

Description: A “shell commander” script to navigate directories and open files via a simple user interface (UI).

Assignment: In this programming assignment, you will implement a script cscomdr.sh that presents a simple UI to
select directories to navigate to, files to open for reading and executables to execute. The UI presents a menu
showing the directories, regular files and executables to select. See the example in the figure below:

 Total	Points:	100	

 COP4342	–	UNIX	Tools 	

 Assignment	#4:	A	“shell	commander”	

	

Instructor:	Dr.	Robert	Van	Engelen				Teaching	Assistant:	Joydeep	Das																																		Spring	2018

Hunting for secrets: your cscomdr.sh should decrypt files named “secret”. It is assumed that these “secret” files
contain a base64-encoded AES-256-cbc-encrypted message that is decrypted using the key stored in “secret.key”
located in the same directory as a “secret” file:

• to decrypt the message stored in “secret”, you will need to execute the following OpenSSL command
openssl enc -d -a -k $key -aes-256-cbc -in secret where $key is a secret symmetric key to decrypt the
“secret” file contents and display “Pssst… let me tell you a secret:” followed by the decrypted secret. The
OpenSSL command openssl enc with option -d decrypts the file specified by -in secret, using the key
specified by -k $key, and option -a specifies base64 content.

• the symmetric key $key to decrypt a “secret” file is stored in a file named “secret.key” located in the same
directory as the file “secret”. Your script should read the key from this file first and store it in the $key
variable before decrypting “secret” with the OpenSSL command

• if the “secret.key” file does not exist in the current directory or is not readable, then you must ask the user
to enter the key with “Please enter the key: ”

• note that the symmetric key is also used to encrypt plain text files, say “secret.txt”, to produce “secret”
using the following command openssl enc -e -a -k $key -aes-256-cbc -in secret.txt -out secret where $key
is the non-empty key and option -e is used for encryption of the file specified by -in secret.txt. The file
saved is specified by -out secret and is saved with base64 content as specified by option -a. Use this
OpenSSL command to create your “secret” test cases.

Command line options: cscomdr.sh takes no options and no arguments (no need to check these in your script).

Exit code: cscomdr.sh should exit with zero when no entry from the menu was chosen, e.g. typing ‘q’ then ENTER.

Helpful reading: see the textbook “quiz shell script” for inspiration (pages 504-510). Some helpful hints: to
implement cscomdr.sh you will likely need the following:

• an array to store the menu items (directory entries, see quiz function choose_subj() for inspiration)
• ${#VAR[*]} to get the array size, where VAR is an array
• for loop(s) to iterate over the menu items in the array to set/update them
• test (or its […] short form) to check for directory, file, or executable and use this in an if body to add “DIR:”,

“EXE:” to an array entry representing a directory or executable, respectively

• ((expr)) to update numerical variables in expr (see the quiz example for inspiration)
• select to implement your UI menu to let the user select an entry
• case to execute an action after the user makes a choice (make clever use of the fact that entries begin with

“DIR:” and “EXE:”!)
• slicing ${VAR:NUM} to get the part of a string in VAR from string position NUM
• cd to change the working directory
• less to page the contents of a file
• eval to execute a program that is given as an expression (with variables)
• trap to intercept ^C (CONTROL-C) and display “Type 'q' as a choice to exit” (see the quiz example)
• note that the last entry in the menu is always “DIR:..” which should be added explicitly to the array before

displaying the menu with select in your script
• you should not display hidden files in the menu (i.e. files starting with a dot), except for “..” that should be

explicitly added by the script code
• use a hashbang to ensure that your script runs with bash only
• you may assume that “secret.key” has only one line with one word constituting the secret key
• your script is not required to handle file and directory names that have spaces (blanks/tabs)
• when a file or directory named NAME is not accessible (cd or less fail) then your script should display

“NAME is locked” without displaying error messages (i.e. use 2> /dev/null), and return to the UI

Testing	with	“Easter	egg	hunt”:	on	linprog	navigate	with	your	script	to	/home/faculty/engelen/COP4342.	
Select	the	file	“easter-egg-hunt.txt”	to	get	started.	

Submission	Requirements:	A	tar	file	named	‘yourCSusername_asg4.tar’	containing	the	following	files:-	

[1].	The	./cscomdr.sh	script	source	code.	
	
Grading	Policy:	Points	distribution:-	

	
					[1].	Code	Readability									 (20	points)	
					[2].	Test	Cases																				 (80	points)	

	
Individual	parts	of	the	implementation	will	not	be	graded	separately	for	correctness.	There	will	be	several	
cases	to	test	the	implementation	logic	as	a	whole.	Also,	keep	in	mind	that	your	code	will	be	tested	on	linprog.	
Students	should	test	their	code	thoroughly	on	the	linprog	server	before	submission	

Miscellaneous:

Honor code policy will be strictly enforced. Write the code by yourself and protect your submission.

Key	Concepts:		bash	programming,	file	manager	
	
Shell	commands:	cd,	select,	case,	if,	for,	while,	eval,	trap,	pwd,	echo,	exit,	function,	read,	variables	and	arrays.	

