Code Generation
Part II

Chapter 8
(1st ed. Ch.9)
Flow Graphs

- A *flow graph* is a graphical depiction of a sequence of instructions with control flow edges

- A flow graph can be defined at the intermediate code level or target code level

```
MOV 1,R0
MOV n,R1
JMP L2
L1: MUL 2,R0
   SUB 1,R1
L2: JMPNZ R1,L1

MOV 0,R0
MOV n,R1
JMP L2
L1: MUL 2,R0
   SUB 1,R1
L2: JMPNZ R1,L1
```
Basic Blocks

- A basic block is a sequence of instructions
 - Control enters through the first instruction
 - Control leaves the block without branching, except possibly at the last instruction

```
MOV 1, R0
MOV n, R1
JMP L2

L1: MUL 2, R0
    SUB 1, R1
L2: JMPNZ R1, L1
```

```
MOV 1, R0
MOV n, R1
JMP L2

L1: MUL 2, R0
    SUB 1, R1
L2: JMPNZ R1, L1
```
Basic Blocks and Control Flow Graphs

• A control flow graph (CFG) is a directed graph with basic blocks B_i as vertices and with edges $B_i \rightarrow B_j$ iff B_j can be executed immediately after B_i.

```plaintext
MOV 1,R0
MOV n,R1
JMP L2
L1: MUL 2,R0
SUB 1,R1
L2: JMPNZ R1,L1
```
Successor and Predecessor Blocks

- Suppose the CFG has an edge $B_1 \rightarrow B_2$
 - Basic block B_1 is a predecessor of B_2
 - Basic block B_2 is a successor of B_1

```
MOV 1, R0
MOV n, R1
JMP L2

L1: MUL 2, R0
SUB 1, R1

L2: JMPNZ R1, L1
```
Partition Algorithm for Basic Blocks

Input: A sequence of three-address statements
Output: A list of basic blocks with each three-address statement in exactly one block

1. Determine the set of *leaders*, the first statements if basic blocks
 a) The first statement is the leader
 b) Any statement that is the target of a goto is a leader
 c) Any statement that immediately follows a goto is a leader
2. For each leader, its basic block consist of the leader and all statements up to but not including the next leader or the end of the program
Loops

• A loop is a collection of basic blocks, such that
 – All blocks in the collection are strongly connected
 – The collection has a unique entry, and the only way to reach a block in the loop is through the entry
Loops (Example)

Strongly connected components:

SCC={ \{B2,B3\}, \{B4\} }

Entries:
B3, B4
Equivalence of Basic Blocks

- Two basic blocks are (semantically) equivalent if they compute the same set of expressions.

\[
\begin{align*}
\text{b} & := 0 \\
\text{t1} & := \text{a} + \text{b} \\
\text{t2} & := \text{c} \times \text{t1} \\
\text{a} & := \text{t2}
\end{align*}
\]

\[
\begin{align*}
\text{a} & := \text{c} \times \text{a} \\
\text{b} & := 0
\end{align*}
\]

Blocks are equivalent, assuming \text{t1} and \text{t2} are dead: no longer used (no longer live).
Transformations on Basic Blocks

• A *code-improving transformation* is a code optimization to improve speed or reduce code size

• *Global transformations* are performed across basic blocks

• *Local transformations* are only performed on single basic blocks

• Transformations must be safe and preserve the meaning of the code
 – A local transformation is safe if the transformed basic block is guaranteed to be equivalent to its original form
Common-Subexpression Elimination

- Remove redundant computations

\[
\begin{align*}
a & := b + c \\
b & := a - d \\
c & := b + c \\
d & := a - d \\
\end{align*}
\]

\[
\begin{align*}
t1 & := b * c \\
t2 & := a - t1 \\
t3 & := b * c \\
t4 & := t2 + t3 \\
\end{align*}
\]

\[
\begin{align*}
a & := b + c \\
b & := a - d \\
c & := b + c \\
d & := b \\
\end{align*}
\]

\[
\begin{align*}
t1 & := b * c \\
t2 & := a - t1 \\
t4 & := t2 + t1 \\
\end{align*}
\]
Dead Code Elimination

- Remove unused statements

\[
\begin{align*}
b &:= a + 1 \\
a &:= b + c \\
... \\
\end{align*}
\]

Assuming \(a \) is \textit{dead} (not used)

\[
\begin{align*}
\text{if true goto L2} \\
b &:= x + y \\
... \\
\end{align*}
\]

Remove unreachable code
Renaming Temporary Variables

• Temporary variables that are dead at the end of a block can be safely renamed

\[
\begin{align*}
 t1 & := b + c \\
 t2 & := a - t1 \\
 t1 & := t1 * d \\
 d & := t2 + t1
\end{align*}
\]

\[
\begin{align*}
 t1 & := b + c \\
 t2 & := a - t1 \\
 t3 & := t1 * d \\
 d & := t2 + t3
\end{align*}
\]

Normal-form block
Interchange of Statements

• Independent statements can be reordered

\[
\begin{align*}
t1 & := b + c \\
t2 & := a - t1 \\
t3 & := t1 \times d \\
d & := t2 + t3
\end{align*}
\]

\[
\begin{align*}
t1 & := b + c \\
t3 & := t1 \times d \\
t2 & := a - t1 \\
d & := t2 + t3
\end{align*}
\]

Note that normal-form blocks permit all statement interchanges that are possible
Algebraic Transformations

• Change arithmetic operations to transform blocks to algebraic equivalent forms

\[
\begin{align*}
\text{t1} & := a - a \\
\text{t2} & := b + \text{t1} \\
\text{t3} & := 2 \times \text{t2}
\end{align*}
\]

\[
\begin{align*}
\text{t1} & := 0 \\
\text{t2} & := b \\
\text{t3} & := \text{t2} \ll 1
\end{align*}
\]
Next-Use

- Next-use information is needed for dead-code elimination and register assignment
- Next-use is computed by a backward scan of a basic block and performing the following actions on statement
 \[i: \quad x := y \text{ op } z \]
 - Add liveness/next-use info on \(x, y, \) and \(z \) to statement \(i \)
 - Before going up to the previous statement (scan up):
 - Set \(x \) info to “not live” and “no next use”
 - Set \(y \) and \(z \) info to “live” and the next uses of \(y \) and \(z \) to \(i \)
Next-Use (Step 1)

\[i: \quad b := b + 1 \]

\[j: \quad a := b + c \]

\[k: \quad t := a + b \quad [\text{live}(a) = \text{true}, \text{live}(b) = \text{true}, \text{live}(t) = \text{true}, \text{nextuse}(a) = \text{none}, \text{nextuse}(b) = \text{none}, \text{nextuse}(t) = \text{none}] \]

Attach current live/next-use information
Because info is empty, assume variables are live
(Data flow analysis Ch.10 can provide accurate information)
Next-Use (Step 2)

\[i: \quad b := b + 1 \]

\[j: \quad a := b + c \begin{array}{ll}
\text{live}(a) &= \text{true} \\
\text{nextuse}(a) &= k \\
\text{live}(b) &= \text{true} \\
\text{nextuse}(b) &= k \\
\text{live}(t) &= \text{false} \\
\text{nextuse}(t) &= \text{none}
\end{array} \]

\[k: \quad t := a + b \begin{array}{ll}
\text{live}(a) &= \text{true}, \text{live}(b) = \text{true}, \text{live}(t) = \text{true}, \\
\text{nextuse}(a) &= \text{none}, \text{nextuse}(b) = \text{none}, \text{nextuse}(t) = \text{none}
\end{array} \]

Compute live/next-use information at \(k \)
Next-Use (Step 3)

\[\text{i: } b := b + 1 \]

\[\text{j: } a := b + c \quad \text{[live}(a) = \text{true}, \text{live}(b) = \text{true}, \text{live}(c) = \text{false}, \text{nextuse}(a) = k, \text{nextuse}(b) = k, \text{nextuse}(c) = \text{none}] } \]

\[\text{k: } t := a + b \quad \text{[live}(a) = \text{true}, \text{live}(b) = \text{true}, \text{live}(t) = \text{true}, \text{nextuse}(a) = \text{none}, \text{nextuse}(b) = \text{none}, \text{nextuse}(t) = \text{none}] \]

Attach current live/next-use information to \(j\)
Next-Use (Step 4)

i: \quad b := b + 1

\begin{align*}
 \text{live}(a) &= \text{false} \quad \text{nextuse}(a) = \text{none} \\
 \text{live}(b) &= \text{true} \quad \text{nextuse}(b) = j \\
 \text{live}(c) &= \text{true} \quad \text{nextuse}(c) = j \\
 \text{live}(t) &= \text{false} \quad \text{nextuse}(t) = \text{none}
\end{align*}

j: \quad a := b + c

\begin{align*}
 \text{live}(a) &= \text{true}, \quad \text{live}(b) = \text{true}, \quad \text{live}(c) = \text{false}, \\
 \text{nextuse}(a) &= k, \quad \text{nextuse}(b) = k, \quad \text{nextuse}(c) = \text{none}
\end{align*}

k: \quad t := a + b

\begin{align*}
 \text{live}(a) &= \text{true}, \quad \text{live}(b) = \text{true}, \quad \text{live}(t) = \text{true}, \\
 \text{nextuse}(a) &= \text{none}, \quad \text{nextuse}(b) = \text{none}, \quad \text{nextuse}(t) = \text{none}
\end{align*}

Compute live/next-use information \(j \)
Next-Use (Step 5)

\[i: \quad b := b + 1 \quad [\text{live}(a) = \text{false}, \text{live}(b) = \text{true}, \text{live}(c) = \text{true}, \text{nextuse}(a) = \text{none}, \text{nextuse}(b) = j, \text{nextuse}(c) = j] \]

\[j: \quad a := b + c \quad [\text{live}(a) = \text{true}, \text{live}(b) = \text{true}, \text{live}(c) = \text{false}, \text{nextuse}(a) = k, \text{nextuse}(b) = k, \text{nextuse}(c) = \text{none}] \]

\[k: \quad t := a + b \quad [\text{live}(a) = \text{true}, \text{live}(b) = \text{true}, \text{live}(t) = \text{true}, \text{nextuse}(a) = \text{none}, \text{nextuse}(b) = \text{none}, \text{nextuse}(t) = \text{none}] \]

Attach current live/next-use information to \(i \)
A Code Generator

- Generates target code for a sequence of three-address statements using *next-use* information
- Uses `getreg` to assign registers to variables
- For instruction \(x := y \text{ op } z \)

 \(\text{getreg}(y, z) \) returns a location (register) for \(x \)
- Results are kept in *registers* as long as possible:
 - Result is needed in another computation
 - Register is kept up to a procedure call or end of block
- Check if operands of three-address code are available in registers
The Code Generation Algorithm

- For each statement $x := y \text{ op } z$
 1. Set location $L = \text{getreg}(y, z)$ to get register for x
 2. If $y \notin L$ then generate
 \[\text{MOV } y', L \]
 where y' denotes one of the locations where the value of y is available (choose register if possible)
 3. Generate
 \[\text{OP } z', L \]
 where z' is one of the locations of z;
 Update register/address descriptor of x to include L
 4. If y and/or z has no next use and is stored in register, update register descriptors to remove y and/or z
Register and Address Descriptors

- A *register descriptor* keeps track of what is currently stored in a register at a particular point in the code, e.g. a local variable, argument, global variable, etc.

 \[\text{MOV } a, R0 \quad \text{"R0 contains } a\text{"} \]

- An *address descriptor* keeps track of the location where the current value of the name can be found at runtime, e.g. a register, stack location, memory address, etc.

 \[\text{MOV } a, R0 \quad \text{MOV } R0, R1 \quad \text{"a in } R0\text{ and } R1\text{"} \]
The \textit{getreg} Algorithm

- To compute \textit{getreg}(y, z)

 1. If \(y\) is stored in a register \(R\) and \(R\) only holds the value \(y\), and \(y\) has no next use, then return \(R\);
 Update address descriptor: value \(y\) no longer in \(R\)

 2. Else, return a new empty register if available

 3. Else, find an occupied register \(R\);
 Store contents (\textit{register spill}) by generating
 \textbf{MOV} \(R, M\)
 for every \(M\) in address descriptor of \(y\);
 Return register \(R\)

 4. Return a memory location
Code Generation Example

<table>
<thead>
<tr>
<th>Statements</th>
<th>Code Generated</th>
<th>Register Descriptor</th>
<th>Address Descriptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>t := a - b</td>
<td>MOV a,R0</td>
<td>Registers empty</td>
<td>t in R0</td>
</tr>
<tr>
<td></td>
<td>SUB b,R0</td>
<td>R0 contains t</td>
<td></td>
</tr>
<tr>
<td>u := a - c</td>
<td>MOV a,R1</td>
<td>R1 contains u</td>
<td>u in R1</td>
</tr>
<tr>
<td></td>
<td>SUB c,R1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v := t + u</td>
<td>ADD R1,R0</td>
<td>R0 contains v</td>
<td>u in R1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R1 contains u</td>
<td>v in R0</td>
</tr>
<tr>
<td>d := v + u</td>
<td>ADD R1,R0</td>
<td>R0 contains d</td>
<td>d in R0</td>
</tr>
<tr>
<td></td>
<td>MOV R0,d</td>
<td></td>
<td>d in R0 and memory</td>
</tr>
<tr>
<td>live(d)=true</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all other dead</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Register Allocation and Assignment

- The `getreg` algorithm is simple but sub-optimal
 - All live variables in registers are stored (flushed) at the end of a block

- *Global register allocation* assigns variables to limited number of available registers and attempts to keep these registers consistent across basic block boundaries
 - Keeping variables in registers in looping code can result in big savings
Allocating Registers in Loops

- Suppose loading a variable x has a cost of 2.
- Suppose storing a variable x has a cost of 2.
- Benefit of allocating a register to a variable x within a loop L is

$$\sum_{B \in L} (use(x, B) + 2 \cdot live(x, B))$$

where $use(x, B)$ is the number of times x is used in B and $live(x, B) = true$ if x is live on exit from B.
Global Register Allocation with Graph Coloring

- When a register is needed but all available registers are in use, the content of one of the used registers must be stored (spilled) to free a register
- Graph coloring allocates registers and attempts to minimize the cost of spills
- Build a conflict graph (interference graph)
- Find a k-coloring for the graph, with k the number of registers
Register Allocation with Graph Coloring: Example

```plaintext
a := read();
b := read();
c := read();
a := a + b + c;
if (a < 10) {
    d := c + 8;
    write(c);
} else if (a < 20) {
    e := 10;
    d := e + a;
    write(e);
} else {
    f := 12;
    d := f + a;
    write(f);
}
write(d);
```
Register Allocation with Graph Coloring: Live Ranges

```
a := read();
b := read();
c := read();
a := a+b+c;
a < 20

f := 12;
d := f+a;
write(f);
e := 10;
d := e+a;
write(e);
d := c+8;
write(c);
```

Interference graph:
connected vars have overlapping ranges
Register Allocation with Graph Coloring: Solution

Interference graph

Solve

Three registers:

\[a = r_2 \]
\[b = r_3 \]
\[c = r_1 \]
\[d = r_2 \]
\[e = r_1 \]
\[f = r_1 \]

```
r2 := read();
r3 := read();
r1 := read();
r2 := r2 + r3 + r1;
if (r2 < 10) {
    r2 := r1 + 8;
    write(r1);
} else if (r2 < 20) {
    r1 := 10;
    r2 := r1 + r2;
    write(r1);
} else {
    r1 := 12;
    r2 := r1 + r2;
    write(r1);
}
write(r2);
```
Peephole Optimization

• Examines a short sequence of target instructions in a window (*peephole*) and replaces the instructions by a faster and/or shorter sequence when possible
• Applied to intermediate code or target code
• Typical optimizations:
 – Redundant instruction elimination
 – Flow-of-control optimizations
 – Algebraic simplifications
 – Use of machine idioms
Peephole Opt: Eliminating Redundant Loads and Stores

• Consider
 \[
 \text{MOV R0,a}
 \]
 \[
 \text{MOV a,R0}
 \]

• The second instruction can be deleted, but only if it is not labeled with a target label
 – Peephole represents sequence of instructions with at most one entry point

• The first instruction can also be deleted if \(\text{live(a)}=\text{false}\)
Peephole Optimization: Deleting Unreachable Code

- Unlabeled blocks can be removed

```plaintext
if 0==0 goto L2
b := x + y
...
goto L2
b := x + y
...
```
Peephole Optimization: Branch Chaining

- Shorten chain of branches by modifying target labels

if a==0 goto L2

b := x + y
...
L2: goto L3

if a==0 goto L3

b := x + y
...
L2: goto L3
Peephole Optimization: Other Flow-of-Control Optimizations

• Remove redundant jumps

```
...  
goto L1
L1:
...
```

...
Other Peephole Optimizations

• *Reduction in strength*: replace expensive arithmetic operations with cheaper ones

 \[
 \begin{align*}
 &\cdots \\
 &a := x ^ 2 \\
 &b := y / 8 \\
 \end{align*}
 \quad \rightarrow
 \begin{align*}
 &\cdots \\
 &a := x \times x \\
 &b := y \gg 3 \\
 \end{align*}
 \]

• Utilize machine idioms

 \[
 \begin{align*}
 &\cdots \\
 &a := a + 1 \\
 \end{align*}
 \quad \rightarrow
 \begin{align*}
 &\cdots \\
 &\text{inc } a \\
 \end{align*}
 \]

• Algebraic simplifications

 \[
 \begin{align*}
 &\cdots \\
 &a := a + 0 \\
 &b := b \times 1 \\
 \end{align*}
 \quad \rightarrow
 \begin{align*}
 &\cdots \\
 \end{align*}
 \]