
COP5621 Exam 4 - Spring 2005

Name: (Please print)

Put the answers on these sheets. Use additional sheets when necessary. Show how you derived
your answer when applicable (this is required for full credit and helpful for partial credit). You can
collect 100 points in total for this exam. A bonus question for an additional 15 points is included.
If the total number of points for this exam exceed 100, the excess points are carried over to the next
exams.

1. Match the terms below with the given sentences so as to best complete each sentence. Use
no term more than once. Some terms will go unused. (10 points)

(1) static link (7) stack pointer
(2) access link (8) control link
(3) state (9) environment
(4) local (10) global
(5) live (11) dead
(6) code motion (12) reduction in strength

(a) A transformation on a program is called if it can be performed by looking only at
the statements in a basic block rather than an entire region of code.

(b) An implementation of lexical scope for nested procedures is obtained by adding a pointer
called to each activation record.

(c) In liveness analysis, a variable is said to be if it has no next use.

(d) The loop optimization called moves loop-invariant statements to the loop header.

(e) In programming language semantics, the term refers to a function that maps a name
to a storage location (i.e. to an `-value) and the term refers to a function that maps
a storage location to the value held (i.e. to an r-value).

2. Name three peephole optimizations. (10 points)

1

3. Describe a typical calling sequence to invoke a function. (10 points)

4. Apply register allocation and assignment using graph coloring to the following CFG:

 a := read()
 b := read()
 if a>0 goto L1

L1: b := 1

 a := 1
 goto L2

L2: c := a * b
 c := c + b

To determine a coloring, show the live ranges of the variables a, b, and c in the CFG, assuming
that the variables are dead at the exit from the CFG Then draw the register-interference graph
(conflict graph) for the variables and determine the minimum number of colors necessary to
color the graph. (15 points)

2

5. Consider the following CFG:

1

2

3 4

65

(a) Draw the dominator tree of the CFG. (10 points)

(b) Identify the natural loops. (5 points)

(c) Is the CFG reducible? Explain why or why not. (5 points)

3

6. (a) Organize the following fragment of three-address code into basic blocks and construct
the CFG. (10 points)

L0: i := 0

L1: i := i+1

if i>m goto L2

n := n<<1

if n<k goto L1

L2: k := k-1

if k<=0 goto L3

goto L0

L3: goto L4

L4: halt

(b) Apply branch chaining optimization followed by dead-code elimination. After these
optimizations, draw the modified CFG with its three-address code. (10 points)

4

7. Consider the following program:

program P(input, output)

var n : integer;

procedure Q(k : integer)

procedure S(i : integer)

begin

... (* body of S *)

end;

begin

S(k)

end

procedure R(j : integer);

var m : integer

begin

Q(n + m)

end;

begin

R(n)

end

(a) Program P calls R, R in turn calls Q, and Q in turn calls S. Draw the resulting stack
layout with activation records. Show the arguments and local variables in each record
and draw the access links. (10 points)

(b) Which variables are visible (in scope) in the body of S and how many access links must
be traversed to reach the nonlocal data? (5 points)

Var visible (Y/N) #links
i
j
k
n
m

5

8. (Bonus question).

(a) Give the data-flow equations for reaching definitions as described in the book and il-
lustrated in class for the four example programming constructs (assignment, statement
composition, if-then-else, and do-while). (8 points)

(b) Consider the following program:

d1 : i := 0;

do

d2 : i := i + 1;

d3 : n := n << 1

while i<m and n<k;

if n<k then

d4 : i := i - 1

else

d5 : i := -1

Annotate the syntax tree of the above program with in, gen, kill, and out bit-vectors:

;

in =
gen =
kill =
out =

d3

in =
gen =
kill =
out =

d2

in =
gen =
kill =
out =

do

in =
gen =
kill =
out =

i<m and n<k

if

in =
gen =
kill =
out =

d4

in =
gen =
kill =n<k
out =

d5

in =
gen =
kill =
out =

;

in =
gen =
kill =
out =

d1

in = 00000
gen = 10000
kill = 01011
out =

;

in = 00000
gen =
kill =
out =

Note: compute the gen and kill vectors bottom-up first, i.e. start at the leaves. For
example, gen=01000 and kill=10011 of d2, because d2 kills all other definitions of variable
i (i.e. d1, d4, and d5). Then, go up by applying the equations for reaching definitions.
When the gen and kill sets are determined, compute the in and out vectors in a top-down,
left-to-right traversal. (in is inherited, while out is synthesized.) (7 points)

6

