COP4342 - UNIX Tools

TR
m‘m

Assignment #4: A “shell commander”

Instructor: Dr. Robert Van Engelen Teaching Assistant: Joydeep Das

Total Points: 100

Spring 2018

Description: A “shell commander” script to navigate directories and open files via a simple user interface (Ul).

Assignment: In this programming assignment, you will implement a script cscomdr.sh that presents a simple Ul to

select directories to navigate to, files to open for reading and executables to execute. The Ul presents a menu
showing the directories, regular files and executables to select. See the example in the figure below:

[bash-3.2% ./cscomdr.sh

-— cscomdr —
/Users/engelen/Courses/COP4342/prog4d
2 directories, 4 files, 3 executables

1) EXE:a.out 4) DIR:foo 7) EXE:script.sh 10) DIR:..

2) DIR:bar 5) journal.txt 8) secret

3) EXE:cscomdr.sh 6) program.c 9) secret.key
Choose an entry from the list: 6

Paging program.c

#include <stdio.h>

int main()
printf("hello world\n");
-— cscomdr —

/Users/engelen/Courses/COP4342/prog4d
2 directories, 4 files, 3 executables

1) EXE:a.out 4) DIR:foo EXE:script.sh 10@) DIR:..

2) DIR:bar 5) journal.txt secret

3) EXE:cscomdr.sh 6) program.c secret.key
Choose an entry from the list: 1

Executing a.out

hello world

-— cscomdr —
/Users/engelen/Courses/COP4342/prog4
2 directories, 4 files, 3 executables

1) EXE:a.out 4) DIR:foo EXE:script.sh 10@) DIR:..

2) DIR:bar 5) journal.txt secret

3) EXE:cscomdr.sh 6) program.c secret.key
Choose an entry from the list: 2

Directory bar

-— cscomdr —
/Users/engelen/Courses/COP4342/prog4/bar
@ directories, 1 files, @ executables

1) secret.txt

2) DIR:..

Choose an entry from the list: 2
Directory .

-— cscomdr —
/Users/engelen/Courses/COP4342/prog4
2 directories, 4 files, 3 executables

1) EXE:a.out 4) DIR:foo 7) EXE:script.sh 1@) DIR:..

2) DIR:bar 5) journal.txt 8) secret

3) EXE:cscomdr.sh 6) program.c 9) secret.key
Choose an entry from the list: ~C

Type 'q' as a choice to exit

q

No entry chosen. Bye.

bash-3.2% []

Hunting for secrets: your cscomdr.sh should decrypt files named “secret”. It is assumed that these “secret” files
contain a base64-encoded AES-256-cbc-encrypted message that is decrypted using the key stored in “secret.key”
located in the same directory as a “secret” file:

.

bash-3.2% ./cscomdr.sh

-— cscomdr —
/Users/engelen/Courses/COP4342/prog4
2 directories, 4 files, 3 executables

1) EXE:a.out 4) DIR:foo EXE:script.sh 1@) DIR:..
2) DIR:bar 5) journal.txt secret

3) EXE:cscomdr.sh 6) program.c secret.key

Choose an entry from the list: 8

Pssst... let me tell you a secret:
ET is an alien.

-— cscomdr —
/Users/engelen/Courses/COP4342/prog4
2 directories, 4 files, 3 executables

1) EXE:a.out 4) DIR:foo EXE:script.sh 10) DIR:..
2) DIR:bar 5) journal.txt secret

3) EXE:cscomdr.sh 6) program.c secret.key

Choose an entry from the list: []

to decrypt the message stored in “secret”, you will need to execute the following OpenSSL command
openssl enc -d -a -k Skey -aes-256-cbc -in secret where $Skey is a secret symmetric key to decrypt the
“secret” file contents and display “Pssst... let me tell you a secret:” followed by the decrypted secret. The
OpenSSL command openssl enc with option -d decrypts the file specified by -in secret, using the key
specified by -k Skey, and option -a specifies base64 content.

the symmetric key $Skey to decrypt a “secret” file is stored in a file named “secret.key” located in the same
directory as the file “secret”. Your script should read the key from this file first and store it in the $key
variable before decrypting “secret” with the OpenSSL command

if the “secret.key” file does not exist in the current directory or is not readable, then you must ask the user
to enter the key with “Please enter the key: ”

note that the symmetric key is also used to encrypt plain text files, say “secret.txt”, to produce “secret”
using the following command openssl enc -e -a -k Skey -aes-256-cbc -in secret.txt -out secret where $Skey
is the non-empty key and option -e is used for encryption of the file specified by -in secret.txt. The file
saved is specified by -out secret and is saved with base64 content as specified by option -a. Use this
OpenSSL command to create your “secret” test cases.

Command line options: cscomdr.sh takes no options and no arguments (no need to check these in your script).

Exit code: cscomdr.sh should exit with zero when no entry from the menu was chosen, e.g. typing ‘q’ then ENTER.

Helpful reading: see the textbook “quiz shell script” for inspiration (pages 504-510). Some helpful hints: to
implement cscomdr.sh you will likely need the following:

an array to store the menu items (directory entries, see quiz function choose_subij() for inspiration)
S{#VAR[*]} to get the array size, where VAR is an array

for loop(s) to iterate over the menu items in the array to set/update them

test (or its [...] short form) to check for directory, file, or executable and use this in an if body to add “DIR:”,
“EXE:” to an array entry representing a directory or executable, respectively

o ((expr)) to update numerical variables in expr (see the quiz example for inspiration)

e select to implement your Ul menu to let the user select an entry

e case to execute an action after the user makes a choice (make clever use of the fact that entries begin with
“DIR:” and “EXE:"1)

e slicing S{VAR:NUM]} to get the part of a string in VAR from string position NUM

e cd to change the working directory

e less to page the contents of a file

e eval to execute a program that is given as an expression (with variables)

e trap tointercept ~C (CONTROL-C) and display “Type 'q' as a choice to exit” (see the quiz example)

e note that the last entry in the menu is always “DIR:..” which should be added explicitly to the array before
displaying the menu with select in your script

e you should not display hidden files in the menu (i.e. files starting with a dot), except for “..” that should be
explicitly added by the script code

e use a hashbang to ensure that your script runs with bash only

e you may assume that “secret.key” has only one line with one word constituting the secret key

e your script is not required to handle file and directory names that have spaces (blanks/tabs)

e when afile or directory named NAME is not accessible (cd or less fail) then your script should display
“NAME is locked” without displaying error messages (i.e. use 2> /dev/null), and return to the Ul

Testing with “Easter egg hunt”: on linprog navigate with your script to /home/faculty/engelen/COP4342.
Select the file “easter-egg-hunt.txt” to get started.

Submission Requirements: A tar file named ‘yourCSusername_asg4.tar’ containing the following files:-

[1]. The ./cscomdr.sh script source code.
Grading Policy: Points distribution:-

[1]. Code Readability (20 points)
[2]. Test Cases (80 points)

Individual parts of the implementation will not be graded separately for correctness. There will be several
cases to test the implementation logic as a whole. Also, keep in mind that your code will be tested on linprog.
Students should test their code thoroughly on the linprog server before submission

Miscellaneous:
Honor code policy will be strictly enforced. Write the code by yourself and protect your submission.
Key Concepts: bash programming, file manager

Shell commands: cd, select, case, if, for, while, eval, trap, pwd, echo, exit, function, read, variables and arrays.

