
Published in the proceedings of the International Symposium on Web Services and Applications (ISWS) 2004.

Constructing Finite State Automata for High-Performance XML Web Services

Robert A. van Engelen∗

Department of Computer Science and School of Computational Science and Information Technology
Florida State University, Tallahassee, FL 32306-4530

engelen@cs.fsu.edu

Abstract

This paper describes a validating XML parsing method
based on deterministic finite state automata (DFA). XML
parsing and validation is performed by a schema-specific
XML parser that encodes the admissible parsing states as a
DFA. This DFA is automatically constructed from the XML
schemas of XML messages using a code generator. A two-
level DFA architecture is used to increase efficiency and to
reduce the generated code size. The lower-level DFA ef-
ficiently parses syntactically well-formed XML messages.
The higher-level DFA validates the messages and produces
application events associated with transitions in the DFA.
Two example case studies are presented and performance
results are given to demonstrate that the approach supports
the implementation of high-performance Web services.

1. Introduction

Several studies on the performance of SOAP [5, 7] re-
ported findings that suggest that SOAP is inefficient for
high-end data transport. However, several recent perfor-
mance studies have shown that the gSOAP toolkit [14] for
C/C++ Web services is efficient [3, 7, 12]. The gSOAP
toolkit project was the first project to design and implement
a compiler-based SOAP/XML engine that adopts an effi-
cient schema-specific XML parsing method [13, 14] that is
compliant with the SOAP 1.1/1.2 specification’s RPC en-
coding and DOC/LIT messaging styles.

In contrast to the recursive descent parsing method [1]
adopted by gSOAP for the parsing and validation of XML
messages, the approach presented in this paper adopts de-
terministic finite state automata (DFA) to effectively re-
duce computational requirements for parsing SOAP/XML
messages. To improve the efficiency and reduce code size,
a two-level DFA architecture for parsing and validation

∗ Supported in part by NSF grants CCR-0105422, CCR-0208892, and
DOE grant DEFG02-02ER25543.

is used. The lower-level DFA efficiently parses syntacti-
cally well-formed XML while the higher-level DFA is used
for validation and event notification. Validation is accom-
plished by encoding the XML parser’s admissible states as a
DFA. This paper describes how the DFAs are automatically
constructed by our code generator, which takes a WSDL
(Web Service Description Language) document or set of
schemas as input and produces the DFA source code to build
a Web services application. This paper also presents a per-
formance study demonstrating that the approach supports
the implementation of high-performance Web services.

Most closely related to the work presented in this pa-
per is the finite-state parsing technique proposed in [2],
which considers merging all aspects of low-level parsing
and validation by constructing a single push-down automa-
ton. However, their approach does not support XML names-
paces, which is an essential requirement for SOAP compli-
ance. Furthermore, it is known that the conversion of the
non-deterministic automaton to a deterministic automaton
with the superset construction algorithm in their approach
may result in exponentially growing space requirements [1],
possibly leading to scalability problems. In contrast, our
two-level DFA approach does not suffer from this problem,
because we do not consider merging all parsing aspects into
a single complicated DFA structure.

Similar to the DFA-based XML parser architecture pre-
sented in this paper, the architecture of our earlier gSOAP
toolkit intentionally separates the low-level XML parsing
from the higher-level deserialization of data structures to
support high-performance and to ensure type safety by con-
straint validation. The gSOAP compiler-generated parser
encodes the restrictions on elements and attributes, such
as matching (qualified) element and attribute names and
enforcing occurrence constraints. Checking of these con-
straints proceeds automatically at runtime. Because valida-
tion is tightly integrated into the generated parser, validation
does not need to be enforced separately, e.g. at the applica-
tion level which incurs additional overhead [11].

More specifically, the construction of a schema-specific
parser with gSOAP is illustrated with an example. Consider
the following schema complexType declaration:

<complexType name="data">
<sequence>

<element name="val" type="xsd:int" minOccurs="0"
maxOccurs="10"/>

<element name="scale" type="xsd:float" minOccurs="0"
maxOccurs="1"/>

</sequence>
<attribute name="name" type="xsd:string" use="required"/>
<attribute name="unit" type="xsd:string" use="optional"/>

</complexType>

This data complexType contains a sequence of up to ten
val elements of type XSD int, an optional elementscale
of type XSD float, a required attributename of type XSD
string, and an optional attributeunit of type XSD string.
The gSOAP toolkit produces an annotated C/C++ header
file for thedata complexType:

class ns1__data
{ public:

std::vector<int> *val 0:10;
float *scale 0:1;

@std::string *name 1;
@std::string *unit 0;

};

The use of an intermediate header file representation of an
XML schema allows familiarization with the mapped data
types and constraints by developers who are not experts in
XML. The annotated header file defines thedata class in
an XML namespace defined by thens1 namespace pre-
fix. The class members include an STL vector ofval el-
ements with 0:10 indicating the min:max occurrence con-
straints, and ascale element. Attribute members are de-
clared with the @ prefix. Thedata class has an attribute
name with minimum occurrence 1, and an attributeunit
with minimum occurrence 0, i.e. the attribute is optional.
The gSOAP compiler takes the header file and produces an
optimized recursive descent parser for the XML represen-
tation of thedata type, where occurrence constraints are
part of the parser’s transitions.

The remainder of this paper is organized as follows.
Section 2 describes the design and implementation of the
schema-specific DFA-based parsing approach. Section 3
presents two examples case studies demonstrating the con-
struction process. Section 4 presents the performance im-
provement by comparing parsing speeds. The paper is sum-
marized in Section 5 with some concluding remarks.

2. A DFA Parser Generator

This section introduces the DFA-based parser generator.
An overview of the system is given and technical details of
the implementation are discussed.

2.1. Overview

Figure 1 depicts the DFA generatorwsdl2DFA devel-
oped for this project. The generator takes a WSDL descrip-
tion (or a set of schemas)service.wsdl and produces

wsdl2DFA

service_flex.l

service_DFA.c

service_DFA.hservice.wsdl

flex tab.yy.c

Figure 1. DFA-Based Parser Generator

service_flex
Scanner

service_DFA
Parser

SOAP/XML
Message

tokens Service
Application

Logic

events

SOAP/XML
Message

Figure 2. High-Performance Web Service

a Flex descriptionservice flex.l for the XML scan-
ner and the DFA source codeservice DFA.c for the
XML parsing and validation. Flex is an automatic gener-
ator tool for high-performance scanners [1, 8]. Flex is fre-
quently used by compiler writers to develop scanners that
break up a character stream (source code) into a sequence of
tokens in the front-end of a compiler. For efficiency reasons
Flex scanners are internally implemented as DFAs. The
service flex.l description generated bywsdl2DFA
is fed into Flex to produce the source code for the XML
scanner. This scanner provides a token stream to the XML
parser at run time as shown in Figure 2. Both the gener-
ated scanner and the generated DFA-based parser are spe-
cialized to the XML messages and schemas defined in the
WSDL to efficiently parse and decode Web service message
invocations for a SOAP/XML Web service application.

The Web service application receives a sequence of
events from the parser corresponding to the parser’s ac-
tions. This is somewhat similar to a SAX parser implemen-
tation. This event information includes XPath [17] descrip-
tions and data containing the opening XML element tags
(with attributes) and the content of elements and attributes.

2.2. Constructing the XML Scanner

Thewsdl2DFA tool constructs a Flex scanner descrip-
tion based on a WSDL or schema document. This Flex
description has three sections (for more details on Flex,
see [1, 8]). The content of the first and second section is
fixed and independent of the Web service. The third section
defines the scanner’s actions as C statements that are exe-
cuted upon recognizing the specific character sequences de-
scribed by the regular expressions (REs).

The generated Flex description has the following structure:

%{ ... %}
whsp [\t\v\n\f\r]
name [ˆ>/:= \t\v\n\f\r]+
qual {name}:|""
open <{qual}
stop >
skip [ˆ/>]*
data [ˆ<]*
xmln xmlns(:{name}|"")=(\"[ˆ"]*\"|\’[ˆ’]*\’)
attr {qual}{name}=(\"[ˆ"]*\"|\’[ˆ’]*\’)
%x ATTS
%%
{whsp} // ignore white space
{open}"?"{skip}{stop} // ignore declaration
{open}"!"{skip}{stop} // ignore comment
{open}"/"{skip}{stop} UP
{open}"Body" DOWN return BODY; BEGIN(ATTS);
// ... definitions of XML element names and actions
{open}{name}{skip}"/"{stop}
{open}{name}{skip}{stop} DOWN
{data} return DATA;
<ATTS>{whsp} // ignore white space
<ATTS>{xmln} PUSH
<ATTS>{attr} return ATTR;
<ATTS>{stop} BEGIN(INITIAL);
<*><<EOF>> return EOF;
%%

Elements and attributes are separated by white space as de-
fined by thewhsp RE. This RE can be adapted to match
other non-relevant character sequences, such as the UTF8
BOM sequence. Thename RE defines a token that re-
sembles a NCName or LocalPart of a QName. The op-
tional qual RE is used for parsing qualified and unqual-
ified names with theopen RE that defines an opening el-
ement tag< followed the optional qualifier. Thestop RE
indicates the closing>. Theskip RE sweeps over the el-
ement attributes until the end of an opening element tag is
found. Character data is represented with thedata RE that
collects all character data up to, but excluding, a terminat-
ing <. Thexmln andattr REs scan attribute-value pairs,
where thePUSHoperation is used to populate the names-
pace binding stack with the values of thexmlns attributes.

Actions are provided in the section marked%%. The
fourth action pops an element’s ending tag (i.e.</X>).
The fifth action matches the SOAP Body element begin-
ning tag. TheDOWNand UP operations keep track of the
node nesting level of the document’s elements. This is fol-
lowed by the schema-specific element names and actions.
The seventh action ignores any elements with empty con-
tent (i.e.<X. . ./>). The eight action pushes an arbitrary ele-
ment’s beginning tag. The ninth action returns element data
to the driver. The<ATTS> actions scan attribute content.
The PUSHandUPoperations maintain a namespace bind-
ing stack to handlexmlns namespace bindings.

The schema-specific REs and actions are added to the
Flex description by thewsdl2DFA tool. This includes all
element names found in the WSDL/schema. These schema
element definitions are collected from all parts of a set of re-
lated schemas, including top-level element schema compo-
nents and local elements.

For example, suppose a schema contains the following:
<element name="getQuote" type="tns:getQuoteType"/>
<complexType name="getQuoteType">

<sequence>
<element name="symbol" type="xsd:float"/>

</sequence>
</complexType>

Two actions are added to the Flex specification:
{open}"getQuote" DOWN return ELT_getQuote; BEGIN(ATTS)
{open}"symbol" DOWN return ELT_symbol; BEGIN(ATTS)

The actions return thegetQuote andsymbol elements
to the driver of the scanner. Any other elements, except the
SOAP Body elements, will not be returned. Any logic re-
quired for handling these extra elements can simply be per-
formed by theDOWNandUPoperations, when required.

2.3. Ordered Schemas

The pure DFA-based parsing technique is suitable for
ordered (acyclic) schemas. The components of an acyclic
schema form a partially ordered set (poset) with respect
to the direction of the QName references in the schema
components. That is, the component graph of a schema is
acyclic. This is more formally defined as follows.

Definition 2.1 LetD1 andD2 denote two top-level schema
components (elements, attributes, simpleTypes, complex-
Types, etc.). Then, we say thatD1 is lexicographically less
thanD2, denotedD1 ≺ D2 if (a ref or QName in)D2 refers
to D1. The componentsDi of an ordered schemaform a
poset with respect to the relation≺.

The DFA approach does not permit cyclic schemas in gen-
eral, i.e. those schemas in which the schema components
form a directed graph with at least one cycle. A push-down
automaton (PDA) is required to permit the parsing of cyclic
schemas. The PDA can lift the power of the parser from reg-
ular grammars to context-free grammars. The result of this
would be similar to the gSOAP parsers that are based on the
recursive descent parsing method.

2.4. Constructing the DFA of the Validating Parser

The higher-level DFA generated from a schema (of a
WSDL) is the driver that acts as a schema-optimized XML
parser. This higher-order DFA implements an efficient state-
based approach to XML parsing by considering only the
relevant XML elements of a document and to enforce vali-
dation constraints. The DFA forms the parser’s state graph
with transitions labeled with the token values produced by
the scanner, which consist of the scanner’s action values (el-
ements, attributes, and data) and a node nesting level indi-
cator. For example, BODY (2) indicates the SOAP Body el-
ement at document node nesting level 2. The node nesting
level indicates the depth of the elements and data scanned
from the document root. The level indicator guides the

ELT_xxx (k)
DFA for

Schema Type
of Element
(level=k)

if minOccurs = 0

if maxOccurs > 1
DATA (k)

DFA for <element name="xxx"> DFA for XSD types,
with optionalminOccurs andmaxOccurs <simpleType> , and<simpleContent>

DFA for Element E1
(level=k+1)

DFA for Element E2
(level=k+1)

DFA for Element En
(level=k+1)

…

DFA for Element E1
(level=k+1)

DFA for Element E2
(level=k+1)

DFA for Element En
(level=k+1)

…

DFA for Element E1
(level=k+1)

DFA for Element E2
(level=k+1)

DFA for Element En
(level=k+1)

…

DFA for <sequence> DFA for <choice> DFA for <all>

Figure 3. DFAs for Schema Elements and Types

DFA for
Schema of
Messsage
(level=3)

EOF (0)BODY (2)

EOF
error

acceptstart

Figure 4. DFA for SOAP-Enveloped Messages

DFA’s transitions. The level indicator also enables the au-
tomatic handling of ending element tags (which reduces the
DFA to about half the size required otherwise). The level in-
dicator is also used to reject invalid documents.

The DFA construction proceeds by recursively replacing
schema components with their DFA representations. The
DFA representations for commonly used schema elements
and types are shown in Figure 3. Empty transitions (caused
by minOccurs=0) will be closed. Because the schema
must be ordered, the recursive translation process cannot
enter a cycle and must therefore terminate.

The DFA template for a SOAP/XML message is shown
in Figure 4. The schema of the message is translated into
a DFA for parsing XML content at level 3, which is inside
the SOAP Envelope and Body. A transition on BODY (2)
to the DFA of the schema takes place when a SOAP Body

element is found1. After parsing the SOAP Body with the
DFA constructed for the message, the transition to the final
accepting state is expected to take place on an EOF (0).

3. Example Applications

This section presents two case studies. The first exam-
ple describes a parser for an echoString service in detail.
A performance comparison for echoString message parsing
will be presented in Section 4. The second example investi-
gates the approach for parsing the WS-Security protocol.

3.1. Case Study 1: The echoString Service

Figure 5 depicts the schema of the echoString
SOAP/XML request message (defined in a WSDL de-
scription as a document style message). TheechoString
message element contains a child elementinput of type
XSD string. An extensibility element was added to illus-
trate support for extensibility.

1 The SOAP Envelope and optional Header elements are ignored. The
Envelope was omitted to reduce complexity. A minimal SOAP Header
processor must implement rules for parsing mandatory Header en-
tries indicated bymustUnderstand’ attributes. The Envelope and
Header elements can be included in the parser if necessary.

<schema targetNamespace="urn:echoString"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.w3.org/2001/XMLSchema">
<element name="echoString">

<complexType>
<sequence>

<element name="input" type="xsd:string"/>
<any namespace="##any" minOccurs="0"

maxOccurs="unbounded"/>
</sequence>

</complexType>
</element>

</schema>

Figure 5. The echoString Message Schema

The source code of the DFA generated bywsdl2DFA
is shown in Figure 6. Theyylex function returns the next
token from the Flex scanner. Transitions in the state graph
are determined by the token value and the level indicator.

The event("echoString/input", yytext)
call returns an XPath expression and string data to
the server application. Note that the XPath expres-
sion is a pre-compiled constant string in this case. The
string datayytext is produced by the scanner and con-
tains the CDATA of theinput element. Because the
echoString and input elements do not carry at-
tributes, the parsing of these elements do not result
in events. This eliminates the overhead of unnecessar-
ily calls to application functions.

0
EOF (0)BODY (2)

EOF
error

acceptstart 1
ELT_echoString (3)

2
ELT_input (4)

3
DATA (4)

4

EOF
EOF

int echoStringDFA()
{ int token, state = 0;

while ((token = yylex()) != EOF)
switch (state) {
case 0: if (token == BODY && level == 2)

state = 1;
break;

case 1: if (token == ELT_echoString && level == 3)
state = 2;

break;
case 2: if (token == ELT_input && level == 4)

state = 3;
break;

case 3: if (token != DATA || level != 4)
return error("Invalid input value");

event("echoString/input", yytext);
state = 4;
break;

case 4: if (token == EOF && level == 0)
return ACCEPT;

return error("Invalid message");
}

return error("End of file");
}

Figure 6. DFA for echoString

High
Performance

SOAP Header
Processor

SOAP/XML
Message

Protected
Service

SOAP/XML
Message Body

WS-Security
WS-Routing
WS-Policy ...

Enforcement

Firewall

Figure 7. High-Performance Header Parser

The echoString service implementation of theevent
function extracts the string data. After this extraction, the
service returns a response in the form of an XML message
constructed with libcsprintf . Thesprintf function is
much faster compared to populating and emitting a DOM.

3.2. Case Study 2: WS-Security

The need for a high-performance SOAP Header parser is
shown in Figure 7. The figure illustrates the use of a SOAP
Header processor to enforce security, routing, and policy
decisions. Invalid messages can be stopped at the firewall
boundary. This preprocessor must be fast to allow the SOAP
message body of a compliant message to be passed to a
server without impacting the performance.

The WS-Security standard [6] provides transport-level
authentication, encryption, and digital signatures. WS-
Security is based on the XML Signature standard [16] and
the XML Encryption standard [15].

The Signature schema components are acyclic, i.e. the
Signature schema is ordered, which can also be observed
from the informal short-hand description of the Signature
structure (where? denotes zero or one occurrence;+ de-
notes one or more occurrences;* denotes zero or more oc-
currences; and the empty tag means the element is empty):

<Signature ID?>
<SignedInfo>

<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI? >

(<Transforms>)?
<DigestMethod>
<DigestValue>

</Reference>)+
</SignedInfo>
<SignatureValue>

(<KeyInfo>)?
(<Object ID?>)*

</Signature>

The Signature schema is used by the Encryption schema,
but not vice versa. The Encryption schema is ordered, which
can be observed from the informal short-hand description of
the EncryptedData structure shown below:

<EncryptedData Id? Type? MimeType? Encoding?>
<EncryptionMethod/>?
<ds:KeyInfo>

0

20

40

60

80

100

120

140

160

libc strstr flex -Cfa flex gSOAP expat

T
im

e
 (

u
s)

decode
parse

0

20

40

60

80

100

120

140

160

libc strstr flex -Cfa flex gSOAP expat

T
im

e
 (

u
s)

decode
parse

0

20

40

60

80

100

120

140

160

libc strstr flex -Cfa flex gSOAP expat

T
im

e
 (

u
s)

decode
parse

Figure 8. Performance of echoString Parsing and Decoding for n = 16, 256, 1024 (800MHz G4)

<EncryptedKey>?
<AgreementMethod>?
<ds:KeyName>?
<ds:RetrievalMethod>?
<ds:*>?

</ds:KeyInfo>?
<CipherData>

<CipherValue>?
<CipherReference URI?>?

</CipherData>
<EncryptionProperties>?

</EncryptedData>

The ds:KeyInfo element is defined in the Signa-
ture schema and extended withEncryptedKey and
AgreementMethod elements. Because extensions are
not explicitly part of the schemas, the DFA has transi-
tions from theKeyInfo element to any other element
that does not create a cycle. This includes a transi-
tion to EncryptedKey , but excludes a transition to
EncryptedData , because this is a parent element of
KeyInfo . Note that EncryptedData elements can-
not be children of theKeyInfo element.

4. Performance Results

The performance of the echoString example application
of the first case study described in the previous section
is compared to the performance of the full-blown gSOAP
toolkit. The performance was measured on a 800MHz G4
PPC processor, using gcc 3.3 options -O2, Flex 2.5.4. The
raw XML parsing performance was measured on memory-
resident messages. Therefore, network bandwidth and la-
tencies are not taken into account.

To set a lower bound on the parsing speed that can be
achieved, the libcstrstr and strchr functions were
used to extract the contents of theinput element by sim-
ply scanning the XML message for this element. These libc
functions should not be considered realistic parsing alterna-
tives, because string searches are fragile and cannot be used
to distinguish elements with identical tag names that belong
to different parts of a message, such as elements occurring
in a SOAP Header.

Figure 8 shows the performance (elapsed time inµs) of
libc strstr , the performance of the DFA-based parser
built with a scanner produced with Flex options -Cfa, the
performance of the parser with the default configuration for
Flex, the performance of an echoString parser built with
gSOAP 2.5, and the performance of the eXpat [4] XML
parser. Theinput string sizen was varied between 16,
256, and 1024.

The eXpat parser is considered one of the fastest stream-
ing XML parsers. The decoding part of gSOAP shown in
the figure indicates the initialization time of the toolkit and
the latency for deserializing the message and instantiating
the C data structures, which involves decoding the input
string into dynamically allocated memory. The Flex -Cfa
options are used to generate an optimized scanner that is
faster but has a larger code size. The optimized Flex-DFA-
based parser is about twice as fast as the gSOAP parser
(excluding the decoding phase). The non-optimized DFA-
based parser performance is comparable to gSOAP. Note
that the DFA-based parser is slower than the ”parser” that
usesstrstr andstrchr , but the difference is only about
a factor of two for larger strings.

The performance of the Apache Xerces for C++ 2.4.0
with all options turned off to improve speed (no valida-
tion, no namespaces, no schema support, and no constraint
checking) was also compared. The performance of Xerces
is about 290ns forn = 16, which is about 30 times slower
than the DFA with Flex -Cfa.

Figure 9 shows the performance of a SOAP/XML re-
sponse message generated by a libsprintf call com-
pared to gSOAP. Generating SOAP/XML responses using
templates based onsprintf is fast with Darwin 6.8, but
appears to be slow with Red Hat Linux 2.4 for messages
with string length 1024 and higher. Some effort from the ap-
plication developer is required to ensure that the messages
are compliant. Most of the time spent by gSOAP occurs in
the initialization phase, which involves the setup and pop-
ulation of a hash table for data analysis to determine co-
referenced objects and to detect data graph cycles prior to
the XML serialization of the data.

0

20

40

60

80

100

120

140

Darwin 6.8 libc sprintf Linux 2.4 libc sprintf gSOAP

T
im

e
 (

u
s)

Figure 9. Performance of echoString Re-
sponse Output for n = 1024 (800MHz G4)

10

100

1000

10000

8 16 32 64 128 256

Array size

T
im

e
 (

u
s)

gSOAP parse+decode
expat
gSOAP parse
flex -Cfa

Figure 10. Performance of echoStringArray
Request Parsing (800MHz G4)

Figure 10 shows the performance of SOAP/XML pars-
ing of echoStringArray messages that contain an array of
strings with array sizes ranging from 8 to 256, where the
XML representation of the array elements is 16 bytes. The
DFA-based parser is about 2 times faster than gSOAP’s
parser (without data decoding) and about 4 to 5 times faster
than eXpat.

5. Conclusions

This paper introduced an XML parsing approach based
on a DFA for scanning XML input and a DFA for parsing
and validation. The two-level DFA approach can be used in
high-performance environments. Performance results show
an increase of about a factor 2 to 5 speed increase over other
fast implementations.

Another choice for representing XML structures and

structural constraints are tree grammars [9, 10]. Tree gram-
mars provide an effective means for XML analysis and ma-
nipulation, but are ill suited for low-level parsing. There-
fore, tree grammars were not considered in this paper.

References

[1] A. Aho, R. Sethi, and J. Ullman.Compilers: Principles,
Techniques and Tools. Addison-Wesley Publishing Com-
pany, Reading MA, 1985.

[2] K. Chiu. Compiler-based approach to schema-specific XML
parsing. Technical Report Computer Science Technical Re-
port 592, Indiana University, 2003.

[3] K. Chiu, M. Govindaraju, and R. Bramley. Investigating the
limits of SOAP performance for scientific computing. In
proceedings of the 11th IEEE International Symposium on
High-Performance Distributed Computing, 2002.

[4] J. Clark. eXpat XML parser. http://expat.sourceforge.net.
[5] D. Davis and M. Parashar. Latency performance of SOAP

implementations. Inproceedings of the 2nd IEEE Interna-
tional Symposium on Cluster Computing and the Grid, 2002.

[6] IBM and Microsoft. WS-Security specifica-
tion. Technical report, IBM and Microsoft, 2002.
http://msdn.microsoft.com/ws/2001/10/Routing/.

[7] C. Kohlhof and R. Steele. Evaluating SOAP for high-
performance business applications: Real-time trading sys-
tems. Inproceedings of the 2003 International WWW Con-
ference, Budapest, Hungary.

[8] T. Mason and D. Brown.Lex & Yacc. O’Reilly and Asso-
ciates, Inc., 632 Petaluma Ave, CA, 1990.

[9] M. Murata, D. Lee, and M. Mani. Taxonomy of XML
schema languages using formal language theory. InExtreme
Markup Languages, 2001.

[10] F. Neven. Automata theory for XML researchers.SIGMOD
Record, 31(3), 2002.

[11] H. S. Thompson and R. Tobin. Using finite state automata
to implement W3C XML schema content model validation
and restriction checking. InIn Proceedings of XML Europe,
2003.

[12] R. van Engelen. Pushing the SOAP envelope with Web ser-
vices for scientific computing. Inproceedings of the Interna-
tional Conference on Web Services (ICWS), pages 346–352,
Las Vegas, 2003.

[13] R. van Engelen. Code generation techniques for developing
light-weight efficient XML Web services for embedded de-
vices. Inproceedings of 9th ACM Symposium on Applied
Computing SAC 2004, Nicosia, Cyprus, 2004.

[14] R. van Engelen and K. Gallivan. The gSOAP toolkit for web
services and peer-to-peer computing networks. Inproceed-
ings of the 2nd IEEE International Symposium on Cluster
Computing and the Grid, 2002.

[15] W3C. XML Encryption. http://www.w3.org/TR/xmlenc-
core/.

[16] W3C. XML Signature. http://www.w3.org/TR/xmldsig-
core/.

[17] W3C. XML XPath. http://www.w3.org/TR/xpath.

