

Description: The bash shell utility on UNIX and UNIX-based platforms is a command-line shell to access the resources
of the operating system via built-in commands, by starting processes to run programs and utilities.

Assignment: In this programming assignment, you will implement a customized simplified version of a Unix Shell
called “cssh”. There are no built-in programming structures or variables in cssh. The cssh shell program should be
able to:

• Execute programs that are in the current directory or on the $PATH environment variable and that are
compiled executables (object files) with permission ‘x’ set, and handle IO redirects for programs.

• Pass arguments that are separated by spaces and string arguments quoted with single ’-quotes, such as
’this is a single argument’, to commands.

• Exit on the ``exit’’ command.
• Change directory with the ``cd’’ command.

Command line options: In your “cssh”, it must support the following forms of basic commands:

Exit code: the “cssh” should exit with EXIT_SUCCESS after the “exit” command (its arguments can be ignored).

Helpful reading: to understand the system calls that you will need to make in the C/C++ code for this assignment,
which are fork(2), wait(2), execlp(3), execvp(3), signal(3), open(2), close(2), dup(2), dup2(2), please read this first:
http://www.cs.fsu.edu/~engelen/courses/COP4342/unix_ch7.pdf

Sample C code: To read shell input from the keyboard, we use readline(3) which is installed on Linux and most Unix
systems. It is not available in Visual studio out-of-the-box, so when developing code in Visual Studio use read(2)
instead. Here is some sample code on how to read input with readline(3) and tokenize the string into string tokens
separated by white space using strtok(3):

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <readline/readline.h>
#include <readline/history.h>

static const char prompt[] = "cssh> ";
static const char sep[] = " \t\n\r"; // word separators

 Total	Points:	100	

 COP4342	–	UNIX	Tools 	

 Assignment	#3:	A	Simple	Unix	Shell		

	

Instructor:	Dr.	Robert	Van	Engelen				Teaching	Assistant:	Imran	Chowdhury																											Spring	2018

./program ARG1 ARG2 … Execute program (with permission ‘x’), arguments are passed to it
ls DIR Execute /bin/ls with DIR argument (ls is on $PATH)
exit Exit from “cssh”

cd DIR Change directory to DIR
 < FILE and > FILE Handle IO redirects with < and/or > (space between < or > and FILE)

int main()
{
 int ac; // arg count
 char *av[10]; // arg array of pointers to values
 while (1)
 {
 char *arg, *line;
 int i;
 // prompt then read line
 line = readline(prompt);
 if (line == NULL)
 break;
 // tokenize the line into av[]
 ac = 0;
 for (arg = strtok(line, sep); arg && ac < 10; arg = strtok(NULL, sep))
 av[ac++] = arg;
 // print the argument array, from argument 0 to ac (max 9)
 for (i = 0; i < ac; ++i)
 printf("arg[%d] = %s\n", i, av[i]);
 // exit?
 if (ac > 0 && strcmp(av[0], "exit") == 0)
 break;
 // line and av[] is no longer used, free the malloc-ed line
 free(line);
 }
 exit(EXIT_SUCCESS);
}

To compile this sample C code, save it to readline_test.c and then: gcc -o readline_test readline_test.c -lreadline

Here is a sample C code with read(2) instead, which is not so nice, because you won’t have a history mechanism:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>

static const char prompt[] = "cssh> ";
static const char sep[] = " \t\n\r"; // word separators

int main()
{
 int ac; // arg count
 char *av[10]; // arg array of pointers to values
 int tty = open("/dev/tty", O_RDWR); // open tty for read/write
 if (tty == -1)
 {
 fprintf(stderr, "can't open /dev/tty\n");
 exit(EXIT_FAILURE);
 }
 while (1)
 {
 char *arg, line[256]; // buffer to hold line of input
 int i;
 // prompt then read line
 write(tty, prompt, sizeof(prompt) - 1);
 i = read(tty, line, sizeof(line));

 if (i <= 0)
 break;
 line[i] = '\0';
 // tokenize the line into av[]
 ac = 0;
 for (arg = strtok(line, sep); arg && ac < 10; arg = strtok(NULL, sep))
 av[ac++] = arg;
 // print the argument array, from argument 0 to ac (max 9)
 for (i = 0; i < ac; ++i)
 printf("arg[%d] = %s\n", i, av[i]);
 // exit?
 if (ac > 0 && strcmp(av[0], "exit") == 0)
 break;
 }
 exit(EXIT_SUCCESS);
}

Sample C code: Use the following example that is based on the helpful reading (see above), to execute a command
with arguments:

#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <signal.h>

int main()
{
 int ac; // arg count
 char *av[10]; // arg array of pointers to values
 int pid; // process id
 int status; // child process exit status
 int w;
 void (*istat)(int), (*qstat)(int);
 int tty = open("/dev/tty", O_RDWR); // open tty for read/write;
 if (tty == -1)
 {
 fprintf(stderr, "can't open /dev/tty\n");
 exit(EXIT_FAILURE);
 }
 // set up a simple example command to execute with arguments
 ac = 3;
 av[0] = "ls";
 av[1] = "-a";
 av[2] = "-l";
 // fork this process, creating a copy of this running program
 if ((pid = fork()) == 0)
 {
 // this is the forked child process that is a copy of the running program
 dup2(tty, 0); // force stdin from tty
 dup2(tty, 1); // force stdout to tty
 dup2(tty, 2); // force stderr to tty
 close(tty);
 // last argument must be NULL for execvp()
 av[ac] = NULL;
 // execute program av[0] with arguments av[0]... replacing this program
 execvp(av[0], av);
 fprintf(stderr, "can't execute %s\n", av[0]);
 exit(EXIT_FAILURE);
 }

 close(tty);
 // disable interrupt (^C and kill -TERM) and kill -QUIT
 istat = signal(SIGINT, SIG_IGN);
 qstat = signal(SIGQUIT, SIG_IGN);
 // wait until forked child process terminated, get its exit status
 while ((w = wait(&status)) != pid && w != -1)
 continue;
 if (w == -1)
 status = -1;
 // restore interrupt and quit signals
 signal(SIGINT, istat);
 signal(SIGQUIT, qstat);
 // done with this example
 exit(EXIT_SUCCESS);
}

Note that at most 8 arguments can be passed to a command (not counting IO redirects), since the av[] value right
after the last av[] argument must be set to NULL for execvp(3) to work, where we allocated 10 array elements
av[0..9], and av[0] is set to the name of the command to execute. See the man page of execvp (man 3
execvp).

Implementing your shell: we suggest the following steps to implement cssh:

• First of all, you are not allowed to use system(3) directly anywhere in your code. If your code contains this
call, you will receive zero points for this assignment.

• Implement cssh using the example code provided herein. The first version of your shell can be directly
based on these examples and should be able to handle command execution. Test your implementation
before implementing the ``cd’’ command and IO redirects.

• To implement ``cd’’, see the man page of chdir(2) for help.
• To implement ``> FILE’’ redirect where there is always spacing between the ``>’’ and FILE, check if the array

av[] has a ``>’’ string and if so open the file specified in av[] using open(2) for writing and use
dup2(fdout, 1) with this open file descriptor fdout (see the man page of dup(2) and dup2(2)). Then
modify the array av[] to remove these two entries from the array, shifting other array elements to ensure
the array is not destroyed. Also reduce ac by 2. Do not forget to close(fdout)) in the forked child and
parent processes, because we dup-ed fdout.

• Likewise, to implement ``< FILE’’ open the file specified for reading with open(2) and use dup2(fdin,
0) with this open file descriptor fdin. Adjust the array after extracting ``<’’ and FILE. Do not forget to
close(fdin) in the forked child and parent processes, because we dup-ed fd.

• You should now be able to handle IO redirects with the proper adjustment to av[] and ac, such as ``sort <
somefile1.txt > somefile2.txt’’ and in fact the IO redirects can be reordered as in a real shell such as ``sort >
somefile2.txt < somefile1.txt’’ and even ``< somefile1.txt > somefile2.txt sort’’.

• Check that your cssh can execute commands such as echo, ls and pwd. Also check that you can execute a
local program with ./program and arguments.

• Remove strtok(3) and replace it with your own tokenizer function that tokenizes arguments that are spaced
apart by space (0x20) and tabs (0x09). A quoted argument with a ’-quote should be stored in av[] as one
entry without the ’-quotes. A simple trick is to change the line string by replacing white space by \0 and by
setting the av[] pointers to the location of each argument in the line string. Now, each array argument is
a \0-terminated string. Do something similar with each ’-quoted argument.

• Test if argument parsing works by checking you can execute echo Hello ’world !!’ Bye! which has a
quoted argument, such that the wide spacing in the argument is preserved when passed to echo.

Submission	Requirements:	A	tar	file	named	‘yourCSusername_asg3.tar’	containing	the	following	files:-	

[1].	The	C	or	C++	 implementation	of	 the	above	described	custom	basic	Unix	Bash	Shell.	Do	not	 include	
object	files	or	binaries.	

	
Grading	Policy:	Submitted	code	must	compile	with	the	‘-Wall	-ansi	-pedantic’	flags	without	any	warning	
messages	to	conform	to	the	ANSI	ISO	standard.	Code	that	does	not	compile	or	generates	errors	(Segmentation	
Fault	etc.)	on	execution	will	receive	zero	grade	points.	Also,	when	using	system(3)	in	your	code	or	calling	a	
shell	such	as	“sh”	will	result	in	zero	grade	points.	Points	distribution:-	

	
					[1].	Code	Readability									 (20	points)	
					[2].	Test	Cases																				 (80	points)	

	
Individual	parts	of	the	implementation	will	not	be	graded	separately	for	correctness.	There	will	be	several	
cases	to	test	the	implementation	logic	as	a	whole.	Also,	keep	in	mind	that	your	code	will	be	tested	on	linprog.	
Students	should	test	their	code	thoroughly	on	the	linprog	server	before	submission	

Bonus to earn 2% Extra Credit for your final grade:

You can earn extra credit to count towards your final grade:
• Implement a pipe ``|’’ between two commands using pipe(2) to create two pipe descriptors, such that the

first is dup-ed as 1 for the first command that is forked+execvp-ed and the second is dup-ed as 0 for the
second command that is forked+execvp-ed. Note that you should execute two fork() and two execvp() and
pass the argument array av[] to both but in a way that ensures that each command receives its portion of
the arguments. IO redirects may not work yet, since your code must now extract two sets of these as well.

• After implementing the pipe(2) call, the dup2(2) calls, and changes to split av[] up to two parts to pass to
the two commands, check that cat somefile1.txt | sort works as expected.

• Change your code to implement IO redirects for both commands. You may assume that the first command
has no ``>’’ redirect and that the second command has no ``<’’ redirect.

• Check that cat < somefile1.txt | sort > somefile2.txt works as expected.
• You can expect spacing to surround ``|’’.

Miscellaneous:

Honor code policy will be strictly enforced. Write the code by yourself and protect your submission.

Key	Concepts:		Processes,	Process	fork	and	wait,	Argument	passing,	Interactive	input,	IO	Redirects,	Pipes,	String	
Operations.	
	
UNIX	API	Calls:	readline(3),	read(2),	write(2),	chdir(),	fork(),	wait(),	waitpid(),	dup(),	dup2(),	open(),	close(),	
popen(),	pclose(),	pipe(),	signal(),	execvp().	

