Lexical Analysis and Lexical Analyzer Generators

Chapter 3
The Reason Why Lexical Analysis is a Separate Phase

• Simplifies the design of the compiler
 – LL(1) or LR(1) parsing with 1 token lookahead would not be possible (multiple characters/tokens to match)

• Provides efficient implementation
 – Systematic techniques to implement lexical analyzers by hand or automatically from specifications
 – Stream buffering methods to scan input

• Improves portability
 – Non-standard symbols and alternate character encodings can be normalized (e.g. UTF8, trigraphs)
Interaction of the Lexical Analyzer with the Parser

Source Program → Lexical Analyzer → Parser

- Error
- Token, tokenval → Get next token
- Symbol Table
- Error
Attributes of Tokens

\[y := 31 + 28 \times x \]

Lexical analyzer

Parser

\text{token} (lookahead)

\text{tokenval} (token attribute)
Tokens, Patterns, and Lexemes

• A token is a classification of lexical units
 – For example: id and num

• Lexemes are the specific character strings that make up a token
 – For example: abc and 123

• Patterns are rules describing the set of lexemes belonging to a token
 – For example: “letter followed by letters and digits” and “non-empty sequence of digits”
Specification of Patterns for Tokens: *Definitions*

- An *alphabet* \(\Sigma \) is a finite set of symbols (characters)

- A *string* \(s \) is a finite sequence of symbols from \(\Sigma \)
 - \(|s| \) denotes the length of string \(s \)
 - \(\varepsilon \) denotes the empty string, thus \(|\varepsilon| = 0 \)

- A *language* is a specific set of strings over some fixed alphabet \(\Sigma \)
Specification of Patterns for Tokens: *String Operations*

- The *concatenation* of two strings x and y is denoted by xy
- The *exponentiation* of a string s is defined by
 \[
 s^0 = \varepsilon \\
 s^i = s^{i-1}s \quad \text{for} \quad i > 0
 \]

 note that $s\varepsilon = \varepsilon s = s$
Specification of Patterns for Tokens: *Language Operations*

- **Union**
 \[L \cup M = \{ s \mid s \in L \text{ or } s \in M \} \]

- **Concatenation**
 \[LM = \{ xy \mid x \in L \text{ and } y \in M \} \]

- **Exponentiation**
 \[L^0 = \{ \varepsilon \}; \quad L^i = L^{i-1}L \]

- **Kleene closure**
 \[L^* = \bigcup_{i=0,\ldots,\infty} L^i \]

- **Positive closure**
 \[L^+ = \bigcup_{i=1,\ldots,\infty} L^i \]
Specification of Patterns for Tokens: *Regular Expressions*

- **Basis symbols:**
 - ε is a regular expression denoting language $\{\varepsilon\}$
 - $a \in \Sigma$ is a regular expression denoting $\{a\}$

- **If** r and s are regular expressions denoting languages $L(r)$ and $M(s)$ respectively, then
 - $r | s$ is a regular expression denoting $L(r) \cup M(s)$
 - rs is a regular expression denoting $L(r)M(s)$
 - r^* is a regular expression denoting $L(r)^*$
 - (r) is a regular expression denoting $L(r)$

- **A language defined by a regular expression is called a *regular set***
Specification of Patterns for Tokens: *Regular Definitions*

- Regular definitions introduce a naming convention with name-to-regular-expression bindings:

 \[
 d_1 \rightarrow r_1 \\
 d_2 \rightarrow r_2 \\
 \vdots \\
 d_n \rightarrow r_n
 \]

 where each \(r_i \) is a regular expression over
 \[
 \Sigma \cup \{d_1, d_2, \ldots, d_{i-1}\}
 \]

- Any \(d_j \) in \(r_i \) can be textually substituted in \(r_i \) to obtain an equivalent set of definitions
Specification of Patterns for Tokens: *Regular Definitions*

- **Example:**

 \[
 \begin{align*}
 \text{letter} & \rightarrow A | B | \ldots | Z | a | b | \ldots | z \\
 \text{digit} & \rightarrow 0 | 1 | \ldots | 9 \\
 \text{id} & \rightarrow \text{letter} \ (\text{letter} \ | \ \text{digit} \)^* \\
 \end{align*}
 \]

- **Regular definitions cannot be recursive:**

 \[
 \text{digits} \rightarrow \text{digit digits} | \text{digit} \quad \text{wrong!}
 \]
Specification of Patterns for Tokens: *Notational Shorthand*

- The following shorthands are often used:

\[r^+ = rr^* \]
\[r? = r \mid \varepsilon \]
\[[a-z] = a \mid b \mid c \mid \ldots \mid z \]

- Examples:
 - `digit` → `[0-9]`
 - `num` → `digit^+ (. digit^+)? (E (+ \mid -)? digit^+)`
Regular Definitions and Grammars

Grammar

\[
stmt \rightarrow \text{if } expr \text{ then } stmt \\
| \text{if } expr \text{ then } stmt \text{ else } stmt \\
| \epsilon
\]

\[
expr \rightarrow \text{term } \text{relop } \text{term} \\
| \text{term}
\]

\[
term \rightarrow \text{id} \\
| \text{num}
\]

Regular definitions

\[
if \rightarrow \text{if} \\
then \rightarrow \text{then} \\
else \rightarrow \text{else}
\]

\[
relop \rightarrow < | <= | <> | > | >= | =
\]

\[
id \rightarrow \text{letter (letter } | \text{ digit })^* \\
num \rightarrow \text{digit}^+ (\text{. digit})^? (\text{ E (} + | -)? \text{ digit}^+)?
\]
Coding Regular Definitions in Transition Diagrams

relop → < | <= | <> | > | >= | =

id → letter (letter | digit)*
Coding Regular Definitions in Transition Diagrams: Code

```c
int fail()
{
    forward = token_beginning;
    switch (start) {
    case 0: start = 9; break;
    case 9: start = 12; break;
    case 12: start = 20; break;
    case 20: start = 25; break;
    case 25: recover(); break;
    default: /* error */
    }
    return start;
}
```

Decides the next start state to check
The Lex and Flex Scanner Generators

• *Lex* and its newer cousin *flex* are *scanner generators*

• Scanner generators systematically translate regular definitions into C source code for efficient scanning

• Generated code is easy to integrate in C applications
Creating a Lexical Analyzer with Lex and Flex

lex (or flex) source program lex.l -> lex.yy.c

lex.yy.c -> a.out

C compiler

input stream a.out -> sequence of tokens
Lex Specification

• A lex specification consists of three parts:
 regular definitions, C declarations in % { % }
%%
 translation rules
%%
 user-defined auxiliary procedures

• The translation rules are of the form:
 \[p_1 \{ action_1 \} \]
 \[p_2 \{ action_2 \} \]
 \[\ldots \]
 \[p_n \{ action_n \} \]
Regular Expressions in Lex

- \x match the character \x
- \. match the character .
- "string" match contents of string of characters
- . match any character except newline
- ^ match beginning of a line
- $ match the end of a line
- [xyz] match one character \x, \y, or \z (use \ to escape -)
- [^xyz] match any character except \x, \y, and \z
- [a–z] match one of \a to \z
- r* closure (match zero or more occurrences)
- r+ positive closure (match one or more occurrences)
- r? optional (match zero or one occurrence)
- r_1r_2 match r_1 then r_2 (concatenation)
- r_1|r_2 match r_1 or r_2 (union)
- (r) grouping
- r_1/r_2 match r_1 when followed by r_2
- {d} match the regular expression defined by d
Example Lex Specification 1

Translation rules

```c
{%
#include <stdio.h>
%
%
[0-9]+   { printf("%s\n", yytext); } 
.|\n   { } 
%
main()
{ yylex(); } 
%
}
```
Example Lex Specification 2

```c
#include <stdio.h>
int ch = 0, wd = 0, nl = 0;
%
delim     [ \t]+  
%^{delim}  { ch+=yyleng; }
{delim}   { ch+=yyleng; wd++; }
.         { ch++; }
%
main()
{ yylex();
   printf("%8d%8d%8d\n", nl, wd, ch);
}
```
Example Lex Specification 3

```c
#include <stdio.h>

digit     [0-9]
letter    [A-Za-z]
id        {letter}({letter}|{digit})*

{digit}+ { printf("number: %s\n", yytext); }  
{id}     { printf("ident: %s\n", yytext); }   
.        { printf("other: %s\n", yytext); }   

main()
{    yylex(); }
```
Example Lex Specification 4

{% /* definitions of manifest constants */
#define LT (256)
...
%
%
delim \[\t\n]
ws {delim}+
letter [A-Za-z]
digit [0-9]
id {letter}({letter}|{digit})*
number {digit}+(\.{digit}+)?(E[+-]?)?{digit}+)?
%
{ws} { }
if {return IF;}
then {return THEN;}
else {return ELSE;}
{id} {yylval = install_id(); return ID;}
{number} {yylval = install_num(); return NUMBER;}
"<" {yylval = LT; return RELOP;}
"<=" {yylval = LE; return RELOP;}
"=" {yylval = EQ; return RELOP;}
"<>" {yylval = NE; return RELOP;}
">" {yylval = GT; return RELOP;}
">=" {yylval = GE; return RELOP;}
%
int install_id()
...
Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

Optional
Nondeterministic Finite Automata

- An NFA is a 5-tuple \((S, \Sigma, \delta, s_0, F)\) where

\[S \text{ is a finite set of states} \]
\[\Sigma \text{ is a finite set of symbols, the alphabet} \]
\[\delta \text{ is a mapping from } S \times \Sigma \text{ to a set of states} \]
\[s_0 \in S \text{ is the start state} \]
\[F \subseteq S \text{ is the set of accepting (or final) states} \]
An NFA can be diagrammatically represented by a labeled directed graph called a transition graph.

\[S = \{0,1,2,3\} \]
\[\Sigma = \{a,b\} \]
\[s_0 = 0 \]
\[F = \{3\} \]
Transition Table

- The mapping δ of an NFA can be represented in a transition table

\[
\begin{align*}
\delta(0, a) &= \{0, 1\} \\
\delta(0, b) &= \{0\} \\
\delta(1, b) &= \{2\} \\
\delta(2, b) &= \{3\}
\end{align*}
\]

<table>
<thead>
<tr>
<th>State</th>
<th>Input a</th>
<th>Input b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>${0, 1}$</td>
<td>${0}$</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>${2}$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>${3}$</td>
</tr>
</tbody>
</table>
The Language Defined by an NFA

• An NFA *accepts* an input string x if and only if there is some path with edges labeled with symbols from x in sequence from the start state to some accepting state in the transition graph.

• A state transition from one state to another on the path is called a *move*.

• The *language defined by* an NFA is the set of input strings it accepts, such as $(a \mid b)^*abb$ for the example NFA.
Design of a Lexical Analyzer Generator: RE to NFA to DFA

Lex specification with regular expressions

\[p_1 \{ \text{action}_1 \} \]
\[p_2 \{ \text{action}_2 \} \]
\[\ldots \]
\[p_n \{ \text{action}_n \} \]

NFA

\[\begin{array}{c}
\text{start} \\
\varepsilon \\
\varepsilon \\
\varepsilon
\end{array} \]

\[\begin{array}{c}
N(p_1) \\
\text{action}_1 \\
N(p_2) \\
\text{action}_2 \\
\ldots \\
N(p_n) \\
\text{action}_n
\end{array} \]

Subset construction

DFA
From Regular Expression to NFA
(Thompson’s Construction)

\[
\begin{align*}
\varepsilon & \quad \xrightarrow{\text{start}} \quad \varepsilon & \quad \rightarrow & \quad f \\
\text{a} & \quad \xrightarrow{\text{start}} \quad i & \quad \rightarrow & \quad a & \quad \rightarrow & \quad f \\
\mid \quad & \quad \text{start} \rightarrow \quad i & \quad \rightarrow & \quad N(r_1) & \quad \rightarrow & \quad f \\
\mid \quad & \quad \text{start} \rightarrow \quad i & \quad \rightarrow & \quad N(r_2) & \quad \rightarrow & \quad f \\
\cdot \quad & \quad \text{start} \rightarrow \quad i \quad \rightarrow & \quad N(r_1) \quad \rightarrow & \quad N(r_2) & \quad \rightarrow & \quad f \\
\cdot \quad & \quad \text{start} \rightarrow \quad i & \quad \rightarrow & \quad N(r) & \quad \rightarrow & \quad f
\end{align*}
\]
Combining the NFAs of a Set of Regular Expressions

\[\begin{align*}
\text{a} & \quad \{ \text{action}_1 \} \\
\text{abb} & \quad \{ \text{action}_2 \} \\
\text{a}^*\text{b}^+ & \quad \{ \text{action}_3 \}
\end{align*} \]
Simulating the Combined NFA

Example 1

Must find the *longest match*:
Continue until no further moves are possible
When last state is accepting: execute action
Simulating the Combined NFA

Example 2

When two or more accepting states are reached, the first action given in the Lex specification is executed.
Deterministic Finite Automata

• A *deterministic finite automaton* is a special case of an NFA
 – No state has an \(\varepsilon \)-transition
 – For each state \(s \) and input symbol \(a \) there is at most one edge labeled \(a \) leaving \(s \)

• Each entry in the transition table is a single state
 – At most one path exists to accept a string
 – Simulation algorithm is simple
Example DFA

A DFA that accepts \((a | b)^*abb\)
Conversion of an NFA into a DFA

• The *subset construction algorithm* converts an NFA into a DFA using:

\[
\varepsilon\text{-closure}(s) = \{s\} \cup \{t \mid s \xrightarrow{\varepsilon} \ldots \xrightarrow{\varepsilon} t\}
\]

\[
\varepsilon\text{-closure}(T) = \bigcup_{s \in T} \varepsilon\text{-closure}(s)
\]

\[
\text{move}(T,a) = \{t \mid s \xrightarrow{a} t \text{ and } s \in T\}
\]

• The algorithm produces:

Dstates is the set of states of the new DFA consisting of sets of states of the NFA

Dtran is the transition table of the new DFA
\textit{\varepsilon}\text{-}closure\ and\ move\ Examples

\begin{align*}
\varepsilon\text{-}closure\{\{0\}\} &= \{0,1,3,7\} \\
move(\{0,1,3,7\},a) &= \{2,4,7\} \\
\varepsilon\text{-}closure\{\{2,4,7\}\} &= \{2,4,7\} \\
move(\{2,4,7\},a) &= \{7\} \\
\varepsilon\text{-}closure\{\{7\}\} &= \{7\} \\
move(\{7\},b) &= \{8\} \\
\varepsilon\text{-}closure\{\{8\}\} &= \{8\} \\
move(\{8\},a) &= \emptyset
\end{align*}

Also used to simulate NFAs (!)
Simulating an NFA using \(\varepsilon \)-closure and move

\[
S := \varepsilon\text{-closure}({s_0})
\]
\[
S_{\text{prev}} := \emptyset
\]
\[
a := \text{nextchar}()
\]

\textbf{while} \(S \neq \emptyset \) \textbf{do}
\[
S_{\text{prev}} := S
\]
\[
S := \varepsilon\text{-closure}(\text{move}(S,a))
\]
\[
a := \text{nextchar}()
\]
\textbf{end do}

\textbf{if} \(S_{\text{prev}} \cap F \neq \emptyset \) \textbf{then}
\[
\text{execute action in } S_{\text{prev}}
\]
\[
\text{return “yes”}
\]
\textbf{else}
\[
\text{return “no”}
\]
The Subset Construction Algorithm

Initially, \(\varepsilon\text{-}closure(s_0) \) is the only state in \(Dstates \) and it is unmarked

while there is an unmarked state \(T \) in \(Dstates \) do

mark \(T \)

for each input symbol \(a \in \Sigma \) do

\(U := \varepsilon\text{-}closure(move(T,a)) \)

if \(U \) is not in \(Dstates \) then

add \(U \) as an unmarked state to \(Dstates \)

end if

\(Dtran[T,a] := U \)

end do

end do
Subset Construction Example 1

Dstates
A = \{0,1,2,4,7\}
B = \{1,2,3,4,6,7,8\}
C = \{1,2,4,5,6,7\}
D = \{1,2,4,5,6,7,9\}
E = \{1,2,4,5,6,7,10\}
Subset Construction Example 2

\[D\text{states} \]
\[A = \{0,1,3,7\} \]
\[B = \{2,4,7\} \]
\[C = \{8\} \]
\[D = \{7\} \]
\[E = \{5,8\} \]
\[F = \{6,8\} \]
Minimizing the Number of States of a DFA
From Regular Expression to DFA Directly

- The “important states” of an NFA are those without an ε-transition, that is if \(\text{move}(\{s\},a) \neq \emptyset \) for some \(a \) then \(s \) is an important state
- The subset construction algorithm uses only the important states when it determines \(\varepsilon\text{-closure}(\text{move}(T,a)) \)
From Regular Expression to DFA Directly (Algorithm)

- Augment the regular expression r with a special end symbol $#$ to make accepting states important: the new expression is $r#$
- Construct a syntax tree for $r#$
- Traverse the tree to construct functions `nullable`, `firstpos`, `lastpos`, and `followpos`
From Regular Expression to DFA Directly: Syntax Tree of \((a|b)^*abb#\)
nullable(n): the subtree at node n generates languages including the empty string

firstpos(n): set of positions that can match the first symbol of a string generated by the subtree at node n

lastpos(n): the set of positions that can match the last symbol of a string generated be the subtree at node n

followpos(i): the set of positions that can follow position i in the tree
From Regular Expression to DFA Directly: Annotating the Tree

<table>
<thead>
<tr>
<th>Node n</th>
<th>$\text{nullable}(n)$</th>
<th>$\text{firstpos}(n)$</th>
<th>$\text{lastpos}(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf ϵ</td>
<td>true</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>Leaf i</td>
<td>false</td>
<td>${i}$</td>
<td>${i}$</td>
</tr>
<tr>
<td>$</td>
<td>$ \backslash c_1 c_2</td>
<td>$\text{nullable}(c_1)$ or $\text{nullable}(c_2)$</td>
<td>$\text{firstpos}(c_1) \cup \text{firstpos}(c_2)$</td>
</tr>
<tr>
<td>\cdot \backslash c_1 c_2</td>
<td>$\text{nullable}(c_1)$ and $\text{nullable}(c_2)$</td>
<td>$\text{if } \text{nullable}(c_1) \text{ then } \text{firstpos}(c_1) \cup \text{firstpos}(c_2) \text{ else } \text{firstpos}(c_1)$</td>
<td>$\text{if } \text{nullable}(c_2) \text{ then } \text{lastpos}(c_1) \cup \text{lastpos}(c_2) \text{ else } \text{lastpos}(c_2)$</td>
</tr>
<tr>
<td>$*$</td>
<td>true</td>
<td>$\text{firstpos}(c_1)$</td>
<td>$\text{lastpos}(c_1)$</td>
</tr>
</tbody>
</table>
From Regular Expression to DFA Directly: Syntax Tree of \((a|b)^*abb#\)
From Regular Expression to DFA
Directly: \textit{followpos}

\begin{verbatim}
for each node \(n \) in the tree do
 if \(n \) is a cat-node with left child \(c_1 \) and right child \(c_2 \) then
 for each \(i \) in \textit{lastpos}(\(c_1 \)) do
 \textit{followpos}(i) := \textit{followpos}(i) \cup \textit{firstpos}(c_2)
 end do
 end if
else if \(n \) is a star-node
 for each \(i \) in \textit{lastpos}(\(n \)) do
 \textit{followpos}(i) := \textit{followpos}(i) \cup \textit{firstpos}(n)
 end do
end if
end do
\end{verbatim}
From Regular Expression to DFA Directly: Algorithm

\[s_0 := \text{firstpos}(\text{root}) \] where root is the root of the syntax tree

\[Dstates := \{s_0\} \] and is unmarked

\textbf{while} there is an unmarked state \(T \) in \(Dstates \) \textbf{do}

\hspace{1em} mark \(T \)

\hspace{1em} \textbf{for} each input symbol \(a \in \Sigma \) \textbf{do}

\hspace{2em} let \(U \) be the set of positions that are in \(\text{followpos}(p) \) for some position \(p \) in \(T \), such that the symbol at position \(p \) is \(a \)

\hspace{2em} \textbf{if} \(U \) is not empty and not in \(Dstates \) \textbf{then}

\hspace{3em} add \(U \) as an unmarked state to \(Dstates \)

\hspace{2em} \textbf{end if}

\hspace{2em} \(Dtran[T,a] := U \)

\hspace{1em} \textbf{end do}

\hspace{1em} \textbf{end do}
From Regular Expression to DFA Directly: Example

<table>
<thead>
<tr>
<th>Node</th>
<th>followpos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1, 2, 3}</td>
</tr>
<tr>
<td>2</td>
<td>{1, 2, 3}</td>
</tr>
<tr>
<td>3</td>
<td>{4}</td>
</tr>
<tr>
<td>4</td>
<td>{5}</td>
</tr>
<tr>
<td>5</td>
<td>{6}</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
</tr>
</tbody>
</table>
Time-Space Tradeoffs

<table>
<thead>
<tr>
<th>Automaton</th>
<th>Space (worst case)</th>
<th>Time (worst case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFA</td>
<td>$O(</td>
<td>r</td>
</tr>
<tr>
<td>DFA</td>
<td>$O(2^{</td>
<td>r</td>
</tr>
</tbody>
</table>