/diag(i) 
 enddo 
 do i=1,n 
   soln(i)=snew(i) 
 enddo 

  In this case the iteration space of the loops can be partitioned and 
each processor given a chunk of the iteration space 
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Limitations to Speedup: 
Data Dependences 

1.   do i=1,n 
  diag(i)=(1.0/h(i))+(1.0/h(i+1)) 
  offdiag(i)=-(1.0/h(i+1)) 
enddo 

2.   do i=1,n 
  dxo=1.0/h(i) 
  dxi=1.0/h(i+1) 
  diag(i)=dxo+dxi 
  offdiag(i)=-dxi 
enddo 

3.   dxi=1.0/h(1) 
do i=1,n 
  dxo=dxi 
  dxi=1.0/h(i+1) 
  diag(i)=dxo+dxi 
  offdiag(i)=-dxi 
enddo 

  Three example loops 
to initialize a finite 
difference matrix 

  Which loop(s) can be 
parallelized? 

  Which loop probably 
runs more efficient on 
a sequential 
machine? 
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Efficient Parallel Execution 
  Trying to construct a parallel version of an algorithm is 

not the end-all do-all of high-performance computing 
  Recall Amdahl’s law: the maximum speedup is bounded by 

  SP = f -1 as P → ∞ 
  Thus, efficient execution of the non-parallel fraction f is 

extremely important 
  We can reduce f by improving the sequential code execution 

(e.g. algorithm initialization parts), I/O, communication, and 
synchronization 

  To achieve high performance, we should highly optimize 
the per-node sequential code and use profiling 
techniques to analyze the performance of our code to 
investigate the causes of overhead 
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Efficient Sequential Execution 
  Memory effects are the greatest concern for optimal 

sequential execution 
  Store-load dependences, where data has to flow through 

memory 
  Cache misses 
  TLB misses 
  Page faults 

  CPU resource effects can limit performance 
  Limited number of floating point units 
  Unpredictable branching (if-then-else, loops, etc) in the program 

  Use common sense when allocating and accessing data 
  Use compiler optimizations effectively 
  Execution best analyzed with performance analyzers 
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Lessons Learned from the Past 

  Applications 
  Parallel computing can transform science and engineering and 

answer challenges in society 
  To port or not to port is NOT the question: a complete redesign 

of an application may be necessary 
  The problem is not the hardware: hardware can be significantly 

underutilized when software and applications are suboptimal 

  Software and algorithms 
  Portability remains elusive 
  Parallelism isn’t everything 
  Community acceptance is essential to the success of software 
  Good commercial software is rare at the high end 
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Future of Computing  
  Moore’s law tells us that we will continue to enjoy improvements of 

transistor cost and speed (but not CPU clock frequency!) for another 
decade 
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Future of Computing 
  The peak performance of supercomputers follows Moore’s law 
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Future of Computing 
  Performance growth at fixed Top500 rankings 
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Future of Computing 
  With increased transistor density we face huge CPU 

energy consumption and heat dissipation issues 
  This puts fundamental limits on CPU clock frequencies 
  Therefore, single CPU performance will be relatively flat 

  This will mean that 
  Computers will get a lot cheaper but not faster 
  On-chip parallelism will increase with multiple cores to sustain 

continued performance improvement 

  High-performance computing power will be available on 
the desktop, requiring parallel algorithms to utilize the full 
potential of these machines 
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Writing Efficient Programs 

  How to program multiprocessor systems that employ 
multiple processors (often with multiple memory banks) 
  Understand the problem to be solved 
  Understand the machine architecture constraints 
  Redesign the algorithm when needed 
  Partition the data when applicable 
  Use parallel programming languages 
  … or programming language extensions to support parallelism 
  Debugging is much more complicated 
  Performance analysis is no longer optional 
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Further Reading 

  [PP2] pages 3-12 
  [SRC] pages 3-13 
  [SPC] pages 11-15, 37-45, 48-52, 110-112 
  Optional: 

  More on Moore’s law 
  http://en.wikipedia.org/wiki/Moore%27s_law 

  Grand Challenge problems 
  http://en.wikipedia.org/wiki/Grand_Challenge_problem 

  Collatz conjecture and implementation on the Cell BE: 
  http://en.wikipedia.org/wiki/Collatz_conjecture http://www.ibm.com/

developerworks/library/pa-tacklecell3/ 


