

Description: A bash script that produces directions from point A to point B using the Google Maps Directions API.

Assignment: In this programming assignment you will implement a script csdirections.sh that takes an origin
address, a destination address and the mode of transportation to produce an optimal route from the origin to the
destination. See an example in the figure below:

Command line options: csdirections.sh script takes four command-line arguments, no options. The first argument
is the Google Maps Directions API key (which is private, hence redacted in the figure above), the second argument
is the origin address, the third argument is the destination address, and the fourth optional argument is the mode
of transportation, which is one of “driving”, “walking”, “cycling” or “transit” (for public transit), when omitted the
transportation mode defaults to “driving”.

Command output: the csdirections.sh script should display on stdout the route from the origin to the destination
for each leg of the route starting with the output “Leg <num>: start at <start_address>” followed by the step-by-
step instructions with distance and duration of the form “<instruction>, continue <travel_mode> for <distance>
(<duration>)” and at the end of the leg should show the output “Leg <num>: arriving at <end_address>”. The
<start_address>, <end_address>, <instruction>, <travel_mode>, <distance> and <duration> are all extracted from
the XML response returned by the Google Maps Directions API. More details will follow below.

Exit code: csdirections.sh should always exit with zero, even when no route could be found.

 Total	Points:	100	

 COP4342	–	UNIX	Tools 	

 Makeup	Assignment:	Google	Maps	Directions	API	

	

Instructor:	Dr.	Robert	Van	Engelen																																																																																															Spring	2018

Google Maps Directions API key: visit https://developers.google.com/maps/documentation/directions/get-api-key
to obtain a key. You can use this key to query the Google Maps Directions API with your script by executing an HTTP
GET on https://maps.googleapis.com/maps/api/directions/xml to obtain XML responses with upt-to-date and live
directions. We will use the REST API XML responses instead of JSON because XML is much easier to parse in bash
scripts by matching XML begin/end tags as strings with case pattern or if [[]]; then patterns in your script. We will
also use the xmllint utility to reformat XML to remove indentation and to ensure that XML is always in the same
line-by-line format before we “parse” it. The REST API expects an HTTP GET with an URL of the form:

<URL>?units=imperial&key=<your-API-key>&origin=<origin>&destination=<destination>&mode=<mode>

where <URL> is the address shown above, <your-API-key> is the value of the key you received when registering
with the Google Maps Directions API, <origin> is a URL-encoded origin address, <destination> is a URL-encoded
destination address, and <mode> is the transport mode. A URL-encoded string uses “percent encoding” of reserved
characters, see https://en.wikipedia.org/wiki/Percent-encoding. If you cannot obtain a key for some reason, you
can still complete this assignment by implementing the script to read the XML directions from stdin. However,
getting a key is recommended and a lot more fun to use to get real-time directions!

Using wget: Use wget to invoke the Google Maps Directions API as follows:

wget -q -O - “$URL?units=imperial&key=$KEY&origin=$FROM&destination=$TO&mode=$MODE”

where URL=https://maps.googleapis.com/maps/api/directions/xml and $KEY, $FROM, $TO, $MODE are provided
as command-line arguments, with $MODE defaulting to “driving” when not provided. Note that option -O - (dash
after -O) sends the response to stdout.

Example XML responses: Two example XML direction responses from the Google Maps Directions API can be
downloaded from http://www.cs.fsu.edu/~engelen/courses/COP4342/csdirections.xml (for the example shown in
the figure) and from http://www.cs.fsu.edu/~engelen/courses/COP4342/csdirections2.xml to test your script.

Testing your script: To test your script you may not want to send a lot of API requests to Google for each time you
run your script to just test your parsing and output. There is a limit on how often you can query the API. Instead,
you can save one or two XML responses to files and let your script read from the file e.g. using cat instead of using
wget. Then use wget as shown above when you are done testing and ready to submit the assignment.

Script submission: If for some reason you cannot get a Google Maps Directions API key then your script should read
XML from stdin so we can test it without deducting points. You should however still process the command-line
arguments to produce a valid URL even when you do not use wget. On the other hand, if you create a more realistic
script using wget then simply submit your script as is. To get the response from the Google Maps Directions API.
We have our own API key to test your submission. NEVER include your key in your submission, your key is for
PRIVATE use only! The Google Maps APIs are subject to policies and quotas so you should not share your key with
the script for this assignment, see https://developers.google.com/maps/documentation/directions/policies for
details.

Helpful hints: to implement csdirections.sh you will likely need the following:

• wget -q -O - <URL> to invoke the REST API with HTTP GET URL formatted as shown earlier, sending the
XML response to stdout where you will have to pipe it to xmllint

• xmllint --format to reformat the XML by removing all indentation, which requires the environment
variable XMLLINT_INDENT to be set to the empty string before invoking xmllint. While the Google Maps
Directions API XML response is nicely formatted, it is a good idea to reformat XML to a predictable
structure to parse it by matching it line-by-line looking for XML opening and closing tags.

• The result of xmllint should be piped to a script function that you need to write, which reads the input line-
by-line until EOF.

• while read line; do … done to repeatedly read a line from stdin until EOF into the variable line.
• case or if-then to match XML tags stored in variable line, so you can look for XML opening tags and closing

tags that contain the information you are looking for.
• An array to collect steps of each leg, where each step added to the array is formatted as “<instruction>,

continue <travel_mode> for <distance> (<duration>)” and eventually the array is displayed for the entire
leg with for step in “${array[@]}”; do as discussed in the lecture notes and in class. You will need other
variables to collect the XML information within <step>…</step> tags and then assign it to an array entry.

• tr to convert characters.
• sed -e ‘s/<[^>]*>//g’ to remove XML tags and -e ‘s/&/\&/g’ to replace XML & entity by a &. You

may want to translate the entities ' " as well. You will need several substitutions, so we use
option -e.

• var=$(command) to get the results of a command assigned to var. For example, the following converts
<tag>HELLO</tag> to hello: var=$(echo “<tag>HELLO</tag>” | tr A-Z a-z | sed -e ‘s/<[^>]*>//g’)

• ANSI color codes are enabled in textual output as CTRL-ESC [two-byte sequence, followed by a code and
the character m. Remember how to enter CTRL-ESC with CTRL-V CTRL-ESC in vi into a string, or you could
use \x1b (hex) or \033 (octal) with echo or printf. Here is a list of some of the ANSI color codes:
1 bold
7 invert video
27 cancel invert video
42 green background
0 normal: reset all colors
it is fine if you want to use other colors, as long as the colors are visible on a black terminal background
and the text output is formatted as shown in the example. For more details on ANSI codes, see
https://en.wikipedia.org/wiki/ANSI_escape_code#SGR_(Select_Graphic_Rendition)_parameters. Again,
these ANSI color codes are enabled with CTRL-ESC [(the two-byte CSI sequence) and ending with m. You
can use sed to substitute text between … with CTRL-ESC [1m … CTRL-ESC [0m to show text in
bold, e.g. using a group capture and a backreference in s/regex/text/g.

• Some code to encode origin and destination values as per https://en.wikipedia.org/wiki/Percent-encoding
as is required to produce a valid REST API HTTP GET request URL with wget. Even if your code does not use
wget because you have no key to test your script with, you should create this URL to show it is possible to
use wget.

Submission	Requirements:	A	tar	file	named	‘yourCSusername_makeup.tar’	containing	the	following	files:-	

[1].	The	./csdirections.sh	script	source	code.	
	
Grading	Policy:	Points	distribution:-	

	
					[1].	Code	Readability									 (20	points)	
					[2].	Test	Cases																				 (80	points)	

	
Individual	parts	of	the	implementation	will	not	be	graded	separately	for	correctness.	There	will	be	several	
cases	to	test	the	implementation	logic	as	a	whole.	Also,	keep	in	mind	that	your	code	will	be	tested	on	linprog.	
Students	should	test	their	code	thoroughly	on	the	linprog	server	before	submission	

Miscellaneous:

Honor code policy will be strictly enforced. Write the code by yourself and protect your submission.

Key	Concepts:		bash	programming,	Web	services	REST	API,	XML,	sed	scripting	
	
Shell	commands:	case,	if,	for,	while,	echo,	printf,	exit,	function,	read,	wget,	xmllint,	tr,	sed,	variables	and	arrays.	

