COP5621 Exam 2 - Spring 2005

Name:	(Please print)					
Put the answers on these your answer when applica collect 100 points in total If the total number of point exams.	ble (this	s is required for exam. A bonus	full cred s questic	l it and helpful for on for an addition	partial credit). You can al 15 points is included	
1. Match the terms be no term more than o		_		-	lete each sentence. Use	
	(1)	context-free	(7)	leftmost		
	(2)	terminal	(8)	$\operatorname{rightmost}$		
	(3)	LL(1)	(9)	LR(1)		
	(4)	SLR	(10)	LALR(1)		
	(5)	lexeme	(11)	string		
	(6)	nonterminal	(12)	context-sensitive		
(a) In a deriv	ation, t	he rightmost no	ontermin	nal in a sentential	form is replaced in each	
(b) Recursive-desce	ent pars	ing can be used	for	grammars (list	all that apply).	
(c) A shift-reduce of	conflict	may arise in con	structin	g a parsing t	able (list all that apply)	
(d) In a context-free	e gram	mar, each produ	action h	as a single o	n the left-hand side.	
(e) The yield of a j						
2. Name the four error	recover	ry strategies. (10) points)			

3. Show that the following grammar is ambiguous by constructing two distinct leftmost derivations for the string **abab**. Also show the two distinct parse trees. (15 points)

$$S \rightarrow \mathbf{a} S \mathbf{b} S \mid \mathbf{b} S \mathbf{a} S \mid \varepsilon$$

4. Consider the following grammar:

$$\begin{array}{cccc} start & \rightarrow & label \ stmt \\ label & \rightarrow & \mathbf{num} \\ & \mid & \varepsilon \\ stmt & \rightarrow & \mathbf{id} := expr \\ & \mid & \mathbf{goto} \ \mathbf{num} \\ expr & \rightarrow & \mathbf{id} \\ & \mid & \mathbf{num} \end{array}$$

For each production $A \to \alpha$, determine FIRST(α) and FOLLOW(A). (15 points)

5. Disprove that the following grammar is LL(1). (15 points).

$$\begin{array}{ccc} S & \rightarrow & A \ \mathbf{a} \\ A & \rightarrow & \mathbf{b} \mid B \ \mathbf{b} \ \mathbf{c} \\ B & \rightarrow & \mathbf{c} \mid \varepsilon \end{array}$$

6. Eliminate left recursion from the following grammar. Use the algorithm described in the book and illustrated in class. (15 points)

$$\begin{array}{ccc} A & \rightarrow & B \ A \mid \mathbf{a} \\ B & \rightarrow & A \ B \mid \mathbf{b} \end{array}$$

7. Given below is the collection of LR(0) items for the grammar

1.
$$L \rightarrow L \parallel L$$

2. $L \rightarrow L \&\& L$
3. $L \rightarrow ! L$
4. $L \rightarrow b$

Construct an SLR parsing table. There are shift-reduce conflicts. You must resolve the shift-reduce conflicts by choosing either a shift or reduce depending on the following assumptions:

- The operators ||, &&,! are listed in increasing order of precedence,
- The operators || and && are left associative, i.e. b&&b&&b = (b&&b)&&b.

Indicate your choice for each conflict by circling the shift or reduce. (20 points)

```
L' \rightarrow L
I_0:
                                            goto(L)=I_1
         L \rightarrow L \parallel L
                                            goto(L)=I_1
         L \rightarrow L \&\& L
                                            goto(L)=I_1
         L \rightarrow \cdot ! L
                                            goto(!)=I_2
         L \rightarrow \mathbf{b}
                                            goto(b)=I_3
        L' \rightarrow L \cdot
I_1:
         L \rightarrow L \cdot || L
                                            goto(||)=I_{\lambda}
         L \rightarrow L \cdot \&\& L
                                            goto(\&\&)=I_5
        L \rightarrow ! \cdot L
I_2:
                                            goto(L)=I_6
         L \rightarrow L \parallel L
                                            goto(L)=I_6
         L \rightarrow L \&\& L
                                            goto(L)=I_6
         L \rightarrow \cdot ! L
                                            goto(!)=I_2
         L \rightarrow
                  · b
                                            goto(b)=I_3
        L \rightarrow
I_3:
                  b·
I_4:
         L \rightarrow L \parallel \cdot L
                                            goto(L)=I_{7}
        L \rightarrow L \parallel L
                                            goto(L)=I_{\gamma}
         L \rightarrow L \&\& L
                                            goto(L)=I_{\gamma}
         L \rightarrow \cdot ! L
                                            goto(!)=I_2
         L \rightarrow \cdot b
                                            goto(b)=I_3
         L \rightarrow L \&\& \cdot L
I_5:
                                            goto(L)=I_8
         L \rightarrow L \parallel L
                                            goto(L)=I_8
         L \rightarrow L \&\& L
                                            goto(L)=I_8
         L \rightarrow \cdot ! L
                                            goto(!)=I_2
         L \rightarrow
                  ·b
                                            goto(b)=I_3
I_6:
         L \rightarrow !L \cdot
         L \rightarrow L \cdot || L
                                            goto(||)=I_4
         L \rightarrow L \cdot \&\& L
                                            goto(\&\&)=I_5
I_{\gamma}:
        L \rightarrow L \parallel L \cdot
         L \rightarrow L \cdot || L
                                            goto(||)=I_{\Delta}
         L \rightarrow L \cdot \&\& L
                                            goto(\&\&)=I_5
        L \rightarrow L \&\& L \cdot
I_8:
         L \rightarrow L \cdot || L
                                            goto(||)=I_{\mathcal{A}}
         L \rightarrow L \cdot \&\& L
                                            goto(\&\&)=I_5
```

8. (bonus question). Given the following grammar, construct the LR(1) collection of sets of items with goto transitions. (15 points)

$$\begin{array}{cccc} S & \rightarrow & X \ Y \\ X & \rightarrow & Y \ \mathbf{b} \\ X & \rightarrow & \mathbf{b} \\ Y & \rightarrow & \mathbf{c} \\ Y & \rightarrow & \epsilon \end{array}$$

To get started, the first set of items \mathcal{I}_0 is

$$I_0: S' \rightarrow \cdot S , \$ \qquad goto(S)=I_1$$

$$S \rightarrow \cdot X Y , \$ \qquad goto(X)=I_2$$

$$X \rightarrow \cdot Y \mathbf{b} , \$/\mathbf{c} \qquad goto(Y)=I_3$$

$$X \rightarrow \cdot \mathbf{b} , \$/\mathbf{c} \qquad goto(\mathbf{b})=I_4$$

$$Y \rightarrow \cdot \mathbf{c} , \mathbf{b} \qquad goto(\mathbf{c})=I_5$$

$$Y \rightarrow \cdot , \mathbf{b}$$