
COP5025 Spring 2001 – Final Exam (Chs. 8+9+Prolog)

Name: (Please print)

You can put the answers on these sheets. Use additional sheets when necessary. If possible,
show how you derived your answers (this is helpful for partial credit). You can collect 100
points in total for this exam. A bonus question is included for an additional 15 points.
This exam is open book and open notes.

1. (10 points) Which of the following pairs of Prolog terms unify and what are the result-
ing value bindings of the Prolog variables? Recall that Prolog variables start with
an upper-case letter, while Prolog atoms (named constants) start with a lower-case
letter.

Term 1 Term 2 Unify? Variable
Yes/No Bindings

john john
john peter
john X X =
city(new york) city(X) X =
state(name(florida), capital(tallahassee)) state(name(X), capital(Y)) X =

Y =
state(name(florida), capital(tallahassee)) state(name(X), capital(X)) X =
state(name(new york), capital(new york)) state(name(X), capital(X)) X =
state(name(X), capital(new york)) state(name(Y), capital(Y)) X =

Y =

2. (10 points) Consider the language of simple expressions (lecture note 95 and Section
8.6) What functions do the following expressions denote?

(a) let x = 1 in x+ y end

(b) let y = 1 in let x = y + 1 in x− y end end

1



3. (10 points) Consider the language of simple expressions with error values (notes 96–97
and Section 8.7) What functions do the following expressions denote?

(a) x

(b) let y = 1 in x/y end

4. (15 points) Consider the C conditional-and operation && with the usual semantics:

(x&&y) = 0 if x = 0

(x&&y) = 0 if x 6= 0 and y = 0

(x&&y) = 1 if x 6= 0 and y 6= 0

Give a denotational semantics description of the C conditional-and operator with
this behavior. The language of simple expressions is used (note 95 and Section 8.6),
extended with a grammar production of the form

E → E1 && E2

2



5. The order of operand evaluation in C/C++ expressions is undetermined. We can
describe such a “random” reordering with denotational semantics:

M[[E1 + E2 ]] ρ σ

= if random
then let 〈n, σ′〉 =M[[E1 ]] ρ σ

in let 〈m,σ′′〉 =M[[E2 ]] ρ σ′

in 〈n+m,σ′′〉
end

end

else let 〈m,σ′〉 =M[[E2 ]] ρ σ
in let 〈n, σ′′〉 =M[[E1 ]] ρ σ′

in 〈n+m,σ′′〉
end

end

where random evaluates to TRUE or FALSE depending on the “flip of a coin”.

(a) (15 points) Prove thatM[[E1 + E2 ]] ρ σ always returns the same result if E1 and
E2 do not change the state of the machine. That is, M[[E1 ]] ρ and M[[E2 ]] ρ
applied to a state return a tuple with the state unchanged. For this proof, show
thatM[[E1 + E2 ]] ρ σ results in a tuple 〈k, σ〉 with some value k and unchanged
state σ.

3



(b) (10 points) Suppose that E1 and/or E2 do change the state of the machine, i.e. the
expressions have side-effects. Then M[[E1 + E2 ]] is possibly nondeterministic.

Definition 1
A program P is deterministic if its denotation P [[P ]] is a deterministic function.

Definition 2
A program P with input n is deterministic if P [[P ]] n is deterministic.

Consider the following program:

program (x); x:=x+(x:=0) end.

That is, the second operand of the addition assigns 0 to x. The semantics of
this language are described in Section 8.10 and the new semantic function for
addition is given above. Answer the following questions without deriving the
result with denotational semantics:

• Is this program deterministic in general?

• Is this program with input 0 deterministic?

6. (10 points) Which of the following Hoare triples are valid?

(a) {y = a} x := x+ y {x = a}
(b) {x = 0} while FALSE do x := x+ 1 {x ≤ 0}
(c) {x > 0} if x = 0 then x = y else y = x {y > 0}
(d) {x = 1 & y = 2} z := y {y = 2}

4



7. The following algorithm computes s =
n∑
i=0

i by summing over i = 0, . . . , n:

i:=0;
s:=0;
while i < n do

i:=i+1;
s:=s+i

end

(a) (20 points) Find the weakest precondition of this program and proof it’s cor-
rectness by annotating the program with conditions. The postcondition is
s = 1

2
∗ n ∗ (n+ 1) and the loop invariant is I = (s = 1

2
∗ i ∗ (i+ 1) & i ≤ n).

(Note: the postcondition and loop invariant are based on the identity
∑n
i=0 i =

1
2
∗ n ∗ (n+ 1), (n ≥ 0).)

5



8. bonus question (15 points)

Consider the procedure:

procedure s(in c, inout x, inout y);
if c then

(x, y) := (y, x)
else

skip

Derive the weakest precondition of the following program fragment:

call s(a < b, a, b)
{a ≥ b}

The proof rule for this procedure is:

{P} if c then (x, y) := (y, x) else skip {R[(a, b) := (x, y)]}
{P [(c, x, y) := (a < b, a, b)]} call s(a < b, a, b) {R}

(Hint: First derive P from the if-then-else with postcondition R[(a, b) := (x, y)] where
R = (a ≥ b).)

6


