COP5621 Compiler Construction Exam 1 - Spring 2007

Name:	(Please print)	
Put the answers on these sheets.	<i>Use additional sheets when necessary.</i>	You can collect 100 points
in total for this exam.		

- 1. Why are "forward declarations" needed in Pascal programs (or similarly, when do we require function prototypes in C)? (mark one) (4 points)
 - (a) Programmers often make mistakes, so redundant declarations are useful to detect typing errors early.
 - (b) Pascal and C are designed for single-pass compilers.
 - (c) The compiler makes multiple passes over the input to check all declarations, including forward declarations.
 - (d) To make the programming language strongly typed.
- 2. Which one of the following identities on REs is *correct*? (mark one) (4 points)
 - (a) $a(a|b|\epsilon) = (aa|ab)$
 - (b) $((a | \epsilon) b)^* = (a | b)^*$
 - (c) (a*b*)* = (a|b)*
 - (d) $ab^* = abb^*$
- 3. Convert the following *infix* expression to *postfix*. You may assume the standard precedence and associativity of the operators is used. (4 points)

$$(a+b)*c-d/e$$

4. There is a serious problem with the following Lex specification:

```
digit [0-9]
integer {digit}{integer}|{digit}
%%
{integer} { /* do something ... */ }
%%
```

Rewrite the specification to fix this problem. (8 points)

5. Draw and label the runtime data areas of the JVM. (10 points)

6. Consider the following grammar $G=(\{\mathbf{a},\mathbf{b},\mathbf{c},\mathbf{d}\},\{S,X\},P,S),$ with P:

$$S \rightarrow X \mathbf{a}$$

$$\mid X \mathbf{b}$$

$$X \rightarrow X \mathbf{c}$$

$$\mid \mathbf{d}$$

Apply left factoring of the productions for S followed by left-recursion elimination of the productions for X. (10 points)

7. Given the NFA with $Q=\{1,2,3,4\}, \Sigma=\{\mathbf{a},\mathbf{b}\}, q_0=1, F=\{4\}$ and transition graph

- (a) Convert the NFA to a DFA using the algorithm in the book and illustrated in class. Express your answer as a DFA transition graph. Identify the start and final states of the DFA. (10 points)
- (b) Prove that the DFA that you obtained is minimal. (5 points)

- 8. Consider the RE a(a|b)*b.
 - (a) Use Thompson's algorithm to construct an NFA for this RE. (10 points)
 - (b) Convert the NFA to a DFA. (10 points)
 - (c) Minimize the DFA. (10 points)

- 9. Consider the RE a^* (a | b) b^* # augmented with an endmarker #.
 - (a) Create the syntax tree of the RE and annotate the tree with *nullable*, *firstpos*, and *lastpos* as defined in the book and illustrated in class. (5 points)
 - (b) From the annotated syntax tree, create a table of *followpos*. (5 points)
 - (c) Construct the DFA for the regular expression. Identify the start and final states of the DFA. (5 points)