Introduction

HPC Fall 2010
Prof. Robert van Engelen

Syllabus

m Title: “High Performance Computing” (ISC5318 and CIS5930-1)
m Classes: Monday and Wednesday 12:30PM to 1:45PM in 103 LOV

m Evaluation: projects (40%), homework (20%), midterm exam (20%),
and final exam (20%)

m Prerequisites: experience programming in either Java, C, C++, or
Fortran

m Accounts: you need an SCS account to access machines

m Instructor: Prof. Robert van Engelen, office hour Tuesday from
12:30PM to 1:30PM in 160 LOV and upon request

http://lwww.cs.fsu.edu/~engelen/courses/HPC

8/25/10 HPC Fall 2010

m [HPC] "Software Optimization for High Performance Computing:
Creating Faster Applications" by K.R. Wadleigh and I.L. Crawford,
Hewlett-Packard professional books, Prentice Hall.

m [OPT] "The Software Optimization Cookbook" (2nd ed.) by R.
Gerber, A. Bik, K. Smith, and X. Tian, Intel Press.

m [PP2] "Parallel Programming: Techniques and Applications using
Networked Workstations and Parallel Computers" (2nd ed.) by B.
Wilkinson and M. Allen, Prentice Hall.

m [PSC] "Parallel Scientific Computing in C++ and MPI" by G.
Karniadakis and R. Kirby Il, Cambridge University Press.

m [SPC] "Scientific Parallel Computing" by L.R. Scott, T. Clark, and B.
Bagheri, Princeton University Press.

m [SRC] "Sourcebook of Parallel Programming" by J. Dongara, |.
Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and A. White
(eds), Morgan Kaufmann.

8/25/10 HPC Fall 2010

Course Outline

m /ntroduction

Architecture and Compilers

E.g. levels of parallelism, CPU and memory resources, types of
(parallel) computers, compilation techniques to improve CPU and
memory access

m Performance Analysis

E.g. timing code, finding hotspots, profiling, measuring message latency

Programming Models
Programming with Shared Memory
E.g. threads, openMP, locks, barriers, automatic parallelization
m Programming with Message Passing
E.g. MPI, communications, MPE and jumpshot, debugging

m Algorithms

E.g. embarrassingly parallel, synchronous, pipelined, partitioning and
divide and conquer strategies, parallel numerical algorithms

m High-Performance Libraries, Programming Languages and Tools
8/25/10 HPC Fall 2010

Introduction

Why parallel?

... and why not!

Speedup, efficiency, and scalability of parallel algorithms
Laws

Limitations to speedup

The future of computing

Lessons Learned

Further reading

8/25/10 HPC Fall 2010 5

Why Parallel?

m A programmer should first ask “why parallel?”

m |t is not always obvious that a parallel algorithm has
benefits, unless we want to do things ...
faster: doing the same amount of work in less time
bigger: doing more work in the same amount of time

m Both of these reasons can be argued to produce better
results, which is the only meaningful outcome of program
parallelization

8/25/10 HPC Fall 2010 6

Why Parallel?
Faster, Bigger!

m There is an ever increasing demand for computational
power to improve the speed or accuracy of solutions to
real-world problems through faster computations and/or
bigger simulations

m Computations must be completed in acceptable time
(real-time computation), hence must be “fast enough”

8/25/10 HPC Fall 2010

Why Parallel?
Faster, Bigger!

m An illustrative example: a weather prediction simulation
should not take more time than the real event

m Suppose the atmosphere of the earth is divided into
5x108 cubes, each 1x1x1 mile and stacked 10 miles high

m |t takes 200 floating point operations per cube to
complete one time step

m 10% time steps are needed for a 7 day forecast
m Then 10" floating point operations must be performed

m This takes 10° seconds (= 10 days) on a 1 GFLOP
machine

8/25/10 HPC Fall 2010 8

Grand Challenge Problems

Why Parallel?

m Big problems

8/25/10

A “Grand Challenge” problem is a problem that cannot be solved
in a reasonable amount of time with today’s computers

Examples of Grand Challenge problems:

Applied Fluid Dynamics

Meso- to Macro-Scale Environmental Modeling
Ecosystem Simulations

Biomedical Imaging and Biomechanics
Molecular Biology

Molecular Design and Process Optimization
Fundamental Computational Sciences

Nuclear power and weapons simulations

HPC Fall 2010

Why Parallel?
Physical Limits

Which tasks are fundamentally too big to compute with one CPU?

Suppose we have to calculate in one second
for (i = 0; i < ONE TRILLION; i++)
z[i] = x[1] + yl[1i];
Then we have to perform 3x1072 memory moves per second

If data travels at the speed of light (3x108 m/s) between the CPU
and memory and r is the average distance between the CPU and
memory, then » must satisfy
3x1012 r=3x108m/s x 1 s
which gives » = 10+ meters
To fit the data into a square so that the average distance from the
CPU in the middle is r, then the length of each memory cell will be
2x10%#m/(V3x10% =10"10m
which is the size of a relatively small atom

8/25/10 HPC Fall 2010 10

Why Parallel?
Important Factors

m Important considerations in parallel computing

8/25/10

Physical limitations: the speed of light, CPU heat dissipation

Economic factors: cheaper components can be used to achieve
comparable levels of aggregate performance

Scalability: allow problem sizes to be subdivided to obtain a
better match between algorithms and resources (CPU, memory)
to increase performance

Memory: allow aggregate memory bandwidth to be increased
together with processing power at a reasonable cost

HPC Fall 2010 11

... and Why not Parallel?

m Bad parallel programs can be worse than their
sequential counterparts
Slower: because of communication overhead

Scalability: some parallel algorithms are only faster when the
problem size is very large

m Understand the problem and use common sense
m Not all problems are amenable to parallelism

m |n this course we will focus a significant part on non-
parallel optimizations

8/25/10 HPC Fall 2010 12

... and Why not Parallel?

m Some algorithms are inherently sequential

m Consider for example the Collatz conjecture, implemented by
int Collatz (int n)
{ int step;
for (step = 1; n !'=1; step++)
{ if (n $ 2 == 0) // is n is even?
n=n/2;
else
n =3*xn + 1;
}

return step;

}
Given n, Collatz returns the number of steps to reach n = 1

Conjecture: algorithm terminates for any integer n > 0
This algorithm is clearly sequential

Note: given a vector of k values, we can compute k Collatz
numbers in parallel

8/25/10 HPC Fall 2010

F—

[~ = o &

RSB p{E

] o o e g TR

[x]

T ek

e e e

13

Speedup

Suppose we want to compute in parallel
for (1 O; 1 < N; i++)
z[i] = x[i] + y[i];
Then the obvious choice is to split the iteration space In
P equal-sized N/P chunks and let each processor share
the work (worksharing) of the loop:
for each processor p from 0 to P-1 do:
for (i = p*N/P; i < (p+1)*(N/P); i++)
z[1] = x[1] + yl[i]’
We would assume that this parallel version runs P times
faster, that is, we hope for linear speedup

Unfortunately, in practice this is not the case because of
processor overhead, communication, and
synchronization

8/25/10 HPC Fall 2010 14

Speedup

m Definition: the speedup of an algorithm using P
processors is defined as
Sp=1t,/1tp
where ¢, is the execution time of the best available
sequential algorithm and ¢, is the execution time of the
parallel algorithm

m The speedup is linear (perfect or ideal speedup) if S, = P

m The speedup is superlinear when S, > P

8/25/10 HPC Fall 2010 15

Relative Speedup

m Definition: The relative speedup is defined as
So=t1/tp
where ¢, is the execution time of the parallel algorithm on
one processor

m Similarly, S¥, =1t/ t, is the relative speedup with respect
to k processors, where k< P

m The relative speedup S, is used when £ is the smallest
number of processors on which the problem will run

8/25/10 HPC Fall 2010 16

An Example

Parallel search m Search in parallel by partitioning
the search space into P chunks
B m S,=((xxt/P)+At)/At
m Worst case for sequential search
= (item in last chunk): S,—o as At
tends to zero
_— m Best case for sequential search
(item in first chunk): S, =1
o St s Sequential search
Y] .
o L >
o wovsi R A R R N

Solution found

T
xt,lp l

l Solution found ~— >

8/25/10 HPC Fall 2010 17

Effects that can Cause
Superlinear Speedup

m Cache effects: when data is partitioned and distributed
over P processors, then the individual data items are
(much) smaller and may fit entirely in the data cache of
each processor

m For an algorithm with linear speedup, the extra reduction
In cache misses may lead to superlinear speedup

8/25/10 HPC Fall 2010 18

Efficiency

m Definition: the efficiency of an algorithm using P
Processors is
E,=S,/P

m Efficiency estimates how well-utilized the processors are
in solving the problem, compared to how much effort is
lost in communication and synchronization

m Algorithms with ideal speedup and algorithms running on
a single processor have E, =1

m Many difficult-to-parallelize algorithms have efficiency
that approaches zero as P increases

8/25/10 HPC Fall 2010 19

Scalability

m Speedup describes how the parallel algorithm’s
performance changes with increasing P

m Scalability concerns the efficiency of the algorithm with
changing problem size N by choosing P dependent on N
so that the efficiency of the algorithm is bounded below

m Definition: an algorithm is scalable if there is minimal
efficiency € > 0 such that given any problem size N there
IS a number of processors P(N) which tends to infinity as
N tends to infinity, such that the efficiency Ep,,>¢>0 as
N is made arbitrarily large

8/25/10 HPC Fall 2010 20

(a) One processor ‘

(b) Multiple
processors

8/25/10

Amdahl’s Law

_m Several factors can limit
L C the speedup
Serial section l | ParTlicii'/__uivl_e_s.c—cii(in_s_1 | ‘ Processors may be Idle

Extra computations are

performed in the

parallel version

Communication and
& PLGeEss0n synchronization
overhead

Pa— m Let fbe the fraction of
the computation that is

sequential and cannot
be divided into
concurrent tasks

HPC Fall 2010 21

Amdahl’s Law

m Amdahl’s law states that the speedup given P processors is
Sp=t/(fxt,+(1-Ht,/P)=P/(1+(P-1)f)

m As a consequence, the maximum speedup is limited by

— '1
Sp=/t
as P — o
20 — [=0% 20 —
P =256
@ 16 — o 16 —
= =
5 5
3 12 — 3 12 —
: resn 2
= 5 o
5 8 — S 8
3 f=10% g_
wn w
4 — . f=20% 4 —
p=16
I l [l i I I I | I
4 8 12 16 20 02 04 06 038 1.0
Number of processors, p Serial fraction, f
HPC Fall 2010 22

8/25/10

Gustafson’s Law

m Amdahl's law is based on a fixed workload or fixed problem size

m Gustafson’s law defines the scaled speedup by keeping the parallel
execution time constant by adjusting P as the problem size N

changes
Spy =P+ (1-P)a(dN)

where a(N) is the non-parallelizable fraction of the normalized
parallel time ¢, ;= 1 given problem size N

m To see this, let B(V) = 1- a(V) be the parallelizable fraction
tpy=oN) T BNV =1

then, the scaled sequential time is

t,n = a(N) + P B(N)
Spy = N) + P (1- a(N)) = P+ (1-P)aN)

giving

8/25/10 HPC Fall 2010 23

Limitations to Speedup:
Data Dependences

m The Collatz iteration loop has a loop-carried dependence
The value of n is carried over to the next iteration
Therefore, the algorithm is inherently sequential

m Loops with loop-carried dependences cannot be
parallelized

m To find parallelism in an application
Change the loops to remove dependences (if possible!)

Apply algorithmic changes by rewriting the algorithm (this may
change the result of the output)

8/25/10 HPC Fall 2010 24

Limitations to Speedup:
Data Dependences

m Consider for example the update step in a Gauss-Seidel iteration for
solving a two-point boundary-value problem:
do i=1,n
soln(i)=(f(i)-soln(i+l) *offdiag (i)
-soln(i-1) *offdiag(i-1)) /diag(i)
enddo
m By contrast, the Jacobi iteration for solving a two-point boundary-
value problem does not exhibit loop-carried dependences:
do i=1,n
snew(i)=(f (i) -soln(i+l) *offdiag (i)
-soln(i-1) *offdiag(i-1))/diag (i)
enddo
do i=1,n
soln(i)=snew (i)
enddo
m |n this case the iteration space of the loops can be partitioned and

each processor given a chunk of the iteration space

8/25/10 HPC Fall 2010 25

Limitations to Speedup:
Data Dependences

1. do i=1,n

diag(i)=(1.0/h(i))+(1.0/h(i+1))

offdiag(i)=-(1.0/h(i+1))

enddo

2. do i=1,n
dxo=1.0/h (i)
dxi=1.0/h(i+1l)
diag (i)=dxo+dxi
offdiag(i)=-dxi

enddo

3. dxi=1.0/h(1)
do i=1,n
dxo=dxi
dxi=1.0/h(i+1l)
diag (i)=dxo+dxi
offdiag(i)=-dxi
enddo

8/25/10

HPC Fall 2010

m Three example loops

to initialize a finite
difference matrix

Which loop(s) can be
parallelized?

m Which loop probably

runs more efficient on
a sequential
machine?

26

Efficient Parallel Execution

m Trying to construct a parallel version of an algorithm is
not the end-all do-all of high-performance computing

Recall Amdahl’'s law: the maximum speedup is bounded by
S,=flas P—

Thus, efficient execution of the non-parallel fraction f'is
extremely important

We can reduce f'by improving the sequential code execution
(e.g. algorithm initialization parts), I/0, communication, and
synchronization

m To achieve high performance, we should highly optimize
the per-node sequential code and use profiling
techniques to analyze the performance of our code to
investigate the causes of overhead

8/25/10 HPC Fall 2010 27

Efficient Sequential Execution

m Memory effects are the greatest concern for optimal
sequential execution

Store-load dependences, where data has to flow through
memory

Cache misses
TLB misses
Page faults

CPU resource effects can limit performance

Limited number of floating point units
Unpredictable branching (if-then-else, loops, etc) in the program

Use common sense when allocating and accessing data
Use compiler optimizations effectively
Execution best analyzed with performance analyzers

HPC Fall 2010 28

Lessons Learned from the Past

m Applications

Parallel computing can transform science and engineering and
answer challenges in society

To port or not to port is NOT the question: a complete redesign
of an application may be necessary

The problem is not the hardware: hardware can be significantly
underutilized when software and applications are suboptimal

m Software and algorithms
Portability remains elusive

Parallelism isn’t everything
Community acceptance is essential to the success of software

Good commercial software is rare at the high end

8/25/10 HPC Fall 2010 29

Future of Computing

m Moore’s law tells us that we will continue to enjoy improvements of
transistor cost and speed (but not CPU clock frequency!) for another
decade Moore's Law

10,000,000,000)

Number of doubling every 18 months,
1,000,000,000 —
nium 2
9 MB cache|
5 100,000,000 franium 2
@ s TV — Numbeér of transist g every h Le”
o= ,
53 *Pent
-0 .
N =
= .6 ’ “ L’
£y 10,000,000 —f 7, e Pentium
S E o .77 Pentiu mll
28 om
EE P L
= 1,000,000 — L’ 7 486
Z w© ‘ e
¢ 386
e .
100,000 — . -~ 286
.
L° .° BO8E
10,000 — o
P ;808(!
2,300 — &7y
4004 2008
[I [I |
1971 1880 1890 2000 2004

8/25/10 HPC Fall2010 30

Future of Computing

m The peak performance of supercomputers follows Moore’s law

Earth simulator
ASCI Red
1 TFlop/s |-
TG CVS Cray T3D
TMC CM-2
1 GFlop/s - ® Cray 2
Cray X-MP
Cray 1
CDC 7600
1 MFlop/s |- CDC 6600 ¢ IBM 360/195
IBM 7090 ¢
1 KFlop/s be~UNIVAC 1
EDSAC 1
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2002

8/25/10

HPC Fall 2010

31

Future of Computing

m Performance growth at fixed Top500 rankings
1 Pflop/s

220 TF/s

I

100 Tflop/s

35.8 TF/s

10 Tflop/s Sum

Lttt 11l

1.167 TF/s
1 Tflop/s

100 Gflop/s

111l

10 Gflop/s ESHGES

1 Gflop/s

0.4 GF/s

1 Mflop/s

Jun Nov Jun Nov jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun Nov Jun
'93 '93 '94 '94 '95 '95 '96 '96 '97 '97 '98 '98 '99 '99 '00 '00 '01 '01 '02

8/25/10 HPC Fall 2010 32

Future of Computing

m With increased transistor density we face huge CPU
energy consumption and heat dissipation issues
This puts fundamental limits on CPU clock frequencies
Therefore, single CPU performance will be relatively flat

m This will mean that

Computers will get a lot cheaper but not faster

On-chip parallelism will increase with multiple cores to sustain
continued performance improvement

m High-performance computing power will be available on
the desktop, requiring parallel algorithms to utilize the full
potential of these machines

8/25/10 HPC Fall 2010 33

Writing Efficient Programs

m How to program multiprocessor systems that employ
multiple processors (often with multiple memory banks)
Understand the problem to be solved
Understand the machine architecture constraints
Redesign the algorithm when needed
Partition the data when applicable
Use parallel programming languages
... or programming language extensions to support parallelism
Debugging is much more complicated
Performance analysis is no longer optional

8/25/10 HPC Fall 2010 34

Further Reading

PP2] pages 3-12

'SRC] pages 3-13

SPC] pages 11-15, 37-45, 48-52, 110-112
Optional:

More on Moore’s law

m http://en.wikipedia.org/wiki/Moore%?27s_law
Grand Challenge problems

m http://en.wikipedia.org/wiki/Grand_Challenge problem
Collatz conjecture and implementation on the Cell BE:

m http://en.wikipedia.org/wiki/Collatz_conjecture http://www.ibm.com/
developerworks/library/pa-tacklecell3/

8/25/10 HPC Fall 2010

35

