
COP5621 Compiler Construction Exam 3 - Spring 2007
Name: (Please print)
Put the answers on these sheets. Use additional sheets when necessary. You can collect 100 points
in total for this exam.

1. What is the name of the evaluation method where the evaluation order of semantic rules
is determined by a topological sort of the dependence graph obtained from the parse tree?
(mark one) (4 points)

(a) Rule-based method

(b) Oblivious method

(c) Parse-tree method

(d) Sorting method

2. Which attributes of S in the following grammar are synthesized or inherited? (mark one) (4 points)

S1 → a S2 S1.x := S2.x; S2.y := S1.y + ’a’
S1 → b S2 S1.x := S2.x; S2.y := S1.y + ’b’
S → ε S.x := S.y

(a) x of S and y of S are synthesized

(b) x of S is synthesized and y of S is inherited

(c) x of S is inherited and y of S is synthesized

(d) x of S and y of S are inherited

3. What is the difference between name equivalence and structural equivalence of types? (8 points)

1



4. Consider the following C type declaration of a binary tree node:

struct IntBinTree
{ int val;
struct IntBinTree *left;
struct IntBinTree *right;

} tree;

Draw the cyclic type graph for tree (as would be constructed by a compiler). (8 points)

5. Consider the following post system rules (8 points):
ρ(v) = τ

ρ ` v : τ

ρ ` e1 : bool ρ ` e2 : bool

ρ ` e1 and e2 : bool

ρ ` e1 : bool ρ ` e2 : bool

ρ ` e1 or e2 : bool

Given ρ = {〈a, bool〉, 〈b, bool〉, 〈c, bool〉}, complete the proof of ρ ` a orb and c : bool

ρ ` a : bool ρ ` bandc : bool

ρ ` a orb and c : bool

2



6. Consider the following syntax-directed translation scheme to collect variable names in a list:

L1 → L2 , id { L1.list := merge(L2.list, mklist(id.name)) }
L → id { L.list := mklist(id.name) }

(a) Apply left recursion elimination to produce a transformed translation scheme. (10 points)

(b) Draw the annotated parse tree for the input f, s, u using the modified translation
scheme. (8 points)

3



7. Given the following incomplete syntax-directed translation scheme

S → repeat M S until C ; { ??? }
S → id := E ; { emit(id.place ‘:=’ E.place) }
E → E1 + E2 { E.place := newtemp(); emit(E.place ‘:=’ E1.place ‘+’ E2.place) }
E → id { E.place := id.place }
E → num { E.place := newtemp(); emit(E.place ‘:=’ num) }
C → id rel id { C.truelist := makelist(nextquad()); emit(if id1.place rel id2.place goto );

C.falselist := makelist(nextquad()); emit(goto ) }
M → ε {M .q = nextquad() }

(a) Give the actions marked “???” to complete the repeat-until loop translation using back-
patch operations. (10 points)

(b) Given input repeat k:=k+1; until k>j; show the resulting output, assuming that rel is
a relational operator such as ‘>’ and id.place is the name of the identifier. (10 points).

4



8. Describe the use of symbol tables in the code generation process. That is, describe how sym-
bol tables are used to determine scope of variables and how this affects the code that performs
the run-time access to load/store values in subroutine frames or in static data space. (10 points)

5



9. What is the difference between the triples and indirect triples intermediate code representa-
tion? Give an example to compare the two representations and state the advantage(s) of one
over the other, if any. (10 points)

6



10. Complete the following Yacc specification that constructs ASTs for arithmetic expressions
denoted by E (using pre-defined ASTnode *mknode(int op, ASTnode *left,
ASTnode *right) and ASTnode *mkleaf(Symbol *sym) functions). (10 points)

%{
typedef struct ASTnode
{ int op; /* node op */

Symbol *entry; /* leaf */
struct ASTnode *left, *right;

} ASTnode;
%}

%union
{ ASTnode *ast;

Symbol *sym;
}

%token <sym> ID
%type <ast> E
%left ’+’
%left ’*’

%%

E : E ’+’ E

| E ’*’ E

| ID

;

7


