
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this bound copy of a doctoral thesis by

Zhenhai Duan

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Zhi-Li Zhang and David Hung-Chang Du

Name of Faculty Advisers

Signature of Faculty Advisers

Date

GRADUATE SCHOOL

On Scalable Support of Quality of Services in the Internet

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Zhenhai Duan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Zhi-Li Zhang and David Hung-Chang Du

Faculty Advisers

June 2003

c© Zhenhai Duan June 2003

This work was supported in part by the National Science Foundation under the grants ANI-

0073819, ITR-0085824, and CAREER Award NCR-9734428. Any opinions, findings, and

conclusions or recommendations expressed in this dissertation are those of the authors and

do not necessarily reflect the views of the National Science Foundation.

To My Parents

i

Abstract

The Internet currently supports a best-effort connectivity service. There has been an in-

creasing demand for the Internet to support a certain degree of quality of service (QoS)

to meet various service requirements from different networking applications and to better

utilize the networking resources. However, supporting QoS in the Internet has also raised

great concerns about the scalability of any QoS solution; therefore, the QoS deployment on

the Internet has been hindered.

This dissertation addresses the scalability issues in supporting QoS from two complemen-

tary aspects, namely the packet forwarding data plane and the network resource manage-

ment control plane. On the packet forwarding data plane, a virtual time framework is

proposed as a unifying packet scheduling framework to providescalablesupport for guar-

anteed services in the Internet. In this framework, Internet core routers do not need to

maintain any per-flow state and do not perform any per-flow operations. Consequently,

they are able to handle a large number of simultaneous flows. The key notion in the vir-

tual time framework is avirtual timestamp, which is initialized at network edge routers

and referred and/or updated by network core routers, depending on the service granularity

supported by the network. Several newcore statelesspacket scheduling algorithms are de-

signed and analyzed to illustrate how both aggregate and per-flow service guarantees can

be supported within this same framework. This is critical for the Internet to continue its

evolution. Moreover, we investigate the cost-performance trade-offs in supporting QoS in

the Internet by studying the QoS provisioning power of these packet scheduling algorithms.

On the network resource management control plane, two scalable bandwidth broker ar-

chitectures are designed and investigated. The first one is a centralized bandwidth broker

architecture, which is built upon the core stateless packet scheduling algorithms we de-

signed. By conducting admission controls on a per-path basis instead of on a “hop-by-hop”

basis, this bandwidth broker architecture significantly reduces the complexity of the admis-

sion control algorithm; therefore, it improves the scalability of existing bandwidth broker

architectures. To further improve its scalability, a hierarchical bandwidth broker architec-

ture is designed. In this architecture, multiple edge bandwidth brokers are deployed in a

network, along with the conventional centralized bandwidth broker. Edge bandwidth bro-

kers handle the flow admission control and resource management functionalities for certain

pre-defined paths. They interact with the centralized bandwidth broker for allocating and

de-allocating trunk bandwidth along the paths. In this way, the centralized bandwidth bro-

ker only needs to handle coarser time scale trunk bandwidth requests from edge bandwidth

ii

brokers. Consequently, its scalability is greatly improved.

Finally, to provide real end-to-end QoS support and to facilitate the creation and deploy-

ment ofvalue-added servicessuch as VoIP, Video-on-Demand, and other emerging QoS-

sensitive services over the Internet, an architecture called theservice overlay network

(SON) is proposed. Special servers, called service gateways, are deployed at certain strate-

gically selected locations over the Internet to aid the data forwarding and resource manage-

ment. The bandwidth provisioning problem for a service overlay network is mathematically

formulated and investigated, taking into account various factors such as SLA, QoS, traffic

demand distributions, and bandwidth costs. Analytical models and approximate solutions

are developed for both static and dynamic bandwidth provisioning, which provide useful

guidelines on how a SON should be provisioned to stay profitable.

iii

Acknowledgments

I am very grateful to Professor Zhi-Li Zhang, who is my academic advisor. He has given

me tremendous help during my graduate years at the University of Minnesota. I benefited

greatly from the countless discussions with him about my research. Moreover, he is also a

role model for how to be a critical thinker and an active researcher. I would like to thank

him for his guidance, support, and encouragement.

I am also grateful to Professor David Hung-Chang Du, who is my academic co-advisor.

His sagacious perception and critical insights in research have pushed me to think deeper

and refine my dissertation work. I also want to thank Professor Andrew Odlyzko for taking

his precious time to read through this dissertation and provide valuable feedback. I would

like to thank Professor Yongdae Kim for serving on my final doctoral oral examination

committee. I would also like to take this opportunity to thank Professor Michael Taaffe

and Professor Ravi Janardan for serving on the committee for my preliminary doctoral oral

examination.

Dr. Mooi Choo Chuah provided me with an internship opportunity at Bell-Labs during

the Summer of 1998; Dr. Yiwei Thomas Hou provided me with internship opportunities at

Fujitsu Labs of America during the Summer of 2000 and the Spring and Summer of 2001. I

would like to thank them for providing me with these valuable opportunities that broadened

my vision of research, and that will certainly continue to benefit me later in my research

career.

The other members of the network group at the University of Minnesota have made my

graduate life more joyous and easier. I treasure the joyful time we spent at the group

get-together parties, lunches, and the other activities, and the “stressful” time we spent

on discussing research projects. I want to especially thank James Beyer, Jaideep Chan-

drashekar, Baek-Young Choi, Changho Choi, Yingfei Dong, Dingshan He, Jeffrey Krasky,

Ewa Kusmierek, Sanghwan Lee, Hyeran Lim, Yingping Lu, Wei-hsiu Ma (he was also my

host when I first arrived in the USA), Srihari Nelakuditi, Kuai Xu, and Xu Zhang. James

was the person that I ran to whenever I had some English grammar or general English

writing problems. Over the years, he has also proofread many of my papers. I am deeply

grateful to him.

Many friends at the University of Minnesota have helped me over the years. Without their

generous help and care, my graduate life would not have been so colorful and easy. I want to

take this opportunity to especially thank the following friends: Xiuzhen Cheng, Hua Dong,

iv

Peiquan Li, Xiaojia Mary Li, Zining Li, Jian Liu, Kate Martin, Lu Ruan, Shuangyi Tang,

Feng Wang, Hongyi Wang, and Xiaoyu Wu. Many other friends across the USA, Canada,

and China have helped me and my parents, and encouraged me during my graduate years;

I would especially like to thank Dongbo Bu, Chunmeng Cao, Lih-Yiu Chiou, Ji Fang,

Ping Liu, Dewei Ma, Hong Wang, Rongxiang Wang, Wenqing Yuan, Jun Zhang, and Xiao

Zhong.

I am deeply grateful to my parents, brother, and sisters for their unconditional love, long-

standing support, and meticulous care. They have sacrificed greatly to support me in the

pursuit of my dream. Without their love, support, and self-sacrifice, I would not have been

able to reach this stage of my career.

v

Contents

Chapter 1 Overview 1

1.1 Introduction and Motivation . 1

1.2 Contributions . 4

1.2.1 Scalable Packet Forwarding Date Plane 4

1.2.2 Scalable Network Resource Management Control Plane 4

1.2.3 Service Overlay Networks . 5

1.3 Organization . 5

I Scalable Packet Forwarding Data Plane 7

Chapter 2 Background and Overview 8

2.1 Background . 8

2.2 Virtual Time Framework . 10

2.2.1 Packet State . 11

2.2.2 Edge Router Mechanism . 11

2.2.3 Core Router Mechanism . 11

Chapter 3 Supporting Aggregate Guaranteed Delay Services 13

vi

3.1 Introduction . 13

3.2 Network Model and Assumptions . 14

3.3 Network of FIFO Schedulers . 17

3.4 Network of Static Earliest Time First Schedulers 20

3.4.1 SETF with Finest Time Granularity: SETF(0) 22

3.4.1.1 Network Utilization and Edge-to-Edge Delay Bounds . . 22

3.4.1.2 Time Stamp Encoding and Performance Trade-offs . . . 24

3.4.2 SETF with Coarser Time Granularity: SETF(Γ) 25

3.4.2.1 Time Stamp Encoding and Performance Trade-offs . . . 28

3.5 Network of Dynamic Earliest Time First Schedulers 31

3.5.1 Performance Bounds for a Network of DETF Schedulers 32

3.5.2 Packet State Encoding . 35

3.5.3 Performance Trade-offs and Provisioning Power 37

3.6 Summary . 40

Chapter 4 Supporting Per-Flow Guaranteed Services 41

4.1 Introduction . 41

4.2 Virtual Time Reference System: Basic Architecture 43

4.3 An Ideal Per-flow Virtual Time Reference System 47

4.3.1 End-to-end Delay of the Ideal Per-flow System 48

4.3.2 Packet Virtual Time Stamps and Ideal Per-flow System 52

4.4 Virtual Time Reference System and Packet Scheduling 56

4.4.1 Scheduling Blackbox: Per-Hop Behavior 57

4.4.2 Virtual Time Reference System and End-to-End Delay Bounds . . . 58

vii

4.5 Core Stateless Scheduling Algorithms: Examples 63

4.5.1 Rate-Based Core Stateless Scheduling Algorithms 63

4.5.1.1 Core Stateless Virtual Clock Scheduling Algorithm . . . 63

4.5.1.2 Core-Jitter Virtual Clock Scheduling Algorithm 64

4.5.1.3 Approximation to Core Stateless Virtual Clock 64

4.5.2 Delay-Based Core Stateless Scheduling Algorithms 65

4.5.2.1 Virtual Time Earliest Deadline First Algorithm 65

4.5.2.2 Calendar Queue Approximation to VT-EDF 67

4.5.3 Virtual Time Rate Control and Delay-Based Schedulers 67

4.6 Static Scheduling Algorithms with Resource Pre-configuration 69

4.6.1 FIFO . 69

4.6.2 Static WFQ with Pre-Configured Rates 70

4.6.3 Static Priority with Pre-Configured Rates 71

4.7 Latency-Rate Servers and the Virtual Time Reference System 72

4.8 Discussions . 74

4.8.1 Implementation Issues . 74

4.8.2 QoS Provisioning and Admission Control 76

4.9 Summary . 77

II Scalable Network Resource Management Control Plane 78

Chapter 5 Background and Overview 79

Chapter 6 A Centralized Bandwidth Broker Architecture 82

viii

6.1 Introduction . 82

6.2 Bandwidth Broker Architecture Overview 84

6.3 Admission Control for Per-Flow Guaranteed Services 89

6.3.1 Path with Only Rate-based Schedulers 89

6.3.2 Path with Mixed Rate- and Delay-based Schedulers 90

6.4 Admission Control with Dynamic Flow Aggregation 96

6.4.1 Impact of Dynamic Flow Aggregation on End-to-End Delay 97

6.4.2 End-to-End Delay Bounds under Dynamic Flow Aggregation . . . 100

6.4.2.1 Contingency Bandwidth and Edge Delay Bound 101

6.4.2.2 Extension to VTRS and Core Delay Bound 103

6.4.3 Admission Control with Dynamic Flow Aggregation 104

6.5 Simulation Investigation . 106

6.6 Summary . 110

Chapter 7 A Hierarchical Bandwidth Broker Architecture 112

7.1 Introduction . 112

7.2 Bandwidth Broker Architecture: Basic Model and Scaling Issues 113

7.2.1 The Basic Bandwidth Broker Model 114

7.2.2 Scaling Issues . 116

7.3 Single Bandwidth Broker Design . 118

7.3.1 The Basic PoQ Scheme . 118

7.3.2 Complexity and Performance . 122

7.3.3 Simulation Investigation . 123

7.4 Multiple Bandwidth Broker Design . 128

ix

7.4.1 The MBB Architecture and the Lossy-Path PoQ scheme 129

7.4.2 Simulation Investigation . 131

7.5 Improvements on the Performance of the PoQ Scheme 132

7.5.1 PoQ with Hysteresis . 132

7.5.2 PoQ with Variable Quota Size . 137

7.5.3 PoQ with Differentiated Flow Treatments 139

7.6 Summary . 140

III Service Overlay Networks 142

Chapter 8 Bandwidth Provisioning for Service Overlay Networks 143

8.1 Introduction . 143

8.2 Assumptions and Bandwidth Provisioning Problems 146

8.2.1 SON and Service QoS . 146

8.2.2 Bandwidth Provisioning Modes 147

8.2.3 Traffic Demand, Service Revenue and Bandwidth Cost 148

8.3 Basic Static Bandwidth Provisioning Model 149

8.4 Static Bandwidth Provisioning with Penalty 150

8.4.1 M/G/∞ Traffic Demand Model 154

8.4.1.1 Numerical Examples 156

8.4.2 Measurement-Based Traffic Demand Model 158

8.4.3 Performance Evaluation . 160

8.5 Dynamic Bandwidth Provisioning . 162

8.5.1 Approximate Model . 163

x

8.5.1.1 Numerical Examples 164

8.5.2 Adaptive Online Bandwidth Provisioning Algorithm 166

8.6 Summary . 169

IV Conclusions and Future Work 170

Chapter 9 Conclusions and Future Work 171

9.1 Conclusions . 171

9.2 Future Work . 173

9.2.1 Packet Forwarding Data Plane . 173

9.2.2 Network Resource Management Control Plane 173

9.2.3 Service Overlay Networks . 174

9.2.4 Inter-Domain Internet Routing . 174

V Appendices 183

Appendix A Proofs Related to Chapter 3 184

A.1 Proofs Related to Networks of Static Earliest Time First Schedulers 184

A.2 Proofs Related to A Network of DETF(0,1) schedulers 188

A.3 Proofs Related to A Network of DETF(Γ,1) Schedulers 189

A.4 Proofs Related to A Network of DETF(Γ, h∗) Schedulers 189

Appendix B Proofs Related to Chapter 4 195

B.1 Proof of Theorem 7 . 195

B.2 Virtual Shaping Lemma and Its Applications 200

xi

B.3 An Alternative Definition of Latency-Rate Servers 205

Appendix C Proofs Related to Chapter 6 208

C.1 Proofs of Theorem 14 and 15 . 208

C.2 Proof of Theorem 16 . 209

Appendix D Proofs Related to Chapter 8 211

D.1 E(W) of the static bandwidth provisioning with penalty 211

D.2 Approximate Model of the Dynamic bandwidth Provisioning 212

xii

List of Figures

1.1 The IP hour-glass model. 2

1.2 Cost-performance trade-offs in supporting QoS. 2

2.1 Illustration of Virtual Time Framework. 11

3.1 The network model. 15

3.2 Packet’s arrival time at and departure time from each scheduler. 15

3.3 Time slots and packet time stamps. 22

3.4 Illustration of the different behaviors of FIFO and SETF(0). 22

3.5 Performance comparison: SETF(0) vs. FIFO. 24

3.6 No. of bits needed for encoding for SETF(0). 24

3.7 Performance comparison: SETF vs. FIFO. 29

3.8 No. of bits needed for encoding for SETF(Γ). 29

3.9 No. of bits for encoding, network diameter, and maximum allowable net-

work utilization. 30

3.10 Updating packet time stamps inside the network core. 30

3.11 Edge-to-edge delay bound comparison (H∗ = 8). 37

3.12 Provisioning power of FIFO, SETF(Γ), DETF(Γ, 1), and DETF(Γ, 2) net-

works (H∗ = 8). 37

xiii

3.13 Design and performance trade-offs for DETF(Γ, 1) networks (H∗ = 8). . . 39

3.14 Design and performance trade-offs for DETF(Γ, 1) networks (H∗ = 12). . . 39

4.1 Edge conditioning in the virtual time reference system. 44

4.2 Illustration of the virtual time reference system. 46

4.3 An ideal per-flow system. 48

4.4 Delay experienced by packets at a server in the ideal per-flow system. . . . 52

4.5 A flow traverses a network core. 57

4.6 Virtual time reference system: per-hop behavior and operations. 61

6.1 Illustration of a bandwidth broker (BB) and its operation in a VTRS net-

work domain. 86

6.2 The behavior of feasible rangeRm
fea and delay constraint rangeRm

del at the

mth iteration in the search of feasible rate-delay parameter pair〈rν , dν〉 for

a new flowν. 94

6.3 Admission test for a new flowν on a path with mixed rate- and delay-based

schedulers. 95

6.4 Class-based guaranteed services: dynamic flow aggregation along a path. . 96

6.5 An example illustrating the edge delay bound violation when a new mi-

croflow joins. 98

6.6 An example illustrating the edge delay bound violation when a constituent

microflow leaves. 99

6.7 The network topology used in the simulations. 106

6.8 Mean reserved bandwidth. 109

6.9 Flow blocking rates. 109

7.1 Illustration of a bandwidth broker. 114

xiv

7.2 Notation used in the algorithm. 118

7.3 Path level admission control. 119

7.4 Link level bandwidth/quota allocation. 121

7.5 Scheme for handling flow departure. 121

7.6 Topology used in the simulations. 123

7.7 Proportion of flows accepted in critical mode

(C = 5400). 125

7.8 Expected link level QoS update/accepted flow (C = 5400). 125

7.9 Expected cost of link QoS state updates as the network capacity increases. . 127

7.10 Proportion of flows accepted in critical mode as the number of paths in-

creases (C = 5400, a = 0.95). 128

7.11 Multiple bandwidth brokers on the control plane for a network domain. . . 130

7.12 Flow blocking rates of the non-lossy-path

and lossy-path models (C = 5400). 130

7.13 Quotas allocated to a path is proportional to the traffic load distributed on

the path (C = 5400, a = 0.95). 130

7.14 Quota state transition rate (C = 3600, a = 0.9, quota = 30). 132

7.15 Effects of hysteresis on flow blocking rates

(C = 3600, hysteresis = 0.05). 134

7.16 Flow blocking rates with different hysteresis thresholds (C = 3600, a =

0.95, quota = 60). 134

7.17 Effects of variable quota size on flow blocking rates (C = 3600,θ1 = 0.9). . 138

7.18 Flow blocking rate with different flow treatment (C=3000). 138

8.1 An illustration of a service overlay network. 145

8.2 Traffic demands. 145

xv

8.3 Relationship between̂sl, ε, & φl. 156

8.4 Comparison ofV andE(W). 156

8.5 Impact ofδ onV andε∗. 157

8.6 Impact of unit bandwidth price onε∗. 157

8.7 Traffic demands of the Auckland data trace. 158

8.8 Histogram of the Auckland data trace’s traffic demands. 158

8.9 Relationship between̂sl, ε, & φl for Day-time traffic. 159

8.10 SON topologies. 159

8.11 Effects ofφ′l on cl andE(W̃). 165

8.12 Dynamicvs.static bandwidth provisioning. 165

8.13 Dynamic bandwidth provisioning with approximate model and online model.167

9.1 Cost-performance trade-offs in supporting QoS in the Internet 172

xvi

List of Tables

4.1 Notation used in VTRS. 49

4.2 Error terms of latency-rate (LR) servers. 74

6.1 Traffic profiles used in the simulations . 106

6.2 Comparison of IntServ/GS, per-flow BB/VTRS and aggregate BB/VTRS

schemes. 108

7.1 Call admission and quota allocations (C = 5400). 123

7.2 Effects of hysteresis on quota allocations and deallocations (C = 3600, hys-

teresis = 0.05) . 135

7.3 Effects of different hystereses on quota allocations and deallocations (C =

3600, a = 0.95, quota = 60) . 136

7.4 Effects of the variable quota size scheme on quota allocations and de-

allocations (C = 3600,θ1 = 0.9) . 138

8.1 Provisioning for the Auckland traffic demands. 159

8.2 Tree Topology. 161

8.3 Mesh-Tree Topology. 162

8.4 Per-unit time average revenue. 168

xvii

Chapter 1

Overview

1.1 Introduction and Motivation

The Internet has been enjoying great success in the last ten years or so. In many aspects it

grows at a rate of approximately 100 percent each year, for example, the number of hosts

connected to the Internet and the volume of traffic carried by the Internet [15]. The un-

precedented success of the Internet is largely due to its simple, “hour-glass” IP network

protocol architecture (see Figure 1.1). In this architecture, the minimalist IP network pro-

tocol operates over a multitude of data link layer technologies and relegates sophisticated

control to higher layer protocols operating at end systems [10].

Such athin-waistIP network architecture enables Internet routers to bestateless. Routers

only maintain certain highly aggregate routing information. They do not maintain any other

forwarding state information. In particular, they do not maintain any per-flow state and do

not perform any per-flow operations. The stateless property of the Internet architecture

has some important implications for its performance. For example, the current Internet

architecture is bothscalable and robust. Because routers do not need to maintain any

per-flow state and do not perform any per-flow operations, the operational complexity of

Internet routers does not increase linearly with the number of flows present at the routers.

Consequently, Internet routers are able to handle a large number of simultaneous flows. In

this sense, we say the Internet architecture is scalable. Secondly, because routers do not

maintain any per-flow state, after a link or router failure, packets of the flows being affected

by the failure can beautomaticallyrouted around the failure point by an upstream router

(if an alternative route exists). Therefore, end hosts are not even aware of such failures,

1

IP network layer
transport layer

layer technologies
many link and physical

many applications,

Figure 1.1: The IP hour-glass model.

Cost

Pe
rf

or
m

an
ce

DiffServ

IntServ

Figure 1.2: Cost-performance trade-offs in
supporting QoS.

and no connection re-establishments are needed. In this sense, we say the current Internet

architecture is robust.

On the other hand, the stateless Internet architecture also has some shortcomings. In par-

ticular, it cannot provide user traffic with any service guarantees in terms of delay or band-

width. Note that, because routers do not maintain any per-flow state, they cannot differ-

entiate packets from different flows and provide performance-demanding applications with

more resources or better treatment. Indeed, the current Internet can only provide abest-

effort connectivity service. It does not make any promise regarding the successful delivery

of a packet, nor does it guarantee how long it takes for a packet to reach the destination. The

best-effort service model is perhaps an adequate service model for the traditional Internet

applications such as file transfers and E-mail. These applications are highly adaptive, they

do not require stringent performance guarantees from the Internet.

However, as the Internet has transformed into a commercial information infrastructure,

there has been a driving force to expand the current Internet service model to support more

powerful services besides the base-line best-effort service [13, 14, 68, 77]. First of all, many

real-time multimedia applications and mission-critical applications have emerged over the

Internet, such as video streaming, Internet telephony, and online financial transactions,

just to name a few. Different from the traditional Internet applications, these applications

require a much more reliable and predictable Internet performance guarantee. Secondly,

Internet service providers (ISPs) would like to have more control over how their network

resources are used, for example, who can use how much bandwidth at what time. As we

discussed above, all flows are treated in the same way in the current Internet architecture;

flow differentiations are not supported. Moreover, to sustain a healthy long-term develop-

ment, it is also very important for an ISP to explore new technologies to postpone and even

reduce their network resource expansions, while still being able to provide a certain degree

of performance guarantees.

2

To address these issues, the problem of providing Quality of Services (QoS) in the Internet

has been the focus of both computer networking research and industrial communities for

the last decade or so. Numerous QoS mechanisms have been carried out (see, e.g., [14,

22, 28, 29, 31, 32, 36, 37, 39, 41, 42, 43, 46, 47, 50, 57, 59, 60, 81, 83] and the references

therein). Depending on the amount of control state maintained at Internet routers, we can

classify QoS mechanisms into two categories:stateful and stateless. Stateful solutions

need to maintain fine-grainedper-flow state at each Internet routerand perform certain

per-flow operations. In contrast, stateless solutions preserve the stateless property of the

current Internet architecture. Only coarse-grained aggregate state is maintained at Internet

routers. The Integrated Service model (IntServ) [6] is a representative of a stateful QoS

solution, while the Differentiated Service (DiffServ) model [4] is an example of a stateless

QoS solution.

Stateful solutions such as IntServ provide very powerful and flexible QoS guarantees. In

particular, per-flow rate and delay service guarantees can be supported in the IntServ frame-

work. Compared with the stateful solutions, stateless solutions such as DiffServ can only

providecoarser-grained aggregate service guarantees. Currently, it is not clear if such

aggregate service guarantees are sufficient for supporting performance-demanding appli-

cations such as video streaming over the Internet. On the other hand, IntServ is a very

costly solution. The operational complexity of routers in the IntServ framework increases

linearly with the number of simultaneous flows at the routers. In contrast, DiffServ is

much simpler and more scalable, given that no per-flow state is maintained by Internet core

routers.

In a nutshell, stateful solutions such as IntServ can provide powerful and flexible QoS

guarantees, but they are complex and costly. On the other hand, stateless solutions such

as DiffServ are simpler and more scalable, but they can only provide limited aggregate

performance guarantees. Figure 1.2 illustrates the broad trade-offs of these two approaches.

More importantly, IntServ and DiffServ are all but two-point solutions. There is a plenty

of design space that we have not explored, and many important questions in supporting

QoS in the Internet remain unanswered. For example, what are the fundamental trade-offs

in supporting QoS in the Internet in terms of performance and cost? Can we have a QoS

solution that is as scalable as DiffServ, but is still able to provide performance guarantees

as powerful and flexible as IntServ? Moreover, can we support both aggregate and per-flow

service guarantees in the same framework? This is important for the Internet to continue

its evolution.

3

1.2 Contributions

To address the above mentioned questions, and more importantly towards providing a com-

pletescalable QoS solution, in this dissertation we propose and investigate avirtual time

service model(VTSM). VTSM addresses the QoS provisioning problem from two com-

plementary aspects, namely the packet forwarding data plane and the network resource

management control plane. On the packet forwarding data plane, a virtual time frame-

work is studied. The virtual time framework is core stateless. Internet core routers do

not maintain any per-flow state and do not perform any per-flow operations. Moreover,

both aggregate and per-flow service guarantees can be supported within this framework.

On the resource management control plane, we design and investigate scalable bandwidth

broker architectures to facilitate network resource management and admission control op-

erations. To deliver real end-to-end QoS to end users, and to facilitate the deployment of

new (QoS-sensitive) services over the Internet, aservice overlay networkarchitecture is

also proposed and studied. Research results obtained in this dissertation work have been or

will be partially reported in [24, 25, 26, 27, 85, 86, 87, 88, 89].

1.2.1 Scalable Packet Forwarding Date Plane

We propose and develop a virtual time framework (VTF) as a unifying packet scheduling

framework to providescalablesupport for guaranteed services. VTF is core stateless. Like

DiffServ, Internet core routers do not need to maintain any per-flow state in this framework.

However, different from DiffServ, both aggregate and per-flow service guarantees can be

supported within this same framework. The key notion in VTF is the virtual timestamp,

which is initialized at network edge routers and referred and/or updated by core routers,

depending on the type of services supported by the network. We design and analyze several

newcore statelesspacket scheduling mechanisms to illustrate how both aggregate and per-

flow service guarantees can be supported within this framework. Moreover, we investigate

the cost-performance trade-offs in supporting QoS in the Internet by studying the QoS

provisioning power of these packet scheduling algorithms.

1.2.2 Scalable Network Resource Management Control Plane

To facilitate network resource management and flow admission control functions, two scal-

able bandwidth broker architectures are designed and investigated. The first one is a central-

ized bandwidth broker architecture, which is built upon the core stateless packet scheduling

algorithms we designed. By conducting admission controls on a per-path basis instead of

4

on a “hop-by-hop” basis, this bandwidth broker architecture significantly reduces the com-

plexity of the admission control algorithm; therefore, it improves the scalability of existing

bandwidth broker architectures. To further improve its scalability, a hierarchical bandwidth

broker architecture is designed. In this architecture, multiple edge bandwidth brokers are

deployed in a network, along with the conventional centralized bandwidth broker. Edge

bandwidth brokers handle the flow admission control and resource management function-

alities for certain pre-defined paths. They interact with the centralized bandwidth broker

for allocating and de-allocating trunk bandwidth along the paths. In this way, the central-

ized bandwidth broker only needs to handle coarser time scale trunk bandwidth requests

from edge bandwidth brokers. Consequently, its scalability is greatly improved.

1.2.3 Service Overlay Networks

To provide real end-to-end QoS support, and to facilitate the creation and deployment of

value-added servicessuch as VoIP, Video-on-Demand, and other emerging QoS-sensitive

services over the Internet, we propose an architecture called theservice overlay network

(SON). Special servers, called service gateways, are deployed at certain strategically se-

lected locations over the Internet to aid the data forwarding and resource management. As

a first step in designing a SON, we study the bandwidth provisioning problem for a ser-

vice overlay network. We mathematically formulate the bandwidth provisioning problem,

taking into account various factors such as SLA, service QoS, traffic demand distributions,

and bandwidth costs. Analytical models and approximate solutions are developed for both

static and dynamic bandwidth provisioning, which provide useful guidelines on how a SON

should be provisioned to stay profitable.

1.3 Organization

The dissertation is structured into three parts. In this first part, we study the scalable

packet forwarding data plane mechanisms. Specifically, in Chapter 3 we present aggre-

gate packet forwarding schemes. Three different aggregate packet scheduling algorithms,

namely FIFO, Static Earliest Time First (SETF), and Dynamic Earliest Time First (DETF),

are studied. In Chapter 4, we investigate a virtual time reference system (VTRS) to illus-

trate how per-flow service guarantees can be supported in the Internet without maintaining

per-flow state at network core routers. Several specific packet scheduling algorithms are

also studied in this chapter to analyze the capability of VTRS to support per-flow service

guarantees. In the second part of this dissertation, we present two scalable bandwidth bro-

5

ker architectures to facilitate network resource management and flow admission control

operations. We will first study a centralized bandwidth broker architecture in Chapter 6

and then a hierarchical bandwidth-broker architecture in Chapter 7. In the third part of this

dissertation, a service overlay network architecture is presented. We discuss its architec-

ture and study the bandwidth provisioning problem for such a service overlay network in

Chapter 8. In Chapter 9 we conclude this dissertation and discuss possible future research

directions.

6

Part I

Scalable Packet Forwarding Data Plane

7

Chapter 2

Background and Overview

2.1 Background

The problem of Quality of Service (QoS) provisioning in packet-switched networks has

been the focus of networking and telecommunication research communities for the last

decade or so. Many new packet scheduling algorithms (see, e.g., [22, 59, 71, 83]) such

as Virtual Clock (VC) and Weighted Fair Queueing (WFQ) have been proposed for the

support ofQoS guarantees. For example, it has been shown [30, 60] that in a network

where WFQ schedulers (or VC schedulers) are employed at every router, end-to-end delay

and bandwidth guarantees can be supported for each user traffic flow. Using these results

as a reference model, the IETF has defined aguaranteed service[69] under its Integrated

Services or IntServ architecture [6, 14], where end-to-end delay and bandwidth guarantees

are provided for users on aper-flow (either individual or aggregate) basis. To support

the IETF IntServ architecture, a signaling protocol, RSVP, for setting up end-to-end QoS

reservation along a flow’s path has also been proposed and standardized [7, 84].

Performing per-flow management inside the network, however, raises the important issue

of scalability. Due to the complexities of per-flow operations both in the data plane and

QoS control plane, the IntServ architecturemay notscale well with the size of the Internet

and the number of applications. As an alternative to per-flow based QoS provisioning, a

different paradigm — the Differentiated Services or DiffServ — was later proposed and de-

fined by the IETF [4, 5]. Under this paradigm, services are defined and implemented within

individual administrative domains. To provide scalable QoS support, fine-grain user QoS

control information is only maintained at the edge routers (i.e., ingress and egress routers)

8

of an administrative domain. The user traffic is appropriatelyconditioned(i.e., shaped)

before injected into the network core. At core routers, no per-flow QoS state is maintained.

User packets are processed based on a number of pre-specifiedPer-Hop Behaviors(PHBs)

encoded by bit patterns carried inside a packet header that convey to core routers the desired

levels of QoS support. (We will refer to these bit patterns, or the PHBs they embody, as the

packet state.) End-to-end,user-to-userQoS support is provided through intra-domain QoS

provisioning and inter-domain service agreement. Thesecontrol planefunctions can be

performed, for example, by employing abandwidth brokerarchitecture [58]. The DiffServ

paradigm greatly simplifies the data plane of the network core of a domain, thereby mak-

ing it more scalable. On the other hand, the DiffServ architecture, as it is currently defined,

aims to provide onlycoarse-grainQoS support to users. It remains to be seen whether such

a service model would be sufficient to meet the potentially diverse user QoS requirements

in the future.

Indeed, the exact QoS provisioning power that can be provided by DiffServ is still under

great debate. For example, in the DiffServ framework [5], it is proposed that the simple

FIFO packet scheduling be used to support the EF (expedited forwarding) per-hop behavior

(PHB) [44]. Namely, at each router, EF packets from all users are queued at a single FIFO

buffer and serviced in the order of their arrival times at the queue. In [44], it is claimed

that EF can be “used to build a low loss, low latency, low jitter, assured bandwidth, end-

to-end service.” However, in a work by Charny and Le Boudec [11], it is shown that in

order to provide guaranteed delay service using FIFO, the overallnetwork utilization level

must be limited to a small fraction of its link capacities. More specifically, in a network

of FIFO schedulers, theworst-casedelay at each router is bounded only when the network

utilization level is limited to a factor smaller than1/(H∗− 1), whereH∗, referred to as the

network diameter, is the number of hops in the longest path of the network. Furthermore,

given the network utilization levelα < 1/(H∗−1), the worst-case delay bound isinversely

proportional to 1− α(H∗ − 1). Hence as the network utilization levelα gets closer to the

utilization bound1/(H∗ − 1), the worst-case delay bound approaches rapidly to infinity.

The elegant result of Charny and Le Boudec raises several interesting and important ques-

tions regarding thedesignandprovisioning powerof aggregate packet scheduling, or more

generally,the fundamental cost-performance trade-offs in supporting QoS in the Internet.

For ease of explosition, in the following we will refer to the schemes that require per-flow

state and perform per-flow operations at each Internet routers asstatefulQoS solutions;

whereas schemes that do not perform per-flow operations such as DiffServ asstatelessQoS

9

solutions. From the above discussions, we see that stateful QoS solutions such as IntServ

can provide powerful and flexible per-flow service guarantees, but they are complex and

costly. On the other hand, stateless QoS solutions such as DiffServ are much more scalable,

but they can only provide coarse-grained aggregate QoS support.

In an important piece of work, Stoica and Zhang, using the DiffServ paradigm and the

novel notion ofdynamic packet state, developed several techniques to support end-to-end

per-flowbandwidth and delay guaranteeswithout per-flow QoS management[73]. In the

data plane, they designed a new (non-work-conserving) scheduling algorithm, calledCore

Jitter Virtual Clockor CJVC, to provide end-to-end per-flow delay guaranteeswithout per-

flow scheduling states at core routers. (Such scheduling algorithms are referred to ascore

stateless, in contrast to the conventionalstatefulscheduling algorithms such as VC or WFQ,

where certain scheduling states must be maintained for each flow.) In the control plane,

an aggregate reservation estimationalgorithm is designed which eliminates the need of

maintainingper-flow QoS reservation states. Instead, anaggregateQoS reservation state is

maintained at each core router. A hop-by-hop signaling protocol, however, is still needed to

set up QoS reservation for each flow along its path within a domain. The work by Stoica and

Zhang is the first to demonstrate how per-flow service gurantees can be supported without

requiring Internet core routers to maintain per-flow state and perform per-flow operations.

However, in their work, only one single non-work-conserving packet scheduling is studied.

It is not clear if the basic technique can be used in a more general, working-conserving

packet scheduling environment. More importantly, the question regarding the fundamental

cost-performance trade-offs in supporting QoS in the Internet still remain unanswered.

2.2 Virtual Time Framework

In this part of the dissertation, we propose and develop a virtual time framework (VTF) as a

unifying packet scheduling framework to provide scalable support for guaranteed services.

Similar to the DiffServ architecture, in VTF, we distinguish network edge routers from

core routers. All per-flow state is maintained at network edge routers, core routers do

not maintain any per-flow state and do not perform any per-flow operation. That is, the

virtual time framework is core stateless. As illustrated in Figure 2.1, VTF has three key

components: packet state, edge router mechanism, and core router mechanism. In the

following we briefly discuss each of them one by one.

10

Figure 2.1: Illustration of Virtual Time Framework.

2.2.1 Packet State

When a packet is released into a network at an edge router, certain control state is inserted

into the packet header by the edge router. The key packet state is avirtual timestamp,

which is initialized as the packet releasing time at the network edge router. Depending

on the type of services supported by the network, some additional control state may be

carried in the packet header, such as the reservation rate of the flow that the packet belongs

to. As we will see shortly, core routers rely on the virtual timestamps to schedule packets.

Moreover, virtual timestamps may be updated within a network, again, depending on the

service supported by the network.

2.2.2 Edge Router Mechanism

Edge routers maintain per-flow state. As we discussed above, they also insert certain packet

state into the header of a packet when the packet is released into the network. Another

important role of an edge router is to shape the traffic of a flow released into the network,

to ensure that the amount of traffic of the flow released into the network satisfies certain

condition.

2.2.3 Core Router Mechanism

Core routers rely on the virtual timestamp (and other control state) carried in packet headers

to schedule packets. Depending the specific packet scheduling algorithm implemented in

11

the network (and therefore the service supported by the network), core routers may update

the virtual timestamps carried in the packets.

In the next two chapters, we will present several specific implementations within this frame-

work to illustrate its components and properties in detail. More specifically, in Chapter 3,

we study twonewclasses of aggregate packet scheduling algorithms: thestatic earliest

time first(SETF) anddynamic earliest time first(DETF) algorithms. In the class of SETF

packet scheduling algorithms, packets are stamped with itsentry time at the network edge,

and they are scheduled in the order of their time stamps (i.e., their network entry times)

inside the network core; the class of DETF packet scheduling algorithms work in a similar

fashion, albeit with an important difference—the packet time stamps areupdatedat certain

routers (hence the termdynamic). In Chapter 4, we design a novelvirtual time reference

systemas a general architecture to supportper-flowservice guarantees. By studying these

packet scheduling algorithms, we illustrate the fundamental trade-offs in supporting QoS in

the Internet. Moreover, we demonstrate that both aggregate and per-flow service guarantees

can be supported in the same framework.

12

Chapter 3

Supporting Aggregate Guaranteed

Delay Services

3.1 Introduction

In this chapter, we illustrate how aggregate service guarantees can be supported in the

virtual time framework. More importantly, we attempt to address the fundamental trade-

offs in the design of aggregate packet scheduling algorithms and their provisioning power in

support of (worst-case)guaranteed delayservice. In particular, we study the relationships

between theworst-case edge-to-edge delay(i.e., the maximum delay experienced by any

packet across a network domain), themaximum allowable network utilization leveland the

“sophistication/complexity”of aggregate packet scheduling employed by a network.

Besides the conventional “TOS” or “DS” bits, we assume thatadditional control informa-

tion may be carried in the packet header for scheduling purpose. By encoding certaintiming

information in the packet header, we design twonewclasses of aggregate packet scheduling

algorithms: thestatic earliest time first(SETF) anddynamic earliest time first(DETF) al-

gorithms. In the class of SETF packet scheduling algorithms, packets are stamped with its

entry time at the network edge, and they are scheduled in the order of their time stamps (i.e.,

their network entry times) inside the network core; the class of DETF packet scheduling

algorithms work in a similar fashion, albeit with an important difference—the packet time

stamps areupdatedat certain routers (hence the termdynamic). In both classes, thegranu-

larity of timing information encoded in the packet state—as is determined by thenumber of

bits used for packet state encoding—is a critical factor that affects the provisioning power

13

of aggregate packet scheduling.

The objective of our study is to use these two new classes (SETF and DETF) of aggre-

gate packet scheduling algorithms, in addition to the simple FIFO discipline, to illustrate

the fundamental trade-offs in aggregate packet scheduling: 1)how with additional con-

trol information encoded in the packet state, and with added “sophistication/complexity”

in aggregate packet scheduling, the worst-case edge-to-edge delay bound and the maxi-

mum allowable network utilization bound can be improved; and 2)how these performance

bounds are affected by the number of bits available for packet state encoding. Through

analysis and numerical examples, we show that when packet time stamps are encoded with

thefinesttime granularity, both the SETF and DETF packet scheduling algorithms can at-

tain an arbitrary network utilization level (i.e.,α can be arbitrarily close to 1). In other

words, the maximum allowable network utilization bound isindependent ofthe network

diameterH∗. This is in contrast to the case of FIFO, where the maximum utilization level

is bounded by1/(H∗ − 1). Furthermore, using the more complex DETF, the worst-case

edge-to-edge delay bound islinear in H∗, whereas using the simpler SETF, the worst-case

edge-to-edge delay bound isinversely proportional to(1−α)H∗
. When packet time stamps

are encoded using coarser granularity (i.e., the number of bits for packet state encoding is

limited), the network utilization level is constrained by the time granularity. In addition,

the worst-case edge-to-edge delay bound is increased. With the same number of bits, the

more complex DETF packet scheduling algorithms have far superior performance over the

simpler SETF algorithms.

The remainder of this chapter is organized as follows. In Section 3.2 we present the basic

model and assumptions for our analysis. In Section 3.3, we re-establish the result in [11]

using our approach. The two new classes of aggregate packet scheduling, SETF and DETF,

are analyzed and the trade-offs discussed in Section 3.4 and Section 3.5, respectively. We

summerize this chapter in Section 3.6.

3.2 Network Model and Assumptions

Consider a single network domain, as shown in Figure 3.1, where all traffic entering the

network is shaped at the edge traffic conditioner before releasing into the network. No

traffic shaping or re-shaping is performed inside the network core. We assume that all

routers employ the same aggregate packet scheduling algorithm (e.g., FIFO) that performs

packet scheduling using only certain bits (thepacket state) carried in the packet header.

14

Shaping

Network core

Core router

Edge

Figure 3.1: The network model.

a ah hfh-1f

Edge

2ff1 a21 h-1a
S1

S21

Shaping

Sh-1
Sh

Figure 3.2: Packet’s arrival time at and departure time
from each scheduler.

No otherschedulinginformation is used or stored at core routers. We refer to the schedul-

ing mechanism employed at an outgoing link of a router1 as ascheduler. Let C be the

capacity of the corresponding outgoing link of a schedulerS. We will also refer toC as

the capacity of the schedulerS. We denote the MTU (maximum transmission unit) of

the link by Lmax, thenLmax/C is the transmission time of an MTU-sized packet. De-

fine ∆ = maxallS′s{Lmax/C}, i.e.,∆ is the maximum transmission time of any packet in

the network. We also assume that the path of any user flow is pre-determined, and fixed

throughout its duration. LetH∗ be the maximum number of hops in the paths that any user

flow may traverse in the network. We refer toH∗ as thenetwork diameter.

Consider an arbitrary flowj traversing the network. The traffic of the flow is shaped at the

network edge in such a manner that it conforms to atoken bucket regulated arrival curve

(σj, ρj) [20]: Let Aj(t, t + τ) denote the amount of the flowj traffic released into the

network during a time interval[t, t + τ], wheret ≥ 0, τ ≥ 0; thenAj(t, t + τ) ≤ σj + ρjτ .

We control the overall network utilization levelby imposing a utilization factorα on each

link as follows. Consider an arbitrary schedulerS with capacityC. LetF denote the set of

user flows traversingS. Then the following condition holds:

∑

j∈F
ρj ≤ αC. (3.1)

Clearly,0 < α ≤ 1. We will also refer to the utilization factorα as thenetwork utilization

levelof a network domain. In addition to the link utilization factorα, we will also impose an

overall boundβ ≥ 0 (in units of time) on the “burstiness” of flows traversing any scheduler

S:
∑

j∈F σj ≤ βC. As we will see later, thisburstiness factorβ plays a less critical role in

our analysis than the network utilization levelα.

1For simplicity, we assume that output-queueing is used.

15

From the above edge shaping and network utilization constraints, we can obtain an impor-

tant bound on the amount of traffic going through a given schedulerthat is injected at the

network edge during any time interval. Consider an arbitrary schedulerS with capacityC.

For any time interval[τ, t], let ÅS(τ, t) denote the amount of traffic injected into the net-

work during the time interval[τ, t] that will traverseS (at perhaps some later time). Here

we useÅ to emphasize that̊AS(τ, t) is not the traffic traversingS during the time interval

[τ, t], but injected into the network at the network edge during[τ, t]. Using the facts that

Aj(t, t+ τ) ≤ σj +ρjτ for all flows,
∑

j∈F ρj ≤ αC and
∑

j∈F σj ≤ βC, it is easy to show

that

ÅS(τ, t) ≤ αC(t− τ) + βC. (3.2)

We refer to this bound as theedge traffic provisioning conditionfor schedulerS. As we

will see later, the edge traffic provisioning condition is critical to our analysis of aggregate

packet scheduling algorithms.

Now consider a packetp (of any flow) that traverses a path withh ≤ H∗ hops. For

i = 1, 2, . . . , h, denote the scheduler at theith hop on the path of packetp as Si (see

Figure 3.2). Letap
i andfp

i represent, respectively, the time that packetp arrives at and

departs2 from schedulerSi. For ease of exposition, throughout this chapter we assume that

the propagation delay from one scheduler to another scheduler is zero. Henceap
i+1 = f p

i .

Note thatap
1 is the time packetp is released into the network (after going through the edge

traffic conditioner), andf p
h is the time packetp leaves the network. Hencef p

h − ap
1 is the

cumulative delay that packetp experiences along its path, and is referred to as theedge-

to-edgedelay experienced by packetp. (Note that the delay experienced by a packet at

the edge traffic conditioner is excluded from the edge-to-edge delay.) DefineD∗ to be the

worst-case edge-to-edge delay experienced by any packet in the network, i.e.,

D∗ = max
all p’s

{f p
h − ap

1}, (3.3)

where in the above definitionh is the number of hops on the path of packetp.

The key questions that we will address in the remainder of the chapter are: 1) given an

aggregate packet scheduling algorithm, under what network utilization levelα does an

2Throughout the chapter we adopt the following convention: a packet is considered to have arrived at a
scheduleronly when its last bit has been received, and it to have departed from the scheduleronly when its
last bit has been serviced.

16

upper bound onD∗ exist? 2) how does this bound depend on the network utilization level

α and the network diameterH∗? and 3) how these relationships are affected by the number

of bits available for packet state encoding as well as the added “sophistication/complexity”

in aggregate packet scheduling?

3.3 Network of FIFO Schedulers

In this section we re-establish the result of Charny and Le Boudec [11] for a network of

FIFO schedulersusing a different approach. Unlike [11] which uses an argument based

on the worst-case per-hop delay analysis, in our approach we attempt to obtain a recursive

relation forap
i ’s (or equivalently,fp

i ’s) for any packetp. From this recursive relation we

then derive an upper bound on the worst-case edge-to-edge delayD∗. As we will see later,

this argument is quite general and powerful, and forms the basis of all the analyses in this

chapter.

A key step in our analysis is to obtain an upper bound on the amount of traffic that is

serviced by a scheduler between the arrival and departure of any packetp at the scheduler.

This bound will allow us to establish a recursive relation betweenap
i+1 andap

i . For this

purpose, we introduce an important notation,τ ∗, which is the maximum time it takes for

any packet to reach its last hop. Formally,

τ ∗ = max
all p’s

{ap
h − ap

1}. (3.4)

Now consider a FIFO schedulerS of capacityC. Let ap
S denote the time a packetp arrives

at S, andf p
S the time packetp departs fromS. DefineQ(ap

S) to be the amount of traffic

serviced by the schedulerS between[ap
S, f p

S]. Note that sinceS is a FIFO scheduler,Q(ap
S)

is exactly the amount of traffic queued atS at the arrival time of packetp (with packetp

itself included). We have the following bound onQ(ap
S):

Lemma 1 For a FIFO schedulerS of capacityC, we have

Q(ap
S) ≤ αCτ ∗ + βC. (3.5)

Proof: Let p∗ be thelast packet before packetp (itself inclusive) that when packetp∗

arrives at schedulerS any packetp′ in the queue (including the one in service) satisfies the

17

following condition:

ap′
1 ≥ ap∗

1 . (3.6)

In other words, when packetp∗ arrives at schedulerS, it is the “oldest” packet in the queue:

namely,all other packets currently in the queue entered the network no early than packet

p∗. We note that such a packet always exists—if no other packets satisfy (3.6), the packet

that starts the current busy period certainly does. Letap∗
S denote the time packetp∗ arrived

at schedulerS. By the definition ofp∗, any packet that was either queued at schedulerS

at timeap∗
S or arrived at schedulerS betweenap∗

S andap
S must have entered the network

during the time interval[ap∗
1 , ap

S]. From (3.2), the amount of traffic carried by these packets

is bounded above byαC(ap
S − ap∗

1) + βC. Furthermore, since schedulerS is always busy

during [ap∗
S , ap

S], we have

Q(ap
S) ≤ αC(ap

S − ap∗
1) + βC − (ap

S − ap∗
S)C

= αC(ap
S − ap∗

S + ap∗
S − ap∗

1) + βC − (ap
S − ap∗

S)C

= αC(ap∗
S − ap∗

1) + βC + (α− 1)(ap
S − ap∗

S)C

≤ αCτ ∗ + βC,

the last step is becauseap∗
S − ap∗

1 ≤ τ ∗ (3.4) andα ≤ 1.

There is an intuitive explanation of the result in Lemma 1. Note that a FIFO scheduler

services packets in the order of their arrival times at the scheduler, regardless of when they

are released into the network. In particular, packets entering the network later than packetp

can potentially be serviced earlier than packetp. Intuitively, packets that are queued at the

time packetp arrives at schedulerS must have entered the network between[ap
S − τ ∗, ap

S]

and arrived at schedulerS before packetp. By the edge traffic provisioning condition (3.2),

the amount of traffic carried by these packets is bounded byαCτ ∗ + βC. This intuitive

argument is made rigorous in the proof of Lemma 1.

We now use Lemma 1 to derive a recursive relation forap
i ’s. Consider a packetp which

traverses a path withh hops. The capacity of theith scheduler on the path is denoted by

Ci. Then by the definition ofQ(ap
i), we have

ap
i+1 = fp

i = ap
i + Q(ap

i)/Ci ≤ ap
i + ατ ∗ + β. (3.7)

18

Recursively applying (3.7) and using the relationf p
i = ap

i+1, we have the following lemma.

Lemma 2 Consider a packetp which traverses a path withh hops. Then, fori = 1, 2, . . . , h,

we have,

f p
i − ap

1 ≤ i(ατ ∗ + β). (3.8)

Using Lemma 2, we can establish the following main results for a network of FIFO sched-

ulers.

Theorem 1 Given a network of FIFO schedulers with a network diameterH∗, if the net-

work utilization levelα satisfies the conditionα < 1
H∗−1

, thenτ ∗ ≤ (H∗−1)β
1−(H∗−1)α

. Further-

more, the worst-case edge-to-edge delayD∗ is bounded above by

D∗ ≤ H∗β
1− (H∗ − 1)α

. (3.9)

Proof: The proof includes two parts. We first prove that for the given value ofτ ∗, (3.4)

holds, i.e., no packets will experience a delay larger thanτ ∗ before reaching the last hop.

In the second part, we prove that the maximum edge-to-edge delayD∗ is indeed bounded.

Part 1. Let τ ∗ = (H∗−1)β
1−(H∗−1)α

. We claim that for any packetp which traverses a path withh

hops, the following relationship holds for anyi ≤ h,

ap
i − ap

1 ≤ τ ∗. (3.10)

Otherwise, assume thatfor the first time in the system (the network domain)a packetp∗

violates the relationship at serverSi∗ wherei∗ ≤ h (without loss of generality, we assumed

here that the path that packetp∗ traverses hash hops), i.e.,ap∗
i∗ −ap∗

1 > τ ∗. Therefore (3.10)

holds for all packets before the timeap∗
i∗ , in particular, we have,

ap∗
i∗−1 − ap∗

1 ≤ τ ∗.

From Lemma 2, we have,

ap∗
i∗−1 − ap∗

1 ≤ (i∗ − 1)(ατ ∗ + β).

19

Based on the result in Lemma 1 and the above equation, we get,

f p∗
i∗−1 ≤ ap∗

i∗−1 + ατ ∗ + β ≤ ap∗
1 + i∗(ατ ∗ + β). (3.11)

After some algebra, we have,

f p∗
i∗−1 − ap∗

1 ≤ (h− 1)β

1− (H∗ − 1)α
≤ τ ∗.

Notice thatf p∗
i∗−1 = ap∗

i∗ , we arrive at a contradition.

Part 2. In this part we prove that the worst-case edge-to-edge delay is bounded above by

D∗ ≤ H∗β
1−(H∗−1)α

.

Consider an arbitrary packetp which traverses a path withh hops. From Lemma 2, we

have,

f p
h − ap

1 ≤ h(ατ ∗ + β) ≤ hβ

1− (H∗ − 1)α
≤ H∗β

1− (H∗ − 1)α
.

Theorem 1 illustrates the provisioning power of a network of FIFO schedulers for support

of guaranteed delay service: in order to provide aprovableworst-case edge-to-edge delay

bound, the maximum network utilization level must be limited below1/(H∗−1). (We will

refer to this bound as themaximum allowable network utilization bound). For example,

with H∗ = 3 (a “small” network), the maximum network utilization must be kept below

50% of all link capacities; withH∗ = 11 (a relatively “large” network), the maximum

network utilization must be kept below10% of all link capacities. Furthermore, as the

network utilization level gets closer to1/(H∗−1), the worst-case edge-to-edge delay bound

approaches infinity.

3.4 Network of Static Earliest Time First Schedulers

In this section we will design and analyze a new class of aggregate packet scheduling

algorithms—the class ofstatic earliest time first(SETF) algorithms. Using this class of

aggregate packet scheduling algorithms, we will demonstrate how by adding some “sophis-

tication/complexity” in aggregate packet scheduling—in particular, by encoding additional

20

control information in the packet header, we can improve the maximum allowable utiliza-

tion bound, and reduce the provable worst-case edge-to-edge delay bound. Furthermore,

we will discuss the performance trade-offs of SETF packet algorithms when a limited num-

ber of bits is used for packet state encoding.

The additional control information used by the class of SETF schedulers is a(static) time

stampcarried in the packet header of a packet thatrecords the time the packet is released

into the network(after going through the edge traffic conditioner) at the network edge. Here

we assume that all edge devices that time-stamp the packets use aglobal clock (in other

words, the clocks at the edge devices are synchronized). We denote the time stamp of a

packetp by ωp
0. An SETF scheduler inside the network core schedules packets in the order

of their time stamps,ωp
0. Note that in the case of SETF,the time stamp of a packet is never

modified by any SETF scheduler, thus the termstatic.

Depending on the time granularity used to represent the packet time stamps, we can de-

sign a class of SETF schedulers with different performance/complexity trade-offs. We

use SETF(Γ) to denote the SETF packet scheduling algorithm where packet time stamps

are represented with time granularityΓ. In particular, SETF(0) denotes the SETF packet

scheduling algorithm where packet time stamps are represented with thefinesttime gran-

ularity, namely, packets are time-stamped with theprecisetime they are released into the

network. Formally, for any packetp, we haveωp
0 = ap

1. For a more general SETF(Γ)

scheduling algorithm whereΓ > 0, we divide the time into slots ofΓ time units each (see

Figure 3.3): tn = [(n − 1)Γ, nΓ), n = 1, 2, Packets released into the network are

time-stamped with the corresponding time slot numbern. In other words, packets that are

released into the network within the same time slot (say, the time slottn = [(n− 1)Γ, nΓ))

carry the same time stamp value, i.e.,ωp
0 = n. Therefore, packets released into the net-

work during the same time slot at the network edge areindistinguishableby an SETF(Γ)

scheduler inside the network core, and are serviced by the scheduler in a FIFO manner.

We will show later that using coarser time granularity (i.e., largerΓ) can potentially re-

duce the number of bits needed to encode the packet time stamps, but at the expenses of

degrading the performance bounds. In the following we will analyze SETF(0) first, since

its analysis is easier to present and follow. The general SETF(Γ) will be studied afterwards

in Section 3.4.2.

21

Γ Time

All these packets carry the same
 packet time stamp{

Figure 3.3: Time slots and packet
time stamps.

affect the scheduling time of packet p at the i-th server.

Time1
p

i
pa a

SETF(0): Only traffic released within this range at the network edge could

FIFO: Traffic released within this range at the network edge could
affect the scheduling time of packet p at the i-th server.

Figure 3.4: Illustration of the different behaviors of
FIFO and SETF(0).

3.4.1 SETF with Finest Time Granularity: SETF(0)

In this section we first establish performance bounds3 for SETF(0) and then discuss the

packet state encoding issue.

3.4.1.1 Network Utilization and Edge-to-Edge Delay Bounds

We follow the same approach to establish performance bounds for a network of SETF(0)

schedulers, as is employed for a network of FIFO schedulers in Section 3.3.

Consider an arbitrary SETF(0) schedulerS of capacityC. As in Section 3.3, letap
S andfp

S

denote, respectively, the time packetp arrives at and departs fromS, andQ(ap
S) denote the

amount of traffic serviced by the schedulerS between[ap
S, f p

S]. Note that unlike a FIFO

scheduler,Q(ap
S) may benot equal to the amount of traffic queued atS at the arrival time

of packetp. This is because a packetp′ in the queue of schedulerS at the time of packet

p arrival may have a time stampωp′
0 > ωp

0. In addition, a packetp′ arriving atS later than

packetp (but beforefp
S) may have a time stampωp′

0 < ωp
0, thus beginning service before

packetp. Nonetheless, we can apply a similar argument as used in Lemma 1 to establish

the following bound onQ(ap
S). To focus on the main message, the proof of the following

lemma, and the proofs of all other lemmas and theorems thereafter, are delegated into the

appendixes.

Lemma 3 For an SETF(0) schedulerS of capacityC, we have

Q(ap
S) ≤ αC{τ ∗ − (ap

S − ap
1)}+ βC + Lmax. (3.12)

3A simplified version of SETF(0), under the name ofLongest-in-System(LIS), is studied under a different
but simpler network model in [2]. Our proof, inspired by [2], is more general than that in [2]. We also
establish tighter performance bounds than [2].

22

Comparing Lemma 3 with Lemma 1, we see that the upper bound onQ(ap
S) for an SETF(0)

scheduler is reduced byαC(ap
S − ap

1) amount from that for an FIFO scheduler. This is not

surprising, since any packet that is released into the network afterap
1 = ωp

0 (the time packet

p enters the network) will not take any service away from packetp at an SETF(0) scheduler

(see Figure 3.4).

Now consider a packetp traversing a path withh hops, where the capacity of theith sched-

uler on the path isCi. From Lemma 3, the following recursive relations follow easily: for

i = 1, . . . , h,

ap
i+1 = fp

i = ap
i +

Q(ap
i)

Ci

≤ (1− α)ap
i + α(τ ∗ + ap

1) + β + ∆.

Solving the above recursive equations, we have

Lemma 4 Consider a packetp which traverses a path withh hops. Then fori = 1, 2, . . . , h,

we have,

f p
i − ap

1 ≤ τ ∗{1− (1− α)i}+ α−1(β + ∆){1− (1− α)i}. (3.13)

Using Lemma 4, we can establish the following main results for a network of SETF(0)

schedulers.

Theorem 2 Consider a network of SETF(0) schedulers with a network diameterH∗. For

0 < α < 1, we haveτ ∗ ≤ α−1(β+∆){1−(1−α)H∗−1}
(1−α)H∗−1 . Moreover, the worst-case edge-to-edge

delayD∗ is bounded above by,

D∗ ≤ α−1(β + ∆){1− (1− α)H∗}
(1− α)H∗−1

. (3.14)

Comparing with a network of FIFO schedulers, we see that in a network of SETF(0) sched-

ulers, the network utilization level can be kept as high (i.e., as close to 1) as wanted:unlike

FIFO, there is no limit on the maximum allowable network utilization level.However,

since the worst-case edge-to-edge delay bound is inversely proportional to(1 − α)H∗−1,

it increases exponentially asα → 1. Figure 3.5 compares the worst-case edge-to-edge

bounds for a FIFO network and an SETF(0) network (withH∗ = 8) as a function of the

network utilization levelα. In this example we assume that the capacity of all links is

23

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Network utilization

Ed
ge

−t
o−

ed
ge

 d
el

ay
 b

ou
nd

s
(m

s)

FIFO
SETF(0)

Figure 3.5: Performance comparison:
SETF(0) vs. FIFO.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

80

90

100

Network utilization

Bi
ts

 n
ee

de
d

fo
r p

ac
ke

t s
ta

te
 e

nc
od

in
g

H*=8
H*=12

Figure 3.6: No. of bits needed for encoding
for SETF(0).

10 Gb/s, and all packets have the same sizeL = 1000 bytes. We set thenetwork burstiness

factor β in a similar manner as in [11]: we assume that the token bucket size of each flow

is bounded in such a way thatσj ≤ β0ρ
j, whereβ0 (measured in units of time) is a constant

for all flows. For a given network utilization levelα, we then setβ = αβ0. In all the

numerical studies presented in this chapter, we chooseβ0 = 25 ms. From Figure 3.5, it is

clear that for a given network utilization level, the worst-case edge-to-edge delay bound for

an SETF(0) network is much better than that for a FIFO network4.

3.4.1.2 Time Stamp Encoding and Performance Trade-offs

In this section we discuss the implication of the worst-case edge-to-edge delay bound on

the number of bits needed to encode the time stamp information. Suppose thatC∗ is the

maximum link capacity of the network. Then it is sufficient to have a time granularity of

ι = 1/C∗ to mark the precise time each bit of data enters the network5. In other words,

4When the network utilization is extremely low (below3% in this example), the worst-case edge-to-edge
delay bound of a FIFO network is tighter than that of an SETF(0) network with the same configuration. This
is because that, under such an extremely low network utilization, the term∆ in (3.14) becomes a dominant
factor in the worst-case edge-to-edge delay bound of an SETF(0) network but has no effect on that of a FIFO
network. This can be shown more formally as follows: whenα is small, we can approximate the bound of
D∗ of an SETF(0) network as,

D∗ ≤ α−1(β + ∆){1− (1− α)H∗}
(1− α)H∗−1

≈ (β + ∆)H∗

1− (H∗ − 1)α
,

which is greater than the worst-case edge-to-edge delay bound of a FIFO network with the same configura-
tion. However, this phenomineon should not have significant importance because our interest is on higher
network utilizations.

5Although theoretically speaking the finest time granularityΓ = 0, it is obvious that in practiceι = 1/C∗

is sufficient, as no two bits can arrive at any link withinι units of time.

24

ι = 1/C∗ is the finest time granularity needed to represent packet time stamps. In the

remainder of this chapter we will assume that the clock granularity of the edge devices that

place time stamps on packets entering the network is at leastι, i.e., the clocks tick (at least)

every ι units of time. We now investigate the problem of how many bits are needed to

encode the packet time stamps.

Suppose thatm bits are sufficient to encode the packet time stamps precisely. Then the

time-stamp bit string wraps around every2mι units of time. Given that the worst-case

edge-to-edge delay of a packet in the network is bounded above byD∗, we must have

2D∗ ≤ 2mι so as to enable any SETF(0) scheduler to correctly distinguish and compare

the time stamps of two different packets6. From Theorem 2, we have

m ≥ log2{
α−1(β + ∆){1− (1− α)H∗}

((1− α)H∗−1)ι
}+ 1. (3.15)

Figure 3.6 shows the number of bits needed for packet time stamp encoding for two SETF(0)

networks withH∗ = 8 andH∗ = 12, respectively. The other parameters used in this ex-

ample are the same as in Figure 3.5. In particular,C∗ = 10Gb/s, and thusι = 1/C∗ =

10−7 ms. As expected, the number of bits needed for packet time stamp encoding increases

as the network utilization level increases; it also increases as the network diameter scales

up. From this figure we also see that even for a relative low network utilization level, the

number of bits required for packet time stamp encoding is relatively large. For example,

with H∗ = 8, 26 bits are needed forα = 0.1. Consequently, to achieve a meaningful net-

work utilization level, an SETF(0) network requires a large number of bits for packet time

stamp encoding, thus incurring significant control overhead. In the following section, we

will show how this problem can be potentially addressed by using coarser time granularity

for packet time stamp encoding.

3.4.2 SETF with Coarser Time Granularity: SETF(Γ)

In this section we analyze the SETF(Γ) packet scheduling algorithm with coarser time

granularity, i.e.,Γ > 0, and illustrate how the time granularity affects the performance

6Here we assume that no extra clock or other timing device/mechanism is used to assist an SETF(0)
scheduler to distinguish the packet time stamps. In other words, an SETF(0) scheduler must use the bit
strings encoded in the packet header to determine whether the time stamp of one packet is smaller than that
of another packet. This can be achieved, for example, by using thelollipop sequence numbertechnique [49].
Note that if we assume that each SETF(0) scheduler has a clock that is synchronized with the edge time
stamping devices, and thus can use this clock to identify the time slot the current time corresponds to, then it
is sufficient to have2mι ≥ D∗, i.e., one less bit is needed in this case.

25

trade-offs of an SETF network. In particular, we demonstrate that using a coarser time

granularity can potentially reduce the number of bits needed to encode the packet time

stamps, albeit at the expenses of sacrificing the maximum allowable network utilization.

Consider a network of SETF(Γ) schedulers. Recall that under SETF(Γ), the time is divided

into time slots and packets released into the network during the same time slot carry the

same time stamp value (i.e., the time slot number). Clearly the coarser the time granularity

Γ is, more packets will be time-stamped with the same time slot number. In particular,

if Γ is larger than the worst-case edge-to-edge delay of the network, then a network of

SETF(Γ) schedulers degenerates to a network of FIFO schedulers. In the following we

will employ the same approach as before to derive performance bounds for a network of

SETF(Γ) schedulers.

We first introduce a new notation,h∗: for a givenΓ, defineh∗ + 1 to be the minimum

number of hops that any packet can reach withinΓ units of time after it is released into the

network. Mathematically,h∗ is the smallesth such that the following relation holds for all

packets:

min
all p’s

{ap
h∗+1 − ap

1} ≥ Γ. (3.16)

Note that ifh∗ = 0, we must haveΓ = 0. This gives us SETF(0). On the other hand, ifΓ

is large enough such thath∗ = H∗ − 1, SETF(Γ) becomes FIFO. Hence, without loss of

generality, in the rest of this section we assume that1 ≤ h∗ < H∗−1. Given this definition

of h∗, we have the following bound onQ(ap
S), where the notations used in the lemma are

defined as before:

Lemma 5 Consider an SETF(Γ) schedulerS with capacityC. SupposeS is theith hop on

the path of a packetp. Then

Q(ap
S) ≤ αCτ ∗ + βC if 1 ≤ i ≤ h∗, (3.17)

and

Q(ap
S) ≤ αC{τ ∗ − (ap

S − ap
h∗+1)}+ βC + Lmax if h∗ < i ≤ h (3.18)

where recall thatap
h∗+1 is the time packetp reaches its (h∗ + 1)th hop on its path.

26

The results in Lemma 5 are intuitively clear: similar to SETF(0), (3.18) holds because by

the definition ofh∗, a packet entering the network in the time interval[ap
h∗+1, a

p
S] must have

a time stamp that is larger than that of packetp. On the other hand, fori ≤ h∗, packets

entering the network afterap
1 but beforeap

S may have the same time stamp as packetp,

i.e., they may carry the same time slot number. Hence the same bound as the FIFO bound

applies in (3.17).

Using Lemma 5, we can derive the following recursive relations: fori = 1, . . . , h∗,

ap
i+1 = fp

i = ap
i + ατ ∗ + β.

and fori = h∗ + 1, . . . , h (for simplicity, defineap
h+1 = fp

h),

ap
i+1 = fp

i = (1− α)ap
i + α(τ ∗ + ap

h∗+1) + β + ∆.

Solving these recursive equations, we have

Lemma 6 Consider a packetp which traverses a path withh hops. Then fori = 1, 2, . . . , h∗,

f p
i − ap

1 ≤ i(ατ ∗ + β); (3.19)

and fori = h∗ + 1, . . . , h,

f p
i −ap

1 ≤ h∗(ατ ∗+β)+ τ ∗{1− (1−α)i−h∗}+α−1(β +∆){1− (1−α)i−h∗}.(3.20)

Applying Lemma 6, we obtain the following performance bounds for a network of SETF(Γ)

schedulers.

Theorem 3 Consider a network of SETF(Γ) schedulers with a network diameterH∗. If the

network utilization levelα satisfies the following condition,

(1− α)H∗−h∗−1 > αh∗, (3.21)

then

τ ∗ ≤ βh∗ + α−1(β + ∆){1− (1− α)H∗−h∗−1}
(1− α)H∗−h∗−1 − αh∗

. (3.22)

27

Furthermore, the worst-case edge-to-edge delay is bounded above by,

D∗ ≤ βh∗ + α−1(β + ∆){1− (1− α)H∗−h∗}
(1− α)H∗−h∗−1 − αh∗

. (3.23)

Note first that in Theorem 3, settingh∗ = 0 yields the results for a network of SETF(0)

schedulers, whereas settingh∗ = H∗ − 1 yields the results for a network of FIFO sched-

ulers (with a difference of ∆
1−(H∗−1)α

caused by the extra care taken by the analysis of an

SETF network to accout for the non-preemptive property of an SETF scheduler). Hence

Theorem 2 and Theorem 1 can be considered as two special cases of Theorem 3. In general,

Theorem 3 states that with a coarser time granularityΓ > 0 (which determinesh∗), we can

no longer set the network utilization level at any arbitrary level, as in the case of SETF(0),

while still having afiniteworst-case edge-to-edge delay bound. In other words, for a given

Γ > 0, there is a limit on the maximum allowable network utilization level as imposed by

the condition (3.21). This limit on the maximum allowable network utilization level is the

performance penalty we pay for using coarser time granularity to represent the packet time

stamp information.

3.4.2.1 Time Stamp Encoding and Performance Trade-offs

In this section we show that using coarser time granularity can potentially reduce the num-

ber of bits needed for packet time stamp encoding. We also illustrate through numerical

examples how time granularity affects the performance trade-offs of SETF(Γ) networks.

We first consider the problem of packet time stamp encoding. Using the same argument as

in Section 3.4.1.2, for a given time granularityΓ and network utilization levelα, the number

of bitsm needed for packet time stamp encoding must satisfy the following condition:

m ≥ log2{
βh∗ + α−1(β + ∆){1− (1− α)H∗−h∗}

((1− α)H∗−h∗−1 − αh∗)Γ
}+ 1. (3.24)

From (3.24), we see that for a fixed network utilization levelα, largerΓ mayreduce the

number of bits needed for packet time stamp encoding.However, as we increaseΓ, h∗ may

also be increased. Consequently, the right hand side of (3.24) may increase. Hence the rela-

tionship betweenm andΓ is not strictly monotone. Furthermore, a largerΓ in general also

yields a smaller maximum allowable network utilization level bound. From Theorem 3,

(3.24) and the definition ofh∗ (3.16), it is not too hard to see that given a network with

28

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Network utilization

Ed
ge

−t
o−

ed
ge

 d
el

ay
 b

ou
nd

s
(m

s)

FIFO
SETF(Γ) (h*=4)
SETF(Γ) (h*=2)
SETF(Γ) (h*=1)
SETF(0)

Figure 3.7: Performance comparison: SETF
vs. FIFO.

0 0.05 0.1 0.15 0.2 0.25
10

12

14

16

18

20

22

24

Network utilization

Bi
ts

 n
ee

de
d

fo
r p

ac
ke

t s
ta

te
 e

nc
od

in
g

h*=1
h*=2
h*=4

Figure 3.8: No. of bits needed for encoding
for SETF(Γ).

diameterH∗, we can essentially divide the time granularityΓ into H∗ granularity levels:

each granularity level corresponds to one value ofh∗ = 0, 1, . . . , H∗ − 1. Thefinestgran-

ularity level corresponds toh∗ = 0, and thecoarsestgranularity level toh∗ = H∗ − 1. For

this reason, in the following numerical studies, we will useh∗ to indicate the time granu-

larity used in an SETF(Γ) network. These numerical studies demonstrate the performance

trade-offs involved in the design of SETF(Γ) networks using coarser time granularity, i.e.,

when the number of bits for packet time stamp encoding is limited. In all these studies,

except for the network diameterH∗ all other system parameters (link capacity, packet size,

β) are the same as used in Figure 3.5.

Figure 3.7 shows the effect of time granularity on the worst-case edge-to-edge delay bound

for an SETF(Γ) network withH∗ = 8. For comparison, we also include the results for the

corresponding FIFO network. From the figure it is clear that coarser time granularity (i.e.,

largerh∗) yields poorer worst-case edge-to-edge delay bound. As the time granularity gets

coarser (i.e.,h∗ increases), the worst-case edge-to-edge delay bound quickly approaches to

that of the FIFO network.

Next we illustrate how the network utilization level of an SETF(Γ) network affects the

number of bits needed for packet time stamp encoding. Figure 3.8 shows the number of

bits needed for packet time stamp encoding as a function of the network utilization level

under various time granularities (as indicated byh∗). In this example, the network diameter

H∗ = 8. From this figure we see that for low network utilization levels, using coarser time

granularity reduces the number of bits needed for packet time stamp encoding. However,

as coarser time granularity also imposes a tight bound on the maximum allowable network

utilization, this reduction in the number of bits needed for packet time stamp encoding

29

10 12 14 16 18 20 22 24 26 28 30
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Bits available for encoding packet time stamps

M
ax

im
um

 a
llo

w
ab

le
 n

et
w

or
k

ut
iliz

at
io

n

H* = 8, D* = 100
H* = 8, D* = 500
H* = 12, D* = 100
H* = 12, D* = 500

Figure 3.9: No. of bits for encoding, network
diameter, and maximum allowable network
utilization.

Packet time stamps are updated every h* hops

{

Edge Traffic Conditioner

{ {

Figure 3.10: Updating packet time stamps in-
side the network core.

may not be feasiblewhen the network utilization level is increased (this is why the curve

for a given time granularity (h∗) stops at certain network utilization level). To put it in

another way, to achieve a higher network utilization level, SETF(Γ) schedulers withfiner

time granularity (thus smallerh∗) must be used, thus requiring more bits for packet time

stamp encoding.

In the last set of numerical studies, we demonstrate how the number of bits available for

packet time stamp encoding affects the maximum allowable network utilization so as to

support a given target worst-case edge-to-edge delay bound for SETF networks. The results

are shown in Figure 3.9, where networks with a combination of the network diameters

H∗ = 8 andH∗ = 12 and delay boundsD∗ = 100 ms andD∗ = 500 ms are used. As

we can see from the figure that for a given number of bits for packet time stamp encoding,

as the network diameter increases, the maximum allowable network utilization decreases.

Note also that when the number of bits for packet time stamp encoding is small (e.g., less

than 15 for a network with parametersH∗ = 8 andD∗ = 100 ms), the packet time stamp

does no enhance the performance of a SETF(Γ, h∗) network, and the SETF(Γ, h∗) network

behaves essentially as a FIFO network with a maximum network utilization level around

0.11. Beyond this threshold, as the number of bits used increases, the maximum allowable

network utilization also increases. However, as the figure shows, further increasing the

number of bits beyond a certain value (e.g., 26 for a network with parametersH∗ = 8 and

D∗ = 100 ms) for encoding will not improve the maximum allowable network utilization.

30

3.5 Network of Dynamic Earliest Time First Schedulers

So far we have seen that by including additional control information in the packet header

and adding sophistication/complexity at network schedulers, the class of SETF packet

scheduling algorithms improve upon the maximum allowable network utilization and worst-

case edge-to-edge delay bounds of the simple FIFO packet scheduling algorithm. This per-

formance improvement comes essentially from the ability of an SETF scheduler to limit the

effect of “newer” packets on “older” packets. However, the provisioning power of SETF

packet scheduling algorithms is still rather limited. Given the finest time granularity to

encode the packet time stamps, although we can achieve arbitrary network utilization in

a network of SETF(0) schedulers, the worst-case edge-to-edge delay bound is inversely

proportional to(1 − α)H∗
. Hence the bound grows exponentially, as the network diam-

eterH∗ increases. In addition, with coarser time granularities, the performance of SETF

networks deteriorates further. In this section we devise another class of aggregate packet

scheduling algorithms—the class of DETF algorithms—which with further “sophistica-

tion/complexity” added at the schedulers, achieve far superior performance.

In the general definition of a DETF packet scheduling algorithm, we use two parameters:

the time granularityΓ and the(packet) time stamp increment hop counth∗. Note that unlike

SETF whereh∗ is determined byΓ, hereh∗ is independent ofΓ. Hence we denote a DETF

scheduler by DETF(Γ, h∗). In the following, we will present the definition of DETF(0, h∗)

first, i.e., DETF with the finest time granularity. The general definition of DETF(Γ, h∗) will

be given afterwards.

As in the case of SETF(0), the time stamp of a packet in a network of DETF(0, h∗) sched-

ulers is represented precisely. In particular, it is initialized at the network edge with the

time the packet is released into the network. Unlike SETF(0), however, the time stamp of

the packet will be updated everyh∗ hops (see Figure 3.10). Formally, suppose packetp

traverses a path ofh hops. Letωp
0 denote the time stamp of packetp as it is released into

the network, i.e.,ωp
0 = ap

1. Letκ = d h
h∗ e. Fork = 1, 2, . . . , κ− 1, the time stamp of packet

p is updatedafter it has traversed thekh∗th hop on its path (or as it enters the(kh∗ + 1)th

hop on its path). Letωp
k denote the packet time stamp of packetp after itskth update. The

packet time stampωp
k is updated using the followingupdate rule:

ωp
k := ωp

k−1 + d∗, k = 1, . . . , κ− 1, (3.25)

where the parameterd∗ > 0 is referred as the(packet) time stamp increment. We impose

31

the following condition ond∗ that relates the packet time stampωp
k to the actual time packet

p departs thekh∗th hop:

for k = 1, . . . , κ− 1, fp
kh∗ ≤ ωp

k, andfp
h ≤ ωp

κ := ωp
κ−1 + d∗. (3.26)

This condition ond∗ is referred to as thereality checkcondition. Intuitively, we can think

of the path of packetp being partitioned intoκ segmentsof h∗ hops each (except for the last

segment, which may be shorter thanh∗ hops). The reality check condition (3.26) ensures

that the packet time stamp carried by packetp after it has traversedk segments is not

smaller that the actual time it takes to traverse those segments. In the next section we will

see that the reality check condition (3.26) and the packet time stamp update rule (3.25) are

essential in establishing the performance bounds for a network of DETF schedulers.

We now present the definition for the general DETF(Γ, h∗) packet scheduling algorithm

with a (coarser) time granularityΓ > 0. As in the case of SETF(Γ), in a network of

DETF(Γ, h∗) schedulers, the time is divided into time slots ofΓ units: [(n− 1)Γ, nΓ), n =

1, 2, . . ., and all packet time stamps are represented using the time slots. In particular, if

packetp is released into the network in the time slot[(n−1)Γ, nΓ), thenωp
0 = nΓ. We also

require thatthe packet time stamp incrementd∗ be a multiple ofΓ. Hence the packet time

stampωp
k is always a multiple ofΓ. In practice, we can encodeωp

k as the corresponding

time slot number (as in the case of SETF(Γ)).

3.5.1 Performance Bounds for a Network of DETF Schedulers

In this section we establish performance bounds for a network of DETF schedulers. In par-

ticular, we will show that by usingdynamicpacket time stamps, we can obtain significantly

better performance bounds for a network of DETF schedulers than those for a network of

SETF schedulers.

Consider a network of DETF(Γ, h∗) schedulers, whereΓ ≥ 0 and1 ≤ h∗ ≤ H∗. We first

establish an important lemma which boundsthe amount of traffic carried by packets at a

DETF(Γ, h∗) scheduler whose time stamp values fall within a given time interval. Consider

a DETF(Γ, h∗) schedulerS. Given a time interval[τ, t], letM be the set of packets that

traverseS at some time whose time stamp values fall within[τ, t]. Namely,p ∈ M if

and only if for somek = 1, 2, . . . , κ,, S is on thekth segment of packetp’s path, and

τ ≤ ωp
k−1 ≤ t. For anyp ∈ M, we say that packetp virtually arrives atS during [τ, t].

32

Let ÃS(τ, t) denote the total amount of traffic virtually arriving atS during [τ, t], i.e., total

amount of traffic carried by packets inM. Then we have the following bound oñAS(τ, t).

Lemma 7 Consider an arbitrary schedulerS with capacityC in a network of DETF(Γ, h∗)

schedulers. For any time interval[τ, t], let Ã(τ, t) be defined as above. Then

Ã(τ, t) ≤ βC + αC(t− τ + Γ). (3.27)

Proof: For simplicity, we first prove a bound oñAj(τ, t), the amount of traffic virtually

arriving atS during [τ, t] from a flow j. Consider an arbitrary packetp of flow j which

virtually arrives atS (on thekth segment) during[τ, t], i.e.,τ ≤ ωp
k−1 ≤ t. From (3.25), it

is easy to see that,

ωp
k−1 = ωp

0 + (k − 1)d∗.

Becaseτ ≤ ωp
k−1 ≤ t, we have,

τ − (k − 1)d∗ ≤ ωp
0 ≤ t− (k − 1)d∗.

Therefore,

Ãj(τ, t) ≤ σj + ρjdt− (k − 1)d∗ − (τ − (k − 1)d∗)
Γ

eΓ ≤ σj + ρj(t− τ + Γ).(3.28)

From (3.28) and the edge traffic provisioning condition (3.2), the lemma follows eas-

ily.

Note that ifΓ = 0, the bound onÃ(τ, t) is exactly the same as the edge traffic provision-

ing condition (3.2). Intuitively, (3.27) means that using the (dynamic) packet time stamp

with the finest time granularity, the amount of trafficvirtually arriving atS during [τ, t]

is bounded in a manner as if the traffic were re-shaped atS using (3.2). In the general

case where a coarser time granularityΓ > 0 is used, an extraαCΓ amount of traffic may

(virtually) arrive atS, as opposed to (3.2) at the network edge. This is not surprising, since

with a coarser time granularity, a schedulerS inside the network core cannot distinguish a

packet from those other packets that traverseS and have the same time stamp value.

33

From Lemma 7, we can derive a recursive relation forωp
k’s using a similar argument as

used before. Based on this recursive relation, we can establish performance bounds for a

network of DETF(Γ, h∗) schedulers. The general results are somewhat “messy” to state.

For brevity, in the following we present results for three special butrepresentativecases.

As we will see later, the first two theorems are sufficient to demonstrate the provisioning

power of a network of DETF schedulers. The third theorem is included here for comparison

purpose.

Theorem 4 (A Network of DETF(0,1) Schedulers)Consider a network of DETF(0,1) sched-

ulers with a network diameterH∗. Letd∗ = β + ∆, then the reality condition (3.26) holds.

Furthermore, for any0 < α < 1, the worst-case edge-to-edge delayD∗ is bounded above

byD∗ ≤ H∗d∗ = H∗(β + ∆).

Theorem 5 (A Network of DETF(Γ, 1) Schedulers) Consider a network of DETF(Γ, 1)

schedulers with a network diameterH∗, whereΓ > 0. Let d∗ = d(αΓ + β + ∆)/ΓeΓ,

then the reality condition (3.26) holds. Furthermore, for any0 < α < 1, the worst-case

edge-to-edge delayD∗ is bounded above byD∗ ≤ H∗d∗ + Γ.

Theorem 6 (A Network of DETF(Γ, h∗) Schedulers withd∗ = Γ) Consider a network of

DETF(Γ, h∗) schedulers with a network diameterH∗, whereΓ > 0 (andh∗ > 1). We set

d∗ = Γ, i.e., the packet time stamp is advanced exactly one time slot every time it is up-

dated.Let κ∗ = dH∗
h∗ e. Suppose the network utilization levelα and the time granularityΓ

satisfy the following condition:

0 <
h∗(αΓ + β + ∆)

1− (h∗ − 1)α
≤ d∗ = Γ. (3.29)

Then the worst-case edge-to-edge delayD∗ is bounded above byD∗ ≤ (κ∗ + 1)Γ.

Note that a DETF(0,1) scheduler is a special case of the Virtual-Time Earliest-Deadline-

First (VT-EDF) packet scheduling algorithm proposed in [86] under thevirtual time refer-

ence systemframework, where the delay parameter for all flows is set tod∗. In general,

regarding the per-hop scheduling behavior, DETF is close to a special case of SCED+ by

Cruz [21]. However, SCED+ only considers discrete time and does not study the effect of

number of bits available for packet state encoding on the performance of a network.

34

From Theorem 4 and Theorem 5, we see that withh∗ = 1, the worst-case edge-to-edge

delay bound is linear in the network diameterH∗. Furthermore, with the finest time gran-

ularity, the worst-case edge-to-edge delay bound isindependent of the network utilization

levelα. This is because theper-hop delayis bounded byd∗ = β + ∆. With a coarser time

granularityΓ > 0, per-hop delayis bounded byd∗ = d(αΓ + β + ∆)/ΓeΓ, where the net-

work utilization level determines the “additional delay” (αΓ) that a packet may experience

at each hop.

From Theorem 6, we see that in a network of DETF(Γ, h∗) whered∗ = Γ andh∗ > 1, the

maximum allowable network utilization is bounded. To see why this is the case, first note

that we must haveα < 1/(h∗−1), otherwise the left hand side of (3.29) becomes infinitely.

For a givenΓ > 0, the condition (3.29) imposes the following tighter bound onα:

α <
1− h∗(β + ∆)Γ−1

2h∗ − 1
<

1

2h∗ − 1
<

1

h∗ − 1
. (3.30)

For a givenα that satisfies (3.30), comparing the worst-case edge-to-edge delay bound in

Theorem 6 to that of a network of FIFO schedulers with a network diameterh∗, we see that

updating packet time stamps everyh∗ hops effectively reduces a network of diameterH∗

into a number of smaller networks with diameterh∗. In particular, settingd∗ = Γ allows

us to consider these smaller networks as networks of FIFO schedulers with diameterh∗.

By appropriately taking into account the effect of dynamic time stamps with coarser time

granularity (the extraαΓ+∆ factor), Theorem 6 can essentially be obtained from the bound

for a network of FIFO schedulers.

3.5.2 Packet State Encoding

In this section we first consider the problem of packet state encoding for a network of DETF

schedulers, namely, the number of bits that is needed to encode thedynamicpacket time

stampandpossibly other control information for theproper operationof a DETF network.

First consider a network of DETF(0,1) schedulers with a network diameterH∗. As in the

case of SETF(0), we useι to denote the finest time granularity necessary to represent the

packet time stamps, i.e.,ι = 1/C∗, whereC∗ is the maximum link capacity of the network.

From Theorem 4, we see that the number of bitsm that is needed to encode the (dynamic)

packet time stamps precisely must satisfy the following condition:

2m−1ι ≥ H∗(β + ∆), or m ≥ log2 H∗ + log2[(β + ∆)/ι] + 1. (3.31)

35

Now consider a network of DETF(Γ, 1) with a coarser time granularityΓ > 0. From

Theorem 5, for a given network utilization levelα, we see that the number of bitsm that is

needed to encode the (dynamic) packet time stamps must satisfy the following condition:

2m−1Γ ≥ H∗dαΓ + β + ∆

Γ
eΓ+ Γ, or m ≥ log2{H∗d

αΓ + β + ∆

Γ
e+1}+1.(3.32)

Hence for a given network utilization levelα, coarser time granularity (i.e., largerΓ) in

general leads to fewer bits needed to encode the dynamic packet time stamps. However,

due to the ceiling operation in (3.32), at leastlog2{H∗ + 1} + 1 bits are needed. This

effectivelyplaces a bound on the range of time granularities that should be used, i.e.,Γ ∈
[0, (β + ∆)/(1− α)]. Any coarser time granularityΓ > (β + ∆)/(1− α) will not reduce

the minimum number of bits,log2{H∗ + 1}+ 1, needed for packet time stamp encoding.

In the general case whereh∗ > 1, in order to ensure a DETF(Γ, h∗) scheduler to work

properly, not only do we need to encode the packet time stamps, we also needsome addi-

tional control informationto be carried in the packet header of each packet: in order for a

scheduler to know whether the packet time stamp of a packet must be updated, we include

a hop-count counteras part of the packet state carried in the packet header to record the

number of hops a packet has traversed. This hop-count counter is incremented every time a

packet traverses a scheduler, and it is reset when it reachesh∗. Thus the hop-count counter

can be encoded usinglog2 h∗ number of bits. Therefore for a network of DETF(Γ, h∗)

whered∗ is set toΓ, from Theorem 6 the total number of bits needed for packet state

encoding is given by

m ≥ log2{κ∗ + 1}+ 1 + log2 h∗, (3.33)

provided that the network utilization levelα and the time granularityΓ are chosen in such

a manner that (3.29) holds. Note that from (3.33) we havem ≥ log2{κ∗h∗ + h∗} + 1 ≥
log2{H∗ + h∗} + 1. Therefore, the number of bits needed for encoding the packet states

is increased ash∗ increases. Moreover, via (3.29)h∗ also affects the maximum allowable

network utilization bound. In particular, from (3.30) a largerh∗ leads to a smaller bound

on the maximum allowable network utilization. For these reasons it is sufficient to only

consider networks of DETF(Γ, 1) schedulers7.

7In practice, it is possible to implement the hop-count counter using, say, the TTL field in the IP header,
thus avoiding the extralog2 h∗ bits. For example, we have implemented two versions of DETF packet
scheduling algorithms in FreeBSD: one using IP-IP tunneling technique, where the TTL field in the en-

36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Network utilization

Ed
ge

−t
o−

ed
ge

 d
el

ay
 b

ou
nd

s
(m

s)
FIFO
SETF(Γ) (h*=2)
SETF(0)
DETF(Γ, 2)
DETF(Γ,1)
DETF(0,1)

Figure 3.11: Edge-to-edge delay bound
comparison (H∗ = 8).

50 100 150 200 250 300 350 400 450 500 550
0

0.2

0.4

0.6

0.8

1

Edge−to−edge delay bounds (ms)

M
ax

im
um

 a
llo

w
ab

le
 n

et
w

or
k

ut
iliz

at
io

n

FIFO
SETF(Γ),m=20
DETF(Γ,2),m=4
DETF(Γ,1),m=6
DETF(Γ,1),m=7

Figure 3.12: Provisioning power of FIFO,
SETF(Γ), DETF(Γ, 1), and DETF(Γ, 2) net-
works (H∗ = 8).

3.5.3 Performance Trade-offs and Provisioning Power

In this section we use numerical examples to demonstrate the performance trade-offs in

the design of DETF networks. By comparing the performance of FIFO, SETF and DETF

networks, we also illustrate the provisioning power of the aggregate packet scheduling

algorithms in support of guaranteed delay service. Lastly, we briefly touch on the issue of

complexity/cost in implementing the aggregate packet scheduling algorithms.

The network setting for all the studies is the same as before. Namely, all links have a

capacity of10 Gb/s, all packets have a size ofL = 1000 B, andβ = αβ0, whereα is

the network utilization level andβ0 = 25 ms. The network diameterH∗ and the network

utilization levelα will be varied in different studies.

In the first set of numerical examples, we illustrate the relationship between the network

utilization levelα and the worst-case edge-to-edge delay bound for networks employing

various aggregate packet scheduling algorithms. The results are shown in Figure 3.11,

whereH∗ = 8 is used for all the networks. For the SETF(Γ) network, we chooseΓ =

2∆ = 0.8µs (i.e., h∗ = 2). Whereas in the DETF(Γ, 2) network, the time granularityΓ

is chosen in such a way that (3.29) in Theorem 6 holds. For the DETF(Γ, 1) network, we

setΓ = 5 ms. From the figure we see that the DETF(0,1) network has the best worst-case

edge-to-edge delay bound. Despite a relatively coarser time granularity, the delay bound

capsulating IP header is used to record the hop count a packet has traversed within a given network domain
and serves as the hop-count counter; another using MPLS, where the TTL field in the MPLS label is used
for the same purpose. In both cases, we only need additional bits to encode the packet time stamps. In such
situations, a network of DETF(Γ, h∗) schedulers withd∗ = Γ > 0 andh∗ > 1 requires onlylog2 κ∗ + 1
additional number of bits.

37

for the DETF(Γ, 1) network is fairly close to that of the DETF(0,1) network. In addition,

when the network utilization level is larger than 0.2, the DETF(Γ, 1) network also has a

better delay bound than the rest of the networks. From Theorem 5, it is clear that the

worst-case edge-to-edge delay bound for a DETF(Γ, 1) network decreases (and approaches

to that of a DETF(0, 1) network), when finer time granularity (smallerΓ) is used. The

delay bound of the DETF(Γ, 2) network is worse than that of the SETF(0) network (with

the finest time granularity), but is considerably better than those of the SETF(Γ) and FIFO

networks. From this example, we see that the DETF networks in general have far better

delay performance than those of SETF and FIFO networks.

In the next set of numerical examples, we compare the provisioning power of the various

aggregate packet scheduling algorithms. In particular, we consider the followingprovi-

sioningproblem: given a network employing a certain aggregate packet scheduling algo-

rithm, what is the maximum allowable network utilization level we can attain in order to

meet atargetworst-case edge-to-edge delay bound? In this study, we allow networks em-

ploying different aggregate packet scheduling algorithms to use different number bits for

packet state encoding. More specifically, the FIFO network needs no additional bits. The

SETF(Γ) network (whereΓ is chosen such thath∗ = 1) uses20 additional bits for time

stamp encoding. The number of additional bits used by the DETF(Γ, 2) network is 3. For

the DETF(Γ, 1) networks, we consider two cases: one uses6 additional bits, while the

other uses7 bits. All the networks used in these studies have the same diameterH∗ = 8.

Figure 3.12 shows the maximum allowable network utilization level as a function of the

target worst-case edge-to-edge delay bound for the various networks. The results clearly

demonstrate the performance advantage of the DETF networks. In particular, with a few

number of bits needed for packet state encoding, the DETF(Γ, 1) networks can attain much

higher network utilization level, while supporting the same worst-case edge-to-edge delay

bound.

In the last set of numerical examples, we focus on the DETF(Γ, 1) networks only. In this

study, we investigate the design and performance trade-offs in employing DETF(Γ, 1) net-

works to support guaranteed delay service. In particular, we consider the following prob-

lem: given afixednumber of bits for packet state encoding, what is the maximum allowable

network utilization level that we can attain to support a target worst-case edge-to-edge de-

lay bound? Note that for a network of diameterH∗, at leastlog2{H∗+1}+1 bits are needed

for packet state encoding. More bits available will allow us to choose finer time granularity

for time stamp encoding, thus yielding a better delay bound as well as a higher maximum

38

4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Bits available for encoding packet time stamps

M
ax

im
um

 a
llo

w
ab

le
 n

et
w

or
k

ut
iliz

at
io

n

D*=500 ms
D*=200 ms
D*=100 ms

Figure 3.13: Design and performance trade-
offs for DETF(Γ, 1) networks (H∗ = 8).

4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Bits available for encoding packet time stamps

M
ax

im
um

 a
llo

w
ab

le
 n

et
w

or
k

ut
iliz

at
io

n

D*=500 ms
D*=200 ms
D*=100 ms

Figure 3.14: Design and performance trade-
offs for DETF(Γ, 1) networks (H∗ = 12).

network utilization level. In Figure 3.13 we show, for a network of diameterH∗ = 8, how

the number of bits available for packet state encoding affects the maximum network utiliza-

tion level so as to support a given target worst-case edge-to-edge delay bound. The same

results for a network of diameterH∗ = 12 are shown in Figure 3.14. From these results we

see that with relatively a few number of bits, a DETF network can achieve fairly decent or

good network utilization while meeting the target worst-case edge-to-edge delay bound. In

particular, with the target worst-case edge-to-edge delay bounds200 ms and500 ms, we

can achieve more than50% (and up to100%) network utilization level using only 6 to 7 ad-

ditional bits. Comparing Figure 3.13 and Figure 3.14, it is clear that a network with larger

diameter requires more bits than a network with smaller diameter to achieve the same max-

imum allowable network utilization. However, the minimum number of bits required for

packet state encoding grows only logarithmically with the network diameterH∗. Further-

more, today’s networks tend to be more “dense”, i.e., with relative smallH∗. Hence with

relatively small number of additional bits (e.g., 8 or 16 bits) for time stamp encoding, we

can design DETF(Γ, 1) networks to attain fairly high network utilization while supporting

reasonably good edge-to-edge delay bounds.

We conclude this section by briefly touching on the issue of cost/complexity in implement-

ing the aggregate packet scheduling algorithms. Besides the fact that additional bits are

needed for packet state encoding, both the SETF and DETF packet scheduling algorithms

require comparing packet time stamps and sorting packets accordingly. With the finest time

granularity, this sorting operation can be expensive. However, with only a few bits used for

packet time stamp encoding, sorting can be avoided by implementing a “calendar queue”

(or rotating priority queue [54]) with a number of FIFO queues. This particularly favors the

39

DETF(Γ, 1) packet scheduling algorithms, since the number of bits needed for time stamp

encoding can be kept small. However, compared to SETF, DETF(Γ, 1) packet scheduling

algorithms require updating packet time stamps at every router, and thusd∗ must be con-

figured at each router. Lastly, in terms of finding additional bits for packet state encoding,

we can re-use certain bits in the IP header [73]. This is the case in our prototype imple-

mentation using the IP-IP tunneling technique, where we re-use the IP identification field

(16 bits) in the encapsulating IP header to encode the packet time stamp.

3.6 Summary

In this chapter we investigated the fundamental trade-offs in aggregate packet scheduling

for support of (worst-case) guaranteed delay service. Based on a novel analytic approach

that focuses on network-wide performance issues, we studied the relationships between the

worst-case edge-to-edge delay, the maximum allowable network utilization level and the

“sophistication/complexity” of aggregate packet scheduling employed by a network. We

designed two new classes of aggregate packet scheduling algorithms—the static earliest

time first (SETF) and dynamic earliest time first (DETF) algorithms—both of which em-

ploy additional timing information carried in the packet header for packet scheduling, but

differ in their manipulation of the packet time stamps. Using the SETF and DETF as well

as the simple FIFO packet scheduling algorithms, we demonstrated that with additional

control information carried in the packet header and added “sophistication/complexity” at

network schedulers, both the maximum allowable network utilization level and the worst-

case edge-to-edge delay bound can be significantly improved. We further investigated the

impact of the number of bits available for packet state encoding on the performance trade-

offs as well as the provisioning power of these aggregate packet scheduling algorithms. In

particular, we showed that with relatively small number of bits for packet state encoding,

the DETF packet scheduling algorithms can attain fairly good performance bounds. These

results illustrate the fundamental trade-offs in the design of aggregate packet scheduling

algorithms, and shed light on the provisioning power of aggregate packet scheduling in

support of guaranteed delay service.

40

Chapter 4

Supporting Per-Flow Guaranteed

Services

4.1 Introduction

In this chapter we propose and develop a novelvirtual time reference systemas aunifying

scheduling framework to provide scalable support for guaranteed services. In the same way

that the WFQ reference system relates to the IntServ architecture, the proposed virtual time

reference system is designed as aconceptualframework upon which guaranteed services

can be implemented in a scalable manner using the DiffServ paradigm. More specifically,

this virtual time reference system provides a unifying framework to characterize, in terms

of their abilities to provide delay and bandwidth guarantees, both theper-hop behaviorsof

core routers and theend-to-end propertiesof their concatenation. The key construct in the

proposed virtual time reference system is the notion ofpacket virtual time stamps, which,

as part of the packet state, are referenced and updated as packets traverse each core router.

A crucial property of packet virtual time stamps is that they can be computed using solely

the packet state carried by packets (plus a couple of fixed parameters associated with core

routers). In this sense, the virtual time reference system iscore stateless, as no per-flow

state is needed at core routers for computing packet virtual time stamps.

In this chapter, we lay the theoretical foundation for the definition and construction of

packet virtual time stamps. We describe how per-hop behavior of a core router (or rather

its scheduling mechanism) can be characterized via packet virtual time stamps, and based

on this characterization, establish end-to-end per-flow delay bounds. Consequently, we

41

demonstrate that in terms of support for guaranteed services, the proposed virtual time

reference system has the same expressive power as the IntServ model. Furthermore, we

show that the notion of packet virtual time stamps leads to the design ofnewcore state-

less scheduling algorithms, especially work-conserving ones. In addition, our framework

does not excludethe use of existing scheduling algorithms such asstatefulfair queueing

algorithms to support guaranteed services.

The objectives of the proposed virtual time reference system are two-fold. First, as a ref-

erence system, it must notmandateany specific scheduling algorithms to be employed in

a network in order to provide guaranteed services. In other words, it must allow for di-

verse scheduling algorithms as long as they are capable of providing QoS guarantees. In

fact, we will show that our virtual time reference system can accommodate bothcore state-

lessscheduling algorithms such as CJVC andstatefulscheduling algorithms. Second, the

virtual time reference system provides a QoS abstraction for scheduling mechanisms that

decouplesthe data plane from the QoS control plane. This abstraction facilitates the design

of a bandwidth broker architecture (either centralized or distributed), where QoS states are

maintainedonly at bandwidth brokers,while still being capable of providing QoS guaran-

tees with similar granularity and flexibility of the IntServ guaranteed service. We believe

that these two objectives are important in implementing guaranteed services in practice. For

example, the ability to employ diverse scheduling algorithms not only encourages choice

and competition among equipment vendors and Internet service providers (ISPs), but also,

perhaps more importantly, allows a network and its services to evolve. Similarly, by main-

taining QoS reservation states only in bandwidth brokers, core routers are relieved of QoS

control functions such as admission control, making them potentially more efficient. Fur-

thermore, a QoS control plane which is decoupled from the data plane allows an ISP to

deploy sophisticated provisioning and admission control algorithms to optimize network

utilization without incurring software/hardware upgrades at core routers. This chapter will

focus mostly on the theoretical underpinning of the proposed virtual time reference system.

We will briefly address the issues regarding its implementation. The problem of designing

a bandwidth broker architecture based on the virtual time reference system to support QoS

provisioning and admission control will be briefly discussed.

The rest of this chapter is organized as follows. In the next section we will briefly out-

line the basic architecture of the virtual time reference system. In Section 4.3 we define a

virtual time reference system in the context of an ideal per-flow system. This virtual time

reference system is extended in Section 4.4 to account for the effect of packet schedul-

42

ing. Furthermore, end-to-end per-flow delay bounds are also derived using the virtual time

reference system. In Section 4.5, we design new core stateless scheduling algorithms us-

ing packet virtual time stamps. We then show that existing scheduling algorithms can be

accommodated in our framework—simple static scheduling algorithms with resource pre-

configuration in Section 4.6 and the generic latency-rate server scheduling framework in

Section 4.7. In Section 4.8 we briefly discuss various issues regarding implementation and

admission control. This chapter is concluded in Section 4.9.

4.2 Virtual Time Reference System: Basic Architecture

In this section we outline the basic architecture of the proposed unifying scheduling framework—

thevirtual time reference system. Conceptually, the virtual time reference system consists

of three logical components (see Figure 4.1 and Figure 4.2):packet statecarried by pack-

ets,edge traffic conditioningat the network edge, andper-hop virtual time reference/update

mechanismat core routers. The virtual time reference system is defined and implemented

within a singleadministrative domain. In other words, packet state inserted by one admin-

istrative domain will not be carried over to another administrative domain.

The packet state carried by a packet contains three types of information: 1) QoS reservation

information of the flow1 the packet belongs to (e.g., the reserved rate or delay parameter

of the flow); 2) a virtual time stamp of the packet; and 3) a virtual time adjustment term.

The packet state is initialized and inserted into a packet at the network edge after it has

gone through the traffic conditioner. Theper-hopbehavior of each core router is defined

with respect to the packet state carried by packets traversing it. As we will see later,the

virtual time stamps associated with the packets of a flow form the “thread” which “weaves”

together the per-hop behaviors of core routers along the flow’s path to support the QoS

guarantee of the flow.

Edge traffic conditioning plays a key role in the virtual time reference system, asit ensures

that traffic of a flow will never be injected into the network core at a rate exceeding its re-

served rate.This traffic conditioning is done by using a traffic shaper (or more specifically,

a rate spacer, see Figure 4.1(b)), which enforces appropriate spacing between the packets

of a flow based on its reserved rate. This is illustrated in the diagram on the right hand side

of Figure 4.1(b). Formally, for a flowj with a reserved raterj, the inter-arrival time of two

1Here a flow can be either an individual user flow, or an aggregate traffic flow of multiple user flows,
defined in whatever appropriate fashion.

43

Network core

Edge
conditioner

Packet state

Core router

(a) A conceptual network model

jr

rj

Edge conditioner

Unregulated traffic Regulated trafficof flow j of flow j

Arrival times of
unregulated traffic

Traffic after
edge conditioner

time

(b) Edge conditioner and its effect

Figure 4.1: Edge conditioning in the virtual time reference system.

44

consecutive packets of the flow is such that

aj,k+1 − aj,k ≥ Lj,k+1

rj
, (4.1)

whereaj,k denotes the arrival time of thekth packetpj,k of flow j at the network core, and

Lj,k the size of packetpj,k.

In the conceptualframework of the virtual time reference system, each core router is

equipped with a per-hop virtual time reference/update mechanism to maintain the continual

progression of thevirtual time embodied by the packet virtual time stamps. As a packet

traverses each core router along the path of its flow, a virtual time stamp is “attached” to the

packet. This virtual time stamp represents the arrival time of the packet at the core routerin

the virtual time, and thus it is also referred to as thevirtual arrival timeof the packet at the

core router. The virtual time stamps associated with packets of a flow satisfy an important

property, which we refer to as thevirtual spacing property. Let ω̃j,k be the virtual time

stamp associated with thekth packet,pj,k, of flow j. Then

ω̃j,k+1 − ω̃j,k ≥ Lj,k+1

rj
(4.2)

for all k.

Comparing (4.2) with (4.1), we see thatwith respect to the virtual time, the inter-arrival

time spacing is preserved at a core router. Or to put it another way,the “virtual rate” (as

defined with respect to the virtual time) of packets of a flow arriving at a core router does

not exceed the reserved rate of the flow. Clearly this statement in general does not hold with

respect to thereal arrival times of the packets at a core router (see Figure 4.2(b)). Another

key property of packet virtual time stamps is thatat a core router the virtual arrival time

of a packet always lags behind its real arrival time. This property (referred to as thereality

check condition) is important in deriving end-to-end delay bound experienced by packets

of a flow across the network core. The per-hop virtual time reference/update mechanism at

a core router is designed in such a manner so as to ensure that these properties of the packet

virtual time stamps are satisfied at the entry point and/or exit point of the core router (see

the illustration in Figure 4.2).

The virtual time reference system provides a unifying framework to formalize the per-

hop behavior of a core router and to quantify its ability to provide delay guarantees. This

45

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

VTRU

Virtual Time

Real Time

Router Router Router

VTRU VTRU

VTRU: Virtual Time Reference / Update Component

. . .

. . .

(a) Virtual time reference/update mechanism

r j time

Real arrival times of
packets in flow j

Virtual arrival times
of packets in flow j

(b) Virtual traffic shaping

Figure 4.2: Illustration of the virtual time reference system.

46

formalism is independent of the scheduling mechanism employed by the core routers,be it

stateful or stateless. Here we briefly describe how this mechanism works (see Section 4.4

for more details). Conceptually, for each packet traversing a core router, avirtual finish

time is computed and assigned to it. This virtual finish time is derived from its virtual

time stamp and other packet state information. Intuitively, it represents the time the packet

finishes its service in anideal per-flow reference system, where the flow to which the packet

belongs to is the only flow serviced by the system.The per-hop behavior of a core router is

defined in terms of an upper bound on the difference between the actual departure time and

virtual finish time of a packet traversing the core router. This upper bound is referred to as

theerror termof the core router. Therefore, the scheduling mechanism of the core router

can be abstracted into ascheduling blackboxcharacterized by an error term. This simple

abstraction enables us to deriveend-to-end delay boundsfor flows traversing an arbitrary

concatenation of such scheduling blackboxes, similar to what the notion of latency-rate

servers [72] does for various fair queue algorithms.

In summary, while based on the DiffServ paradigm, the virtual time reference system ren-

ders the same expressive power and generality, in terms of the ability to provide guaranteed

services, as the IntServ Model. Furthermore, the virtual time reference system provides

a unifying scheduling framework upon which a scalable QoS provisioning and admission

control framework can be built, where all QoS reservation states for guaranteed services are

eliminated from the network core. The remainder of this chapter is devoted to laying formal

foundation for the virtual time reference system. We also illustrate how various scheduling

algorithms fit into the unifying framework. Issues of implementation and admission control

will also be briefly discussed.

4.3 An Ideal Per-flow Virtual Time Reference System

In this section we motivate and introduce the notion of packet virtual time stamps in the

context of anideal per-flow system. The virtual time reference system defined in this con-

text is then extended in the next section to account for the effect of packet scheduling in a

real network system.

Figure 4.3 illustrates an ideal per-flow system, where a regulated flow is serviced by a

dedicated channel. The dedicated channel consists of a series of servers in tandem. Packets

of a flow j are servicedin order from server 1 to serverh. Fork = 1, 2, . . ., thekth packet

of flow j is denoted bypj,k, and its size byLj,k. Let rj be the reserved rate of flowj, anddj

47

flow j
fixed-delay server fixed-rate serverEdge Conditioner

S1 S S2 h

Figure 4.3: An ideal per-flow system.

a delay parameter associated with flowj. For simplicity of exposition, we assume that in

this ideal per-flow system the propagation delay from one server to the next server is zero.

We consider two types of servers:fixed-rate serversandfixed-delay servers. A fixed-rate

server has a service capacity equal to the reserved raterj of flow j. Hence a fixed-rate

server takesLj,k/rj amount of time to process packetpj,k of flow j. A fixed-delay server

has a fixed latency, which equals to the delay parameterdj of flow j. In other words, a fixed-

delay server with latencydj takes exactlydj amount of time to process packets of flowj,

independent of their packet sizes. We will see later the importance of fixed-delay servers in

modeling scheduling algorithms that can provide delay-rate decoupling. Throughout this

section, we assume that in the ideal per-flow system, there areq fixed-rate servers andh−q

fixed-delay servers.

Before we introduce the notion of packet virtual time stamps, we first need to understand

and quantify the end-to-end delay experienced by the packets in the ideal per-flow sys-

tem. We embark on this task in Section 4.3.1. Based on the results obtained thereof, in

Section 4.3.2 we will introduce the ideal per-flow virtual time reference system. Table 4.1

summarizes the important notation used in the chapter.

4.3.1 End-to-end Delay of the Ideal Per-flow System

Recall that before entering this ideal per-flow system, packets from flowj go through an

edge conditioner, where they are regulated so that the rate the packets are injected into the

ideal per-flow system never exceeds the reserved raterj of the flow. Formally, letaj,k
1 be

the arrival time2 of packetpj,k of flow j at the first server of the ideal per-flow system. Then

2Note that in order to model non-preemptive, non-cut-through network system, throughout the chapter we
adopt the following convention: a packet is considered to have arrived at a serveronly when its last bit has
been received, and it to have departed the serveronlywhen its last bit has been serviced.

48

Table 4.1: Notation used in VTRS.

General Notation
pj,k thekth packet of flowj
Lj,k packet length ofpj,k

Lj,max maximum packet length of flowj
L∗,max maximum packet length of all flows at a server/router

rj reserved rate of flowj
dj delay parameter of flowj
h number of hops (servers/routers) along the path of flowj
q number of fixed-rate servers/rate-based schedulers along flowj’s path

Notation for the Ideal Per-Flow System
aj,k

i arrival time of packetpj,k at nodei
f j,k

i finish time of packetpj,k at nodei
∆j,k

i cumulative queueing delay packetpj,k experienced up to serveri (inclusive)
Notation for the Virtual Time Reference System

ω̃j,k
i virtual time stamp of packetpj,k at nodei

ν̃j,k
i virtual finish time of packetpj,k at nodei

δj,k virtual time adjustment term for packetpj,k: δj,k = ∆j,k
q /q

d̃j,k
i virtual delay of packetpj,k at nodei: d̃j,k

i = ν̃j,k
i − ω̃j,k

i

âj,k
i actual time packetpj,k arrives at nodei

f̂ j,k
i actual time packetpj,k departs from nodei
Ψi error term of scheduling blackbox at nodei

πi,i+1 propagation delay from theith node to the(i + 1)th node

the edge spacing condition (4.3) holds, namely,

aj,k+1
1 − aj,k

1 ≥ Lj,k+1/rj, k = 1, 2, . . . (4.3)

LetAj(τ, t) denote the amount of flowj traffic that is injected into the ideal per-flow system

over a time interval[τ, t]. Using (4.3), it is easy to see that

Aj(τ, t) ≤ rj(t− τ) + Lj,max (4.4)

whereLj,max is the maximum packet size of flowj.

In order to derive the end-to-end delay experienced by packets in the ideal per-flow system,

we first consider thepure rate-basedsystem, where all servers are fixed-rate servers, i.e.,

49

q = h. This result can then be extended to the general ideal per-flow system with mixed

fixed-rate and fixed-delay servers.

For i = 1, 2, . . . , h, letaj,k
i denote the time packetpj,k arrives at serverSi, andf j,k

i the time

it leaves serveri. In the pure rate-based ideal per-flow system, it is not hard to see that the

following recursive relationships amongaj,k
i ’s andf j,k

i ’s hold. For anyk = 1, 2, . . .,

aj,k
i = f j,k

i−1, i = 2, . . . , h, (4.5)

and

f j,k
i = max{aj,k

i , f j,k−1
i }+

Lj,k

rj
, i = 1, 2, . . . , h, (4.6)

where in (4.6) we have used the convention thatf j,0
i = 0.

Note that in the special case where all packets of flowj have the same sizeLj, each packet

takes preciselyLj/rj to be processed at each fixed-rate server. (In this case, a fixed-rate

server functions as a fixed-delay server.) Because of the edge spacing property (4.3), we

observe that no packet will ever be delayed in any fixed-rate server (see Figure 4.4(a)). In

other words, fori = 1, 2, . . . , h, aj,k
i ≥ f j,k−1

i andf j,k
i = aj,k

i + Lj/rj. Therefore, in this

case we havef j,k
h = aj,k

1 + hLj/rj. Hence in this case, theend-to-end delayexperienced

by packetpj,k in the ideal per-flow system, which is defined asf j,k
h − aj,k

1 , is hLj/rj.

In the general case where packets of flowj have variable sizes, the situation becomes

somewhat more complicated. As shown in Figure 4.4(b), a small packet may be delayed

at a server due to the longer processing time of a large packet preceding it. This delay can

have a cascading effect which may cause more succeeding packets to be delayed.

For i = 1, 2, . . . , h, let ∆j,k
i denote the cumulative queueing delay experienced by packet

pj,k up to serveri (inclusive). Formally,

∆j,k
i = f j,k

i − (aj,k
1 + i

Lj,k

rj
). (4.7)

For the pure rate-based ideal per-flow system, we can derive an important recursive relation,

∆j,k
i to ∆j,k−1

i and the arrival times of packetspj,k−1 andpj,k at the first-hop server. This

recursive relation is given in the following theorem, the proof of which can be found in

Appendix B.1.

50

Theorem 7 For any packetpj,k, k = 1, . . ., andi = 1, 2, . . . , h,

∆j,1
i = 0

and

∆j,k
i = max

{
0, ∆j,k−1

i + i
Lj,k−1 − Lj,k

rj
+ aj,k−1

1 − aj,k
1 +

Lj,k

rj

}
. (4.8)

The importance of Theorem 7 lies in the fact that for eachpj,k, ∆j,k
h can be calculated

(recursively)at the network edge. As we will see in Section 4.3.2, this fact is critical in

providing acore statelessdefinition of packet virtual time stamps for a system involving

fixed-rate servers with variable packet sizes.

We now consider the general ideal per-flow system with both fixed-rate and fixed-delay

servers. Recall that we assume we haveq fixed-rate servers andh − q fixed delay servers.

As before, letaj,k
i andf j,k

i denote the arrival time and departure time of packetpj,k at server

Si. Clearly, ifSi is a fixed-rate server, the recursive relation (4.6) holds amongaj,k
i ’s and

f j,k
i ’s. In the case whereSi is a fixed-delay server, we have that fork = 1, 2, . . .,

aj,k
i = f j,k

i−1 andf j,k
i = aj,k

i + dj. (4.9)

Unlike a fixed-rate server, every packet of flowj incurs a delay of preciselydj at a fixed-

delay server, regardless of its size. Hence there is no extra queueing delay due to the packet

size difference (see Figure 4.4(c)). It is easy to see that we can re-arrange the location

of the fixed-rate servers in the ideal per-flow system without affecting the end-to-end delay

experienced by each packet in the system. Hence, without loss of generality, we can assume

that the lastn− q servers are the fixed delay servers. Then from (4.7), we have

f j,k
h = aj,k

1 + ∆j,k
q + q

Lj,k

rj
+ (h− q)dj.

Therefore, the end-to-end delay of packetpj,k in the ideal per-flow system isf j,k
h − aj,k

1 =

∆j,k
q + qLj,k

rj + (h − q)dj. In particular, from Corollary 19 in Appendix B.1, we have

∆j,k
q + qLj,k/rj ≤ qLj,max/rj. Thus,

f j,k
h − aj,k

1 ≤ q
Lj,max

rj
+ (h− q)dj. (4.10)

51

at a fixed-rate server
Arrival times of packets

Service curve

rj

Finish times of packets
at a fixed-rate server

(a) Fixed-rate server with
constant-size packets

at a fixed-rate server
Arrival times of packets

Service curve

Finish times of packets
at a fixed-rate server

r
j

(b) Fixed-rate server with
variable-size packets

at a fixed-delay server
Arrival times of packets

Service curve

Finish times of packets
at a fixed-delay server

dj

(c) Fixed-delay server

Figure 4.4: Delay experienced by packets at a server in the ideal per-flow system.

Note that the above end-to-end delay bound holds for all packets of flowj. As an aside,

from the perspective of providing end-to-end delay bounds, we can treat a fixed-rate server

with service capacityrj as if it were a fixed-delay server with a latency parameterLj,max/rj.

The resulting “pure” delay-based system yields exactly the same delay bound (4.10). This

treatment of fixed-rate servers may simplify the implementation of the virtual time refer-

ence system in practice (see Section 4.8.1).

4.3.2 Packet Virtual Time Stamps and Ideal Per-flow System

The key construct in the proposed virtual time reference system is the notion ofpacket

virtual time stamps. In this section, we formally specify the properties of packet virtual time

52

stamps, and provide a definition in the context of the ideal per-flow system. The resulting

virtual time reference system is referred to as theideal per-flow virtual time reference

system.

For i = 1, 2, . . . , h, let ω̃j,k
i denote the virtual time stamp associated with packetpj,k at

serverSi. Intuitively, we can regard̃ωj,k
i as the (virtual) arrival time of packetpj,k at server

Si according to the virtual time. At serverSi, packetpj,k is also assigned avirtual finish

time, denoted bỹνj,k
i , whereν̃j,k

i ≥ ω̃j,k
i . The differencẽdj,k

i = ν̃j,k
i − ω̃j,k

i is referred to as

thevirtual delayassociated with packetpj,k at serverSi.

We postulate the following properties that packet virtual time stamps (and the correspond-

ing virtual finish times) of flowj must satisfy at each serverSi.

Virtual Spacing: for k = 1, 2, . . .,

ω̃j,k+1
i − ω̃j,k

i ≥ Lj,k+1

rj
. (4.11)

Reality Check: ω̃j,k
i ≥ aj,k

i , where recall thataj,k
i is the real time packetpj,k arrives at

serverSi.

Bounded Delay: f j,k
h = ν̃j,k

h , or more generally,f j,k
h − ν̃j,k

h is bounded from above.

Core Stateless:the virtual time stamp̃ωj,k
i of each packetpj,k can be calculated at each

serverSi using solely the packet state information carried by the packet (possibly

with some additional constant parameters associated with the server).

Intuitively, the virtual spacing propertyensures that according to the virtual time, the

amount of flowj traffic arriving at serveri is limited by its reserved raterj. To put it

formally, consider an arbitrary time interval[τ, t]. We say thataccording to the virtual

time, packetpj,k arrives at serverSi during the time interval[τ, t] (or simply, packetpj,k

virtually arrivesat serverSi during the time interval[τ, t]), if and only if τ ≤ ω̃j,k
i ≤ t. Let

Ãj(τ, t) denote the amount of flowj traffic arriving virtually in the time interval[τ, t]. It

can be shown that (see theVirtual Shaping Lemmaand its proof in Appendix B.2)

Ãj(τ, t) ≤ rj(t− τ) + Lj,max. (4.12)

This bound is analogous to the traffic envelope (4.4) at the network edge, only that here the

amount of flowj traffic is measured according to the virtual time. It suggests that if packet

53

virtual time stamps are used to schedule packets,explicit rate control or reshaping within

the network core is not necessary.

Thereality check conditionandbounded delay propertyare important in ensuring that end-

to-end delay bounds can be derived using the virtual time reference system (both for the

ideal per-flow system as well as for areal network packet scheduling system, as we will

see later). Thecore stateless propertyis thekey to the construction of ascalablevirtual

time reference system that does not require per-flow scheduling state information at each

core router.3 In the following we provide a definition of packet virtual time stamps for the

ideal per-flow system, and show that it satisfies all the four properties listed above.

Consider the ideal per-flow system shown in Figure 4.3. Recall that we assume that there

areq fixed-rate servers andh− q fixed-delay servers in the ideal per-flow system. For each

packetpj,k, defineδj,k = ∆j,k
q /q. We refer toδj,k as thevirtual time adjustment termfor

packetpj,k. It is calculated at the network edge and inserted into the packet state in addition

to the reserved raterj and delay parameterdj. For i = 1, 2, . . . , h, thevirtual delay d̃j,k
i

associated with packetpj,k at serverSi is computed from the packet state information using

the following formula:

d̃j,k
i =

Lj,k/rj + δj,k if Si is a fixed rate server,

dj if Si a fixed delay server.
(4.13)

At the first-hop serverS1, the virtual time stamp of packetpj,k is defined to bẽωj,k
1 = aj,k

1 ,

which is the time packetpj,k is injected to the ideal per-flow system and arrives atS1. This

value is inserted into the packet state ofpj,k at the network edge. The corresponding virtual

finish time ofpj,k at serverSi is given byν̃j,k
i = ω̃j,k

i + d̃j,k
i .

For i = 2, . . . , h, the virtual time stamp̃ωj,k
i and the corresponding virtual finish timẽνj,k

i

associated with packetpj,k at serverSi are defined as follows:

ω̃j,k
i = ν̃j,k

i−1 = ω̃j,k
i−1 + d̃j,k

i−1 andν̃j,k
i = ω̃j,k

i + d̃j,k
i . (4.14)

3As an example of the importance of the core stateless property, consider the following “definition” of
virtual time stamps. At each serverSi, we defineω̃j,k

i = aj,k
i and ν̃j,k

i = f j,k
i for packetpj,k. Then from

(4.3), (4.5), (4.6), and (4.9), we see that the virtual spacing property holds. Furthermore, the reality check
condition and the bounded delay property also hold trivially. However, using this definition, computation of
packet virtual time stamps at a core router requires maintenance of per-flow scheduling state (i.e., the value
of the virtual time stamp of the previous packet). Therefore, such a definition isnotcore stateless.

54

From the above definition, it is clear that the core stateless property holds trivially. In the

rest of this section we show that the other three properties are also satisfied. This fact is

stated in the following theorem.

Theorem 8 For i = 1, 2, . . . , h, the virtual spacing property (4.11) holds at each server

Si. Furthermore,

ω̃j,k
i ≥ aj,k

i (4.15)

and in particular,

ν̃j,k
h = f j,k

h . (4.16)

Proof: We first establish that the virtual spacing property holds. Fixi and letqi be the

number of fixed-rate servers along the path from the first hop to the(i− 1)th hop. Clearly

qi ≤ q. Note that from (4.14) and (4.13), we have

ω̃j,k
i = ω̃j,k

1 +
i−1∑

q=1

d̃j,k
q = aj,k

1 + qi(δ
j,k +

Lj,k

rj
) + (i− 1− qi)d

j. (4.17)

Hence to prove (4.11), it suffices to show

aj,k
1 + qi(δ

j,k +
Lj,k

rj
) ≥ aj,k−1

1 + qi(δ
j,k−1 +

Lj,k−1

rj
) +

Lj,k

rj
,

or equivalently,

δj,k ≥ δj,k−1 +
Lj,k−1 − Lj,k

rj
+

aj,k−1
1 − aj,k

1 + Lj,k

rj

qi

. (4.18)

From the definition ofδj,k and Theorem 7, we have

δj,k =
∆j,k

q

q
≥ ∆j,k−1

q

q
+

Lj,k−1 − Lj,k

rj
+

aj,k−1
1 − aj,k

1 + Lj,k

rj

q
. (4.19)

Using (4.3) and the fact thatqi ≤ q, we see that the last term in the right hand side of (4.19)

is larger than the corresponding term in (4.18). Hence (4.18) holds.

55

We now establish (4.15). As̃ωj,k
1 = aj,k

1 , (4.15) holds trivially fori = 1. To show that

(4.15) also hold fori = 2, . . . , h, observe that

aj,k
i = f j,k

i−1 = aj,k
1 + ∆j,k

qi
+ qi

Lj,k

rj
+ (i− 1− qi)d

j, (4.20)

where recall thatqi is the number of fixed-rate servers amongS1, . . . ,Si−1.

Comparing (4.20) and (4.17) and using the fact that∆j,k
q /q ≥ ∆j,k

qi
/qi (see Corollary 18 in

Appendix B.1), we see that (4.15) indeed holds.

Lastly, (4.16) follows easily from the definitions, as

ν̃j,k
h = aj,k

1 + ∆j,k
q + q

Lj,k

rj
+ (h− q)dj = f j,k

h . (4.21)

4.4 Virtual Time Reference System and Packet Scheduling

In this section we extend the virtual time reference system defined in the context of the

ideal per-flow system to a network system where each core router is shared by multiple

flows. The key notion we will introduce is theerror termof a core router (or rather, of its

scheduling mechanism), which accounts for the effect of packet scheduling in providing

delay guarantees for a flow. Based on this notion of error term, we define a generic virtual

time reference system, which provides a unifying scheduling framework to characterize the

end-to-end behavior of core routers in providing delay guarantees.

Consider a flowj, whose path through a network core is shown in Figure 4.5. Flowj has a

reserved raterj and a delay parameterdj. The traffic of flowj is regulated at the network

edge such that fork = 1, 2, . . .,

âj,k+1
1 − âj,k

1 ≥ Lj,k+1

rj
(4.22)

whereâj,k
1 is theactual time packetpj,k of flow j arrives at the first router along its path,

after being injected into the network core.

As shown in Figure 4.5, the path of flowj consists ofh core routers, each of which employs

certain scheduling mechanism to provide guaranteed service for flowj. Fori = 1, 2, . . . , h,

56

Network core

Core router

Edge
conditioner

flow j

S1
S Sh2

Figure 4.5: A flow traverses a network core.

we will refer to the scheduler at core routeri as a schedulingblackbox, and denote it by

Si. In the following, we will first characterize theper-hop behaviorof the scheduling

blackboxes, and then show how end-to-end delay bounds can be derived based on this

characterization of their per-hop behavior.

4.4.1 Scheduling Blackbox: Per-Hop Behavior

Corresponding to the fixed-rate servers and fixed-delay servers in the ideal per-flow system,

we categorize the scheduling blackboxes into two types:rate-basedscheduling blackbox

anddelay-basedscheduling blackbox. They are distinguished by how the virtual delay pa-

rameter is computed, as in the ideal per-flow system. For a rate-based scheduling blackbox

Si, packetpj,k of flow j is assigned a virtual delaỹdj,k
i = Lj,k/rj + δj,k, whereδj,k is

the virtual time adjustment term carried in the packet state. For a delay-based scheduling

blackboxSi, packetpj,k of flow j is assigned a virtual delaỹdj,k
i = dj. In other words, the

virtual delayd̃j,k
i is given by the same formula as in (4.13). In either case, we see that the

virtual delayd̃j,k
i can be computed using only the packet state information carried by the

packet.

Now fix an indexi, wherei = 1, 2, . . . , h, and consider the scheduling blackboxSi. For any

flow j traversing the scheduling blackboxSi, let ω̃j,k
i be the virtual time stamp associated

with packetpj,k as it entersSi. We will provide a definition for̃ωj,k
i shortly and establish

its properties. At this point, we only assume that thereality check conditionholds atSi,

namely,

âj,k
i ≤ ω̃j,k

i (4.23)

whereâj,k
i is theactualtime that packetpj,k enters the scheduling blackboxSi. Hence upon

57

its arrival atSi, the virtual time stamp associated with packetpj,k is never smaller than its

real arrival time.

At Si, packetpj,k is assigned a virtual finish timẽνj,k
i , whereν̃j,k

i = ω̃j,k
i + d̃j,k

i . Let f̂ j,k
i

denote theactual time packetpj,k departsSj,k
i , i.e., f̂ j,k

i is thereal finish timeof pj,k. We

say that the scheduling blackboxSi canguaranteepackets of flowj their virtual delays

with anerror termΨi, if for any k,

f̂ j,k
i ≤ ν̃j,k

i + Ψi. (4.24)

In other words, each packet is guaranteed to depart the scheduling blackboxSi by the time

ν̃j,k
i + Ψi = ω̃j,k

i + d̃j,k
i + Ψi.

By using the packet virtual finish time as a reference point to quantify the real finish time

of a packet at a core router, we are able to abstract and characterize the per-hop behavior

of a core router via an error term. This error term captures the ability of the core router to

provide guaranteed services to a flow. In particular, for a rate-based scheduling blackbox

Si, we say thatSi guarantees flowj its reserved raterj with an error termΨi if (4.24)

holds. For a delay-based scheduling blackboxSi, we say thatSi guarantees flowj its delay

parameterdj with an error termΨi if (4.24) holds.

4.4.2 Virtual Time Reference System and End-to-End Delay Bounds

We now extend the virtual time reference system defined earlier to account for the effect

of packet scheduling by incorporating the error terms of core routers into the system. In

particular, we illustrate how packet virtual time stamps associated with flowj should be ref-

erenced and updated as packets of flowj traverse the core routers along the flow’s path. We

also derive and characterize the end-to-end behavior of these core routers in concatenation.

Consider the path of flowj shown in Figure 4.5. Suppose there areq rate-based scheduling

blackboxes andh− q delay-based scheduling blackboxes. Fori = 1, 2, . . . , h, letΨi be the

error term associated with the scheduling blackboxSi. In other words,Si can guarantee

flow j either its reserved raterj or its delay parameterdj with an error termΨi. The virtual

delayd̃j,k
i associated with packetpj,k atSi is given below:

d̃j,k
i =

Lj,k/rj + δj,k if Si is rate-based,

dj if Si is delay-based

58

whereδj,k = ∆j,k
q /q is the virtual time adjustment term of packetpj,k.

For i = 1, 2, . . . , h, let ω̃j,k
i denote the virtual time stamp associated with packetpj,k of

flow j atSi, andν̃j,k be the virtual finish time of packetpj,k atSi. Then

ν̃j,k = ω̃j,k
i + d̃j,k

i .

We now definẽωj,k
i and show that this definition satisfies the four requirements of packet

virtual time stamps, namely, thevirtual spacing property, the reality check condition, the

bounded delay propertyand thecore stateless property. Here in defining the reality check

condition and bounded delay property, the quantitiesaj,k
i andf j,k

i defined in Section 4.3.2

are replaced bŷaj,k
i and f̂ j,k

i , which denote thereal arrival time and real finish timeof

packetpj,k atSi, respectively.

As in the ideal per-flow system, the virtual time stamp associated with packetpj,k at the

first-hop routerS1 is set to its (real) arrival time, i.e.,

ω̃j,k
1 = âj,k

1 . (4.25)

Thusν̃j,k
1 = ω̃j,k

1 + d̃j,k
1 = âj,k

1 + d̃j,k
1 .

From (4.22), the virtual spacing property is clearly met at the first-hop router. Furthermore,

the reality check condition also holds trivially. Therefore, by the definition ofΨ1, we have

f̂ j,k
1 ≤ ν̃j,k

1 + Ψ1.

For i = 1, 2, . . . , h− 1, let πi,i+1 denote thepropagation delay4 from theith hop routerSi

to the(i + 1)th hop routerSi+1. Then

âj,k
i+1 = f̂ j,k

i + πi,i+1.

By the definition ofΨi, we have

âj,k
i+1 ≤ ν̃j,k

i + Ψi + πi,i+1. (4.26)

4Here for simplicity, we assume that the propagation delay experienced by each packet of flowj from Si

to Si+1 is a constant. In case this is not true, we can assumeπi,i+1 to be themaximumpropagation delay
from Si to Si+1. Then for any packetpj,k, âj,k

i+1 ≤ f̂ j,k
i + πi,i+1.

59

In order to ensure that the reality check condition holds as packetpj,k enters the(i + 1)th

hop routerSi+1, the relation (4.26) suggests that the virtual time stampω̃j,k
i+1 associated with

packetpj,k atSi+1 should be defined as follows:

ω̃j,k
i+1 = ν̃j,k

i + Ψi + πi,i+1 = ω̃j,k
i + d̃j,k

i + Ψi + πi,i+1. (4.27)

Thenâj,k
i+1 ≤ ω̃j,k

i+1.

SinceΨi’s andπi,i+1’s arefixedparameters associated with the core routers and the path of

flow j, it is clear that the packet virtual time stamps defined using (4.27) arecore stateless.

Namely, they can be computed at each core router using only the packet state information

carried by the packets (in addition to the two fixed parameters associated with the routers

and the flow’s path). Thusno per-flow state needs to be maintained at these core routers.

SinceΨi+πi,i+1 is a constant independent ofpj,k, comparing the definition of̃ωj,k
i in (4.27)

and that in (4.14), it is easy to see that the virtual spacing property also holds at each core

routerSi. Furthermore, we have

ω̃j,k
i+1 = ν̃j,k

i + Ψi + πi,i+1 = âj,k
1 +

i∑

q=1

d̃j,k
q +

i∑

q=1

Ψq +
i∑

q=1

πq,q+1.

In particular, we see that the bounded delay property holds, as

f̂ j,k
h ≤ ν̃j,k

h + Ψh = âj,k
1 +

h∑

q=1

d̃j,k
q +

h∑

q=1

Ψq +
h∑

q=2

πq−1,q.

This completes the construction of packet virtual time stamps for flowj. In a nutshell,

packet virtual time stamps are initialized using (4.25) at the network edge, and are refer-

enced and updated using (4.27) at each core router. The reference and update mechanism

of the resulting virtual time reference system is schematically shown in Figure 4.6.

Using the virtual time reference system, the following end-to-end delay bound for flowj

can be easily derived from the bounded delay property of packet virtual time stamps:

f̂ j,k
h − âj,k

1 ≤ ∆j,k
q + q

Lj,k

rj
+ (h− q)dj +

h∑

i=1

Ψi +
h−1∑

i=1

πi,i+1

≤ q
Lj,max

rj
+ (h− q)dj +

h∑

i=1

Ψi +
h−1∑

i=1

πi,i+1, (4.28)

60

~
i

i
i,i+1

j,kf
ia

j,k^

d

i

j,k Ψ + π

^

Core Stateless Virtual Time Plane

++

Computation

Real Time Plane

Virtual Finish Time

Scheduling Blackbox
.

.

.

.
..

Update
Core Stateless Virtual Time

v
j,k
i

~
w

i+1

~w
i

~ j,kj,k

Figure 4.6: Virtual time reference system: per-hop behavior and operations.

where the last inequality follows from Corollary 19 in Appendix B.1.

In the special case where only rate-based scheduling algorithms are employed at core

routers (i.e.,q = h), we have

f̂ j,k
h − âj,k

1 ≤ h
Lj,max

rj
+

h∑

i=1

Ψi +
h−1∑

i=1

πi,i+1. (4.29)

This bound is analogous to those derived for fair-queueing/latency-rate-server based schedul-

ing algorithms [30, 60, 72]. In particular, ifΨi = L∗,max/Ci, whereL∗,max is the maximum

packet size permissible at theith router andCi is its service capacity, then the above in-

equality yields precisely the same delay bound as is obtained for a flow in a network of

Weighted Fair Queueing (WFQ) schedulers [60] (or Virtual Clock (VC) schedulers [30]

for that matter).

By incorporating delay-based scheduling algorithms into our framework, we can provide

a certain degree ofrate and delay decoupling. To see this, letDj be such thatDj ≥

61

pLj,max/rj. Set

dj =
1

h− p
[Dj − p

Lj,max

rj
]. (4.30)

Suppose we can design delay-based scheduling algorithms that can support the delay pa-

rameterdj for flow j. Then from (4.28) we have

f̂ j,k
h − âj,k

1 ≤ Dj +
h∑

i=1

Ψi +
h−1∑

i=1

πi,i+1.

In the special case whereq = 0 (i.e., only delay-based scheduling algorithms are employed

along the path of flowj), settingdj = Dj/h yields

f̂ j,k
h − âj,k

1 ≤ Dj +
h∑

i=1

Ψi +
h−1∑

i=1

πi,i+1.

Clearly, this delay bound is completely decoupled from the reserved rate of flowj. Hence

using pure delay-based scheduling algorithms, it is possible to support an arbitrary delay

boundDj ≥ 0 for flow j (apart from the constant term
∑h

i=1 Ψi +
∑h−1

i=1 πi,i+1 associated

with the path of flowj).

Before we leave this section, it is interesting to compare our virtual time reference system

with the WFQ-based reference system used in the Internet IntServ model [6]. From (4.28),

we see that the constant term
∑h

i=1 Ψi +
∑h−1

i=1 πi,i+1 is equivalent to theDtotal term defined

in the IntServ guaranteed service, whereas the rate-dependent termqLj,max

rj corresponds to

theCtotal term in the IntServ guaranteed service. Furthermore, the delay parameterdj, sim-

ilar to theslack termin the IntServ guaranteed service, can be used to take advantage of the

delay-rate decoupling offered by delay-based scheduling algorithms. Therefore, in terms of

providing delay guaranteed services, our virtual time reference system has essentially the

same expressive power as the IntServ guaranteed service model. What distinguishes the vir-

tual time reference system from the IntServ guaranteed service model is itscore stateless

nature. Using the Internet DiffServ paradigm and the notion of packet virtual time stamps,

our virtual time reference system allows for more scalable scheduling mechanisms (e.g.,

core statelessscheduling algorithms) to be employed for the support of guaranteed ser-

vices. In addition, our virtual time reference system can accommodate both core stateless

and stateful scheduling algorithms, thereby making it a unifying scheduling framework.

62

In the next section we demonstrate that the notion of packet virtual time stamps leads to

the design of newcore statelessscheduling algorithms. In particular, we design both rate-

based and delay-based scheduling algorithms with theminimumerror termΨ = L∗,max/C.

In Section 4.6 we illustrate how some simple static scheduling algorithms can be used in

our framework to provide scalable scheduling support with resource pre-configuration. In

Section 4.7 we show that the generic scheduling framework based on latency-rate servers

(examples of which include VC, WFQ and various variations of fair queueing algorithms)

can also be accommodated in our framework.

4.5 Core Stateless Scheduling Algorithms: Examples

In this section we illustrate how the notion of packet virtual time stamps can be used to

design newcore statelessscheduling algorithms. In particular, we design a number of rate-

based and delay-based core stateless scheduling algorithms, and establish their error terms

using the properties of packet virtual time stamps.

4.5.1 Rate-Based Core Stateless Scheduling Algorithms

4.5.1.1 Core Stateless Virtual Clock Scheduling Algorithm

A core stateless virtual clock(C6SVC) schedulerS is a rate-based scheduler. It services

packets in the order of their virtual finish time. For any packetpj,k traversingS, let ω̃j,k be

the virtual time carried bypj,k as it entersS, andd̃j,k = Lj,k

rj +δj,k be its virtual delay. Then

the virtual finish timẽνj,k of pj,k is given byω̃j,k + d̃j,k. We claim that theC6SVC scheduler

can guarantee each flowj its reserved raterj with the minimum error termΨC6SV C =

L∗,max/C, provided that an appropriate schedulability condition is met. This fact is stated

formally in the following theorem, the proof of which can be found in Appendix B.2.

Theorem 9 ConsiderN flows traversing aC6SVC schedulerS such that the schedulability

condition
∑N

j=1 rj ≤ C is satisfied. Suppose thatâj,k ≤ ω̃j,k for any packetpj,k of flowj,

j = 1, 2, . . . , N . Then

f̂ j,k ≤ ν̃j,k +
L∗,max

C
. (4.31)

In other words,ΨC 6SV C = L∗,max

C
.

63

4.5.1.2 Core-Jitter Virtual Clock Scheduling Algorithm

In [73], the core-jitter virtual clock (CJVC) scheduling algorithm is presented, which can

be considered as a non-work-conserving version of theC6SVC scheduling algorithm. In

the CJVC scheduling algorithm, if a packetpj,k arrives too early, it is held in a rate con-

troller until its eligibility time, namely, when the real time reachesẽj,k = ω̃j,k + δj,k (see

Appendix B.2). It can be shown that the CJVC scheduler has the same error term as the

C6SVC scheduler does, i.e.,ΨCJV C = L∗,max/C. The proof follows a similar argument as

used in the case ofC 6SVC. ComparingC6SVC and CJVC, we see that thework-conserving

C 6SVC scheduling algorithm provides the same delay bound as thenon-work-conserving

CJVC scheduling algorithm, without the additional complexity of rate controller (albeit

core stateless) at each core router as is required by CJVC. This is achieved because of the

virtual shaping property of the core stateless virtual time.

4.5.1.3 Approximation to Core Stateless Virtual Clock

In order to reduce the overhead of sorting, we can use a series of FIFO queues to approx-

imate theC6SVC scheduling algorithm. These FIFO queues are referred to ascalendar

queues, as they are labeled by discrete time epochs. Conceptually, the virtual time is di-

vided into fixed time slots with a slot unit ofι: τ0, τ1, . . . , τp, . . ., whereτp = pι. Each

time slotτp has an associated FIFO queue5. Upon its arrival, a packetpj,k is placed in the

queue associated with time slotτp if τp ≤ ν̃j,k < τp+1. The calendar queues are serviced

in the order ofτp. Moreover, if queueτp is empty, the packet at the head of line from the

next non-empty queue is serviced. However, suppose a new packet arrives at the previously

empty queueτp while this packet (from a queueτp′ whereτp′ > τp) is being serviced. After

this packet departs, queueτp will be serviced next.

We call the above calendar queue approximation toC6SVC the slottedC6SVC. It can be

shown that a slottedC 6SVC scheduler has an error termΨslotted-C 6SV C = L∗,max/C + ι. This

result is stated in the following Theorem, the proof of which can be found in Appendix B.2.

Theorem 10 ConsiderN flows traversing a slotted-C6SVC schedulerS such that the schedu-

lability condition
∑N

j=1 rj ≤ C is satisfied. Suppose thatâj,k ≤ ω̃j,k for any packetpj,k of

5In reality, only a limited number of FIFO queues are needed. Whenever the current timet passesτp, the
queues can be reused for the future time slots. This implementation is similar to the rotation priority queue
proposed by Lieberherret al [54, 55].

64

flow j, j = 1, 2, . . . , N . Then

f̂ j,k ≤ ν̃j,k +
L∗,max

C
+ ι. (4.32)

In other words,Ψslotted-C6SV C = L∗,max

C
+ ι.

4.5.2 Delay-Based Core Stateless Scheduling Algorithms

4.5.2.1 Virtual Time Earliest Deadline First Algorithm

A virtual time earliest deadline first(VT-EDF) schedulerS is a delay-based scheduler.

It services packets in the order of their virtual finish time. Recall that the virtual finish

time of pj,k is given byν̃j,k = ω̃j,k + dj, whereω̃j,k is the virtual time carried bypj,k as it

entersS anddj is the delay parameter associated with its flow. Provided that an appropriate

schedulability condition is met, it can be shown that the VT-EDF scheduler can guarantee

each flowj its delay parameterdj with the minimum error termΨV T-EDF = L∗,max/C.

This fact is stated formally in the following theorem, the proof of which is relegated to

Appendix B.2.

Theorem 11 ConsiderN flows traversing a VT-EDF schedulerS, wheredj is the delay

parameter associated with flowj, 1 ≤ j ≤ N . Without loss of generality, assume0 ≤ d1 ≤
d2 ≤ · · · ≤ dN . Suppose the followingschedulability conditionholds:

N∑

j=1

[rj(t− dj) + Lj,max]1{t≥dj} ≤ Ct, for anyt ≥ 0 (4.33)

where the indicator function1{t≥dj} = 1 if t ≥ dj, 0 otherwise. Suppose thatâj,k ≤ ω̃j,k

for any packetpj,k of flowj, j = 1, 2, . . . , N . Then

f̂ j,k ≤ ν̃j,k +
L∗,max

C
. (4.34)

In other words,ΨV T-EDF = L∗,max

C
.

We observe that the schedulability condition is essentially the same as the one derived for

the standard EDF scheduling algorithm with flow traffic envelopes of the form given in (4.4)

(see, e.g., [33, 55]). When using the standard EDF scheduling algorithm in a network to

65

support guaranteed delay services,per-hop re-shaping at core routers is required. This is to

ensure that the flows conform to their traffic envelopes so that the schedulability condition

still holds at each hop [34, 82]. This rendition of the standard EDF is sometimes referred

to as rate-controlled EDF, or RC-EDF. In contrast, using VT-EDF only requires shaping

at the network edge to control the rate of each flow (i.e., to ensure (4.3) holds). As long

as the the schedulability condition (4.33) holds at every VT-EDF scheduler,no per-hop

re-shaping is needed for any core router. This is because the VT-EDF scheduler services

packets using the packet virtual arrival times, not their real arrival times. From (4.12), we

see thataccording to the virtual time, the traffic envelope for each flow is still preserved at

each core router.

It is also interesting to compare the schedulability condition of the Core Stateless Virtual

Clock with that of the Virtual-Time EDF. For each flowj, setdj = Lj,max/rj. Then the

condition
∑N

j=1 rj ≤ C is equivalent to
∑N

j=1[r
j(t − dj) + Lj,max] ≤ Ct for all t ≥ 0.

Comparing this condition with (4.33), we see that for thesamedelay parametersdj =

Lj,max/rj, the schedulability condition of Core Stateless Virtual Clock follows from that

of VT-EDF.

In fact, because the left hand side of (4.33) is a piece-wise linear function, the schedulability

condition (4.33) can be simplified into the following set ofclosed-formconditions on the

ratesrj ’s and delay parametersdj ’s of the flows:

N∑

j=1

rj ≤ C

and forj = 1, 2, . . . , N ,

dj ≥ Lj,max +
∑j−1

m=1[L
m,max − rmdm]

C −∑j−1
m=1 rm

.

In particular, ifdj = Lj,max/rj, j = 1, 2, . . . , N , then the above conditions ondj ’s hold

trivially if the condition onrj ’s holds, i.e,
∑N

j=1 rj ≤ C. Hence for this set of delay param-

eters, the rate condition
∑N

j=1 rj ≤ C is sufficient. This is why the core stateless virtual

clock can guarantee each flow a maximum delaydj = Lj,max/rj as long as
∑N

j=1 rj ≤ C.

In general, the VT-EDF scheduler can guarantee each flow a delay parameterdj as long as

the above set of conditions on the ratesrj ’s and delay parametersdj ’s are satisfied.

66

4.5.2.2 Calendar Queue Approximation to VT-EDF

As in the case of the core stateless virtual clock scheduling algorithm, we can also design

a calendar-queue approximation to the VT-EDF scheduling algorithm. This approximation

scheme is referred to as theslottedVT-EDF scheduling algorithm. This scheme works

exactly the same as the slottedC 6SVC scheduling algorithm, except that the virtual finish

time ν̃j,k of a packetpj,k is computed using̃νj,k = ω̃j,k + dj instead ofν̃j,k = ω̃j,k +

Lj,k/rj + δj,k.

The schedulability condition for the slotted VT-EDF scheduling algorithm becomes

N∑

j=1

[rj(t + ι− dj) + Lj,max]1{t≥dj} ≤ Ct, for anyt ≥ 0.

We claim that if the above schedulability condition holds, then a slotted-VT-EDF scheduler

can guarantee flowj its delay parameter with an error termΨslotted-V T-EDF = L∗,max/C+ι.

4.5.3 Virtual Time Rate Control and Delay-Based Schedulers

Any delay-based scheduling algorithm isin essencecore stateless in that it does not need to

maintainper-flow scheduling statefor determining when to service a packet so long as the

delay parameter can be inferred from the packet directly (say, either from an explicit delay

parameter carried by the packet or implicit from the flow label carried by the packet). What

makesconventionaldelay-based scheduling algorithms such as EDFstatefulis the need to

performper-flow shapingat each hop in order to support guaranteed delay services. For

example, in the rate-controlled EDF (RC-EDF) scheduling algorithm, the rate controller

needs to maintain per-flow state information to ensure that the flow traffic envelope process

is satisfied at each hop. The VT-EDF scheduler proposed in Section 4.5.2.1 circumvents

this problem by scheduling packets using their virtual finish time, a quantity that can be

computed directly from the packet state information. An alternative approach is to use

a (core stateless) virtual time rate controller, which is described below. Replacing the

conventional rate controller with this virtual time rate controller, we can convert any rate-

controlled, delay-based scheduling algorithm into acore statelessscheduler.

The operation of a virtual time rate controller is very simple. Upon the arrival of packet

pj,k, the virtual time rate controller assigns to it aneligibility timeej,k, which is equal to its

virtual time stamp, i.e.,ej,k = ω̃j,k. The packet is held at the virtual time rate controller

until the real time reaches its eligibility time. The packet is then released to the delay-based

67

scheduler. Clearly, this virtual time rate controller does not need to maintain any per-flow

state information. It can be easily implemented using a sorted list and a single timer.

For any flowj, let Aj
RT−RC(τ, t) denote the amount of flowj traffic released by the virtual

time rate controller into the scheduler over any time interval[τ, t]. We claim that

W j
V T-RC(τ, t) ≤ rj(t− τ) + Lj,max. (4.35)

This is because any packetpj,k released by the virtual time rate controller to the scheduler

during the time interval[τ, t] must satisfy the condition:τ ≤ ω̃j,k ≤ t. Applying the Virtual

Shaping Lemma in Appendix B.2 to the time interval[τ, t], we see that (4.35) holds.

As an example to illustrate its usefulness, we design a new delay-based core stateless sched-

uler by incorporating the virtual time rate controller into the conventional static priority

scheduling algorithm. The resulting core stateless scheduling algorithm is referred to as

thevirtual-time rate-controlled static priority(VT-RC-SP) scheduler. Its “stateful” coun-

terpart is the rate-controlled static priority (RC-SP) scheduler proposed in [82].

In the following we present the schedulability condition and the error term for the VT-RC-

SP scheduler. For1 ≤ q ≤ M , let Dq be a delay parameter associated with queueq, where

0 ≤ D1 < D2 < · · · < DM . Suppose a packet from flowj with a delay parameterdj

is placed into queueq if Dq ≤ dj < Dq+1. Let Fq be the set of flowj sharing queueq.

Assuming that the following condition onDq’s holds:

Dq ≥
∑q

p=1

∑
j∈Fp

Lj,max

C −∑q−1
p=1

∑
j∈Fp

rj
for q = 1, 2, . . . ,M ,

then the VT-RC-SP scheduler can guarantee each flowj in Fq a delay parameterDq ≤ dj

with an error termΨV T-RC-SP = L∗,max/C.

The above schedulability condition for VT-RC-SP can be established by applying the

schedulability result obtained for RC-SP in [55] with the traffic envelope (4.35).

Lastly, we comment that we can also combine the virtual time rate controller with a rate-

based scheduler. The core jitter virtual clock (CJVC) scheduling algorithm proposed in [73]

and discussed in Section 4.5.1.2 is such an example. Note that in this case, the virtual time

rate controller has a somewhatdifferentdefinition: the eligibility timeẽj,k of a packet is

defined as̃ωj,k +δj,k instead of̃ωj,k(See the Virtual Rate Control Lemma in Appendix B.2).

68

4.6 Static Scheduling Algorithms with Resource Pre-configuration

Another way to achieve the objective of scalable scheduling is to employstaticscheduling

algorithms. Here by astaticscheduler we mean a scheduling algorithm which does notdi-

rectlyuse flow-dependent packet state information such as the packet virtual time stamp, re-

served rate or delay parameter of a flow. Examples of static scheduling algorithms are FIFO

or simple priority-based scheduling schemes. In contrast, scheduling algorithms whichdo

use this information are referred asdynamic. For example, the core stateless scheduling

algorithms designed in the previous section are dynamic. Observe that static scheduling al-

gorithms by definition arecore stateless, as no per-flow states need to be maintained. Static

scheduling algorithms are typically employed to supporttraffic aggregationand to provide

class of services. In the following, we will use a number of examples to illustrate how

static scheduling algorithms can be accommodated in our framework. In these examples,

we assume that resources associated with the scheduler arepre-configured, namely, they

are not dynamically allocated or de-allocated to flows as they arrive or depart.

4.6.1 FIFO

An FIFO schedulerS services packets in the order of their actual arrival time, regardless

of their virtual time. We can view an FIFO scheduler as a delay-based scheduler with a

fictitiousdelay parameterdj = 0 assigned to each flow passing through the scheduler. We

now determine the error termΨFIFO for an FIFO scheduler with pre-configured service

and buffer capacities.

Consider an FIFO schedulerS with a service capacityC and a total buffer sizeB. Suppose

thatN flows shareS, where the sum of the reserved rates
∑N

j=1 rj ≤ C. Furthermore, we

assume that the buffer capacityB is appropriately provisioned such that no packet from any

flow will ever be lost. (We will illustrate how to provision buffer and bandwidth resources

for scheduling algorithms such as FIFO under the virtual time reference system in future

work.) For any packetpj,k, let âj,k be the actual arrival time at the scheduler, andf̂ j,k be its

actual departure time. It is clear thatf̂ j,k ≤ âj,k + B/C + L∗,max/C. Sinceω̃j,k ≥ âj,k and

ν̃j,k = ω̃j,k, we have

f̂ j,k ≤ ν̃j,k +
B

C
+

L∗,max

C
.

ThereforeΨFIFO = B/C + L∗,max/C.

69

By updating the virtual time stamp of packetpj,k usingω̃j,k
next-hop = ω̃j,k + B

C
+ L∗,max

C
+ π,

whereπ is the propagation delay to the next hop of packetpj,k, it is clear that̃ωj,k
next-hop not

only preserves the virtual spacing property of packet virtual time stamps but also meets the

reality check condition at the next hop.

We can also use the FIFO scheduling algorithm as adynamicdelay-based scheduler with

a fixed delay parameter: only flows with a delay parameterdj such thatdj ≥ B/C can

be supported. Under this interpretation,ΨFIFO = L∗,max/C. Like other dynamic delay-

based schedulers, the virtual time stamp of a packet is updated as follows:ω̃j,k
next-hop =

ω̃j,k + dj + L∗,max

C
+ π. Clearly, a scheduler needs to choose one of the two interpretations

so that the packet virtual time stamps can be updated appropriately and consistently.

4.6.2 Static WFQ with Pre-Configured Rates

To provide more service differentiation than the simple FIFO scheduler, we can employ a

fixed number of FIFO queues with pre-configured service and buffer capacities. Bandwidth

sharing among the FIFO queues can be implemented using, e.g., a Weighted Fair Queuing

(WFQ) scheduler, or any of its variations. Suppose we haveM FIFO queues which are

serviced by a WFQ scheduler with a total service capacity ofC. For q = 1, 2, . . . , M ,

let Cq = φqC be the pre-configured service rate of queueq, where0 ≤ φq ≤ 1 and
∑M

q=1 φq = 1. In other words, each queueq is guaranteed a minimum service rate ofCq. In

addition, we assume that the buffer capacity for queueq is Bq.

Let Fq denote the class of flows sharing queueq. We assume the schedulability condition
∑

j∈Fq
rj ≤ Cq holds for each queueq. Furthermore, the buffer capacityBq is also appro-

priately provisioned such that no packet from any flow inFq will ever be lost. Then using

the same argument as in the FIFO case, we can show that each queue has an error term

Ψq = Bq/Cq + L∗,max/C. Namely, for any packetpj,k of flow j ∈ Fq,

f̂ j,k ≤ ν̃j,k +
Bq

Cq

+
L∗,max

C

where as in the case of FIFO, we defineν̃j,k = ω̃j,k.

For1 ≤ q ≤ M , let Dq = Bq/Cq. Without loss of generality, assume that0 ≤ D1 < D2 <

· · · < DM . ThenΨq = Dq + L∗,max/C. In other words, using this static WFQ scheduler

with multiple FIFO queues, we can support a fixed number of guaranteed delay classes.

Note that using this multiple-queue WFQ scheme, flows from different queues can have

70

different error terms. Hence the packet virtual time stamp must be updated accordingly,

depending on from which queue it is serviced.

As in the case of FIFO, we can also view this multiple-queue WFQ scheme as adynamic

delay-based scheduler with a set of fixed delay parameters: a flow with a delay parameter

dj can be supported and placed into queueq, 1 ≤ q ≤ M , if Dq−1 ≤ dj < Dq. Under

this interpretation, the multiple-queue scheme has an error termΨFIFO = L∗,max/C. Like

other dynamic delay-based schedulers, the virtual time stamp of a packet is updated as

follows: ω̃j,k
next-hop = ω̃j,k + dj + L∗,max

C
+ π.

4.6.3 Static Priority with Pre-Configured Rates

As an alternative to the static WFQ scheduler with multiple FIFO queues, we can also

implement a static priority scheduler with multiple FIFO queues. Again suppose we have

M FIFO queues, where queues of lower index have higher priority. Namely, queue 1 has

the highest priority, whereas queue M has the lowest priority. The queues are serviced in

the order of their priorities: whenever queueq is not empty, it is serviced before queue

q + 1, q + 2, . . ., qM . The scheduler is assumed to be non-preemptive.

The queues of the static priority scheduler is configured and provisioned in the following

manner. Forq = 1, 2, . . . , M , Cq ≥ 0 is anominalservice rate assigned to queueq, where
∑M

q=1 Cq = C. The nominal service rate of a queue is used to control the aggregate rate

of flows sharing the queue. LetFq denote the class of flows sharing queueq, we control

the number of flows sharing queueq to ensure that
∑

j∈Fq
rj ≤ Cq holds for each queueq.

Furthermore, the buffer capacityBq is also appropriately provisioned such that no packet

from any flow inFq will ever be lost.

For 1 ≤ q ≤ M , let Dq be a delay parameter associated with queueq. We assume that

0 ≤ D1 < D2 < · · · < DM . Using the result obtained in [55], we can show the following

schedulability condition. If the following condition onD′qs holds:

Dq ≥
∑q

p=1 Bp

C −∑q−1
p=1 Cp

for q = 1, 2, . . . , M ,

then each queue has an error termΨq = Bq

Cq
+ L∗,max

C
. Namely, for any packetpj,k of flow

j ∈ Fq,

f̂ j,k ≤ ν̃j,k +
Bq

Cq

+
L∗,max

C
,

71

whereν̃j,k = ω̃j,k.

Clearly, we can also view this static priority queue scheme as a dynamic scheduler with

an error termΨ = L∗,max/C. The decision for placing a flow into an appropriate queue

and mechanism for updating packet virtual time stamps are exactly the same as used in the

static WFQ scheme with multiple queues.

4.7 Latency-Rate Servers and the Virtual Time Reference System

The virtual time reference system proposed in this chapter does not exclude the use ofstate-

ful scheduling algorithms, namely, those scheduling algorithms that maintain per-flow state

information in order to provide guaranteed services. Such per-flow state information, for

example, is imperative if “bounded fairness” in bandwidth sharing among flows is desired,

in addition to delay and rate guarantees. To accommodate these stateful scheduling algo-

rithms into our framework, it suffices to identify the error term incurred by these stateful

scheduling algorithms. As an example to show how this can be done generally, we consider

the class of scheduling algorithms introduced in [70, 72]—thelatency-rate servers. This

class encompasses virtually all known fair-queueing algorithms and its variations.

In defining a latency-rate server, a key notion introduced in [72] is the concept ofburst

period6. For any flowj, a flow j burst periodis a maximal time interval(τ1, τ2] such that

for any timet ∈ (τ1, τ2], packets of flowj arrive with rate greater than or equal to its

reserved raterj, or

Aj(τ1, t) ≥ rj(t− τ1) (4.36)

whereAj(τ1, t) denote the amount of flowj traffic arriving during the timer interval[τ1, t].

Consider a serverS. Suppose that themth burst period of flowj starts at timeτ . Let τ ∗

be the time that the last packet of themth burst period of flowj departs serverS. For

τ ≤ t ≤ τ ∗, denote byW j,m(τ, t) the total service provided to the packets of thepth burst

period of flowj up to timet by serverS. We sayS is a latency-rate server (with respect to

flow j) if and only if for any timet, τ ≤ t ≤ τ ∗,

W j,m(τ, t) ≥ max{0, rj(t− τ −Θj)},
6Actually, the term “busy period” instead of “burst period” is used in [70, 72]. In order to avoid confusion

with the standard definition and usage of “busy period” in queueing theory, we opt to use the term “burst
period.” Incidentally, the term “backlogged period” is used in [70, 72] to refer to the standard notion of “busy
period.”

72

whereΘj is the minimum non-negative number such that the above inequality holds. It is

referred to as thelatencyof serverS.

To relate a latency-rate server to the virtual time reference system, we provide an alternative

definition of the latency-rate server.

Consider themth burst period of flowj. Let âj,k denote the actual arrival time of thekth

packet in themth burst period of flowj at serverS. Then clearly,̂aj,1 = τ , where recall

thatτ is the beginning of themth bursty period of flowj. For each packetpj,k in themth

burst period, defineνj,k recursively as follows:

νj,1 = âj,1 +
Lj,1

rj
andνj,k = max{νj,k−1, âj,k}+

Lj,k

rj
k ≥ 2. (4.37)

From the definition of burst period, it is not too hard to see that fork ≥ 1, we must have

âj,k ≤ νj,k−1. In other words,νj,k = νj,k−1 + Lj,k

rj . Consequently, we have

rj(νj,k − âj,1) =
k∑

q=1

Lj,q. (4.38)

For each packetpj,k, let f̂ j,k be the actual time it finishes service at serverS. The following

lemma provides an alternative definition of a latency-rate server, the proof of which can be

found in Appendix B.3.

Lemma 8 A serverS is a latency-rate server with a latency parameterΘj (with respect to

flow j) if and only if for any packetpj,k of flowj, the following inequality holds:

f̂ j,k − νj,k ≤ Θj − Lj,k

rj
.

Using Lemma 8, we now determine the error term for the latency rate serverS. For each

packetpj,k of flow j, let ω̃j,k be its virtual time as it entersS. Define its virtual finish time

ν̃j,k by ν̃j,k = ω̃j,k + d̃j,k. Using the fact that̃ωj,k ≥ âj,k and the virtual spacing property

of ω̃j,k, it is not too hard to prove by induction that

ν̃j,k ≥ νj,k, for all k ≥ 1.

73

Table 4.2: Error terms of latency-rate (LR) servers.

LR server PGPS/WFQ, VC, FFQ, SPFQ SCFQ
LatencyΘj Lj,max

rj + L∗,max

C
Lj,max

rj + L∗,max

C
(N − 1)

Error termΨ L∗,max

C
L∗,max

C
(N − 1)

Then from Lemma 8, we have

f̂ j,k ≤ ν̃j,k + Θj − Lj,k

rj
≤ ν̃j,k + Θj.

Hence we see thatS has an error termΨ such thatΨ ≤ Θj. This leads to the following

theorem.

Theorem 12 Any latency-rate server with a latencyΘj (with respect to flowj) has an error

term such that

Ψ ≤ Θj.

For several well-known scheduling algorithms studied in [70, 72], we can actually show

thatΨ = Θj − Lj,max

rj . Θj and its corresponding error term for these scheduling algorithms

are listed in Table 4.2.

4.8 Discussions

4.8.1 Implementation Issues

So far we have focused on the theoretical foundation for the virtual time reference system.

In this section we will briefly discuss issues regarding its implementation. Future work will

further explore these issues.

A straightforward method to implement the virtual time reference system is to use the

dynamic packet state(DPS) technique proposed in [73, 74]. Using this technique, the

packet virtual time stamp is updated at every core router as a packet enters or departs. An

74

alternative method is to usestatic packet state. This technique requires an explicit path

set-up procedure, which can be done, for example, using a simplified RSVP or MPLS

(Multiprotocol Label Switching) [9, 66]. Note that this path set-up isdifferent from a

reservation set-up for a flow. In fact, multiple flows can share the same path. During the

path set-up, theith router along the path is configured with a parameterDi =
∑i−1

q=1 Ψq +
∑i−1

q=1 πq,q+1, which represents the cumulative error term and propagation delay along the

path up to routeri. Theith router is also configured with another parameter,pi, which is the

number of rate-based schedulers along the path up to routeri (exclusive). Note that bothDi

andpi are parameters that are related only to the path characteristics, and are independent

of any flow traversing the path. At the network edge, the virtual time stamp (i.e.,ω̃j,k
1)

of a packet is initialized to the time it is injected into the network core. At theith router

along the path of its flow, the virtual time stamp associated with the packet is computed as

ω̃j,k
i = ω̃j,k

1 + Di + Ci, whereCi = pi(
Lj,k

rj + δj,k) + (i − 1 − pi)d
j. Using this approach,

we see that once the packet state is initialized at the network edge, it will not be modified

or updated inside the network core. This may speed up the packet forwarding operation of

core routers. In particular, for a core router whose scheduling mechanism does not use the

packet virtual time stamp information (e.g., a FIFO scheduler), there is no need to compute

packet virtual time stamps.

The virtual time reference system is amenable to incremental deployment. Consider, for

instance, the scenario where, between two core routers which employ the VT-EDF schedul-

ing algorithms, there is one core router which does not support packet virtual time stamps.

As long as the scheduling mechanism of this router can be characterized by an error term

Ψ, its effect on the virtual time can be treated as if it were part of the link propagation delay

between the two virtual-time-aware routers, and can be absorbed into the propagation delay

between these two routers.

A critical question in implementing the virtual time reference system is how to encode the

packet state. In its most general form, the packet state contains four parameters: packet

virtual time stamp̃ωj,k, reserved raterj, delay parameterdj and virtual time adjustment

termδj,k. Observe that in terms of providing end-to-end delay bounds, a rate-based sched-

uler can be treated as if it were a delay-based scheduler with a virtual delay parameter

Lj,max/rj (see the comment at the end of Section 4.3.1). Hence we can eliminate the vir-

tual time adjustment termδj,k completely. As discussed in [73], there are several options

that we can use to encode the packet state: using an IP option, using an MPLS label, using

the IP fragment offset field. Using the last option, for example, the packet state informa-

75

tion can be efficiently encoded using floating point representation with 17 bits [73]. Our

virtual time reference system allows for additional flexibility in packet state encoding. In

the case where only coarse-grain QoS guarantees (say, a fixed number of bandwidth or de-

lay classes) is to be supported (e.g., in a DiffServ domain), the rate and delay parameters

can be encoded in the TOS bits of the IP header as part of PHBs. Thus only the packet

virtual time stamp needs to be carried in a separate field. It is possible to represent packet

virtual time stampsapproximately, using the notion ofslotted virtual time. Accuracy of the

approximation clearly hinges on the number of bits available to represent the virtual time.

These issues will be investigated further in the future work.

4.8.2 QoS Provisioning and Admission Control

As stated in the introduction, one major objective of our work is to use the virtual time ref-

erence system as a QoS abstraction to decouple the data plane from the QoS control plane

so as to facilitate the design of a bandwidth broker architecture for guaranteed services. In

this section we briefly describe how this may be achieved. The details are left to future

work.

In our bandwidth broker architecture,no QoS reservation state, whether per-flow or ag-

gregate reservation state, is maintained at any core router. Bandwidth brokers have the

topology information of a network domain anddynamicallymaintain all the QoS states

regarding the flows and routers. When a request for setting QoS reservation for a flow ar-

rives, a bandwidth broker looks up its QoS database, finds an appropriate path and checks

whether sufficient resources are available at each router along the path. In case the flow can

be admitted, the bandwidth broker would choose a reserved rater and a delay parameter

d for the flow, and informs the edge router to configure the edge conditioner accordingly.

No QoS configuration or “state update” is needed at core routerson a per-flow basis. As

a result, the problem ofrobustnessfacing the conventional hop-by-hop admission control

approach [73], e.g.,inconsistentQoS databases due to loss of signaling messages, is sig-

nificantly alleviated. Because of the virtual time reference system, this bandwidth broker

architecture is capable of supporting QoS provisioning and admission control with similar

granularity and flexibility of the IntServ guaranteed service. The decoupling of QoS control

plane and data plane enables sophisticated admission control algorithms to be employed in

powerful bandwidth brokers for network-wide optimization of resource utilization. This is

generallyinfeasiblein the conventional hop-by-hop admission control approach. Further-

more, the bandwidth broker architecture makes it easy to implement policy-based admis-

76

sion control or advanced reservation.

4.9 Summary

In this chapter we have proposed and developed a novel virtual time reference system as a

unifying scheduling framework to provide scalable support for guaranteed services. This

virtual time reference system is designed as a conceptual framework upon which guaran-

teed services can be implemented in a scalable manner using the DiffServ paradigm. The

key construct in the proposed virtual time reference system is the notion of packet virtual

time stamp, whose computation is core stateless, i.e., no per-flow states are required for its

computation. In the chapter, we have laid the theoretical foundation for the definition and

construction of packet virtual time stamps. We described how per-hop behavior of a core

router (or rather its scheduling mechanism) can be characterized via packet virtual time

stamps, and based on this characterization, establish end-to-end per-flow delay bounds.

Consequently, we demonstrated that, in terms of its ability to support guaranteed services,

the proposed virtual time reference system has the same expressive power as the IntServ

model. Furthermore, we showed that the notion of packet virtual time stamps leads to the

design of new core stateless scheduling algorithms, especially work-conserving ones. In

addition, our framework does not exclude the use of existing scheduling algorithms such

as stateful fair queueing algorithms to support guaranteed services.

77

Part II

Scalable Network Resource

Management Control Plane

78

Chapter 5

Background and Overview

The ability to provide end-to-end guaranteed services (e.g., guaranteed delay) for net-

worked applications is a desirable feature of the future Internet. To enable such services,

Quality-of-Service (QoS) support fromboth the network data plane(e.g. packet schedul-

ing) and the control plane(e.g., admission control and resource reservation) is needed. In

the first part of this dissertation, we have investigated how powerful and flexible QoS can

be supported in the Internet in a scalable manner. In this part, we focus on reducing the

operational complexity on the control plane.

Previous attempts at reducing the complexity of QoS control plane have mostly followed

the conventionalhop-by-hopreservation set-up approach adopted by RSVP and ATM through

QoS control state aggregation. In the conventional hop-by-hop reservation set-up approach,

the QoS reservation set-up request of a flow is passed from the ingress router towards the

egress router along the path of the flow, where each router along the path processes the

reservation set-up request and determines whether the request can be honored or notby ad-

ministering a local admission control test using its own QoS state information.However,

due to the distributed nature of this approach and unreliability of the network, potential

inconsistency (e.g., due to loss of signaling messages) may result in the QoS states main-

tained by each router, which may cause serious problems in network QoS management.

RSVP addresses this problem by usingsoft states, which requires routers to periodically

retransmit PATH and RESV messages, thus incurring additional communication and pro-

cessing overheads. These overheads can be reduced through a number of state reduction

techniques [40, 79, 80]. Under thecore statelessframework proposed in [73], the scalabil-

ity issue of QoS control plane is addressed by maintaining onlyaggregate reservation state

79

at each router. The problem of inconsistent QoS states is tackled via a novelbandwidth esti-

mationalgorithm, which relies on the dynamic reservation information periodically carried

in packets, and incurs additional processing overhead at core routers.

The conventional hop-by-hop reservation set-up approach ties such QoS control functions

as admission control, resource reservation and QoS state management to core routers,

whether per-flow or aggregate QoS states are maintained at core routers. Besides the is-

sues discussed above, this approach requires admission control and QoS state management

modules to be installed at every single router to support guaranteed services. As a result, if

a new level of service (say, a new guaranteed delay service class) is introduced into a net-

work, it may require upgrade or reconfiguration of the admission control modules at some

or all core routers. An alternative, and perhaps more attractive, approach is thebandwidth

broker(BB) architecture, which is first proposed in [58] for thePremium Serviceusing the

DiffServ model. Under this BB architecture, admission control, resource provisioning and

other policy decisions are performed by a centralized bandwidth broker in each network

domain.

This centralized bandwidth broker model for QoS control and management has several ap-

pealing features. For example, the centralized bandwidth broker model decouples (to a

large extent) the QoS control plane from the data plane. In particular, QoS control func-

tions such as admission control and QoS state maintenance are removed from the core

routers of a network domain, reducing the complexity of the core routers. Consequently,

no hop-by-hop signaling for reservation set-up along the data path is needed, removing

the signaling overhead from core routers. Furthermore, because the network QoS states

are centrally managed by the bandwidth broker, the problems of unreliable or inconsistent

control states are circumvented [73]. This is in contrast to the IETF IntServ QoS control

model based on RSVP [6, 84], where every router participates in hop-by-hop signaling for

reserving resources and maintains its own QoS state database. Hence in this respect, the

centralized bandwidth broker model provides a more scalable alternative for QoS control

and management.

On the other hand, although several implementation efforts in building bandwidth brokers

are under way (see, e.g., [75]), so far it is not clear what level of guaranteed services can

be supported and whether core routers are still required to performlocal admission control

under the proposed BB architecture in [58]. Moreover, the centralized bandwidth broker

model for QoS control and management also introduces its own scalability issue, in partic-

ular, the ability of the bandwidth broker to handle large volumes of flows as the network

80

system scales. In a DiffServ network where only slow time scale, static resource provi-

sioning and traffic engineering (e.g., those performed to set up virtual private networks)

are performed, the scalability problem may not be acute. But with the rapid evolution of

today’s Internet, many new applications and services such as Voice over IP (VoIP), on-

demand media streaming and real-time content delivery (e.g., stock quotes and news) may

require dynamic QoS control and management such as admission control and resource

provisioning at the time scale of flow arrival and departure. In these circumstances, an

inappropriately centralized bandwidth broker system can become a potential bottleneck,

limiting the number of flows that can be accommodated into the network system, while the

network system itself is still under-loaded. See [3, 76, 85] for more detailed discussions on

the issues in designing and building such a centralized bandwidth broker architecture.

In this part, we will present two scalable bandwidth broker architectures. In Chapter 6,

we design a centralized bandwidth broker architecture, which relies on the virtual time

reference system we studies in the last chapter to completely decouple the QoS control

plane from the packet forwarding data plane. Using this bandwidth broker architecture,

we demonstrate how admission control can be done on an entire path basis, instead of

on a “hop-by-hop” basis, which may significantly reduce the complexity of the admission

control algorithms. In Chapter 7, we present a hierarchical bandwidth broker architecture

to further improve the control plane scalability in supporting QoS in the Internet.

81

Chapter 6

A Centralized Bandwidth Broker

Architecture

6.1 Introduction

In this chapter we present a novel bandwidth broker architecture for scalable support of

guaranteed services thatdecouples the QoS control plane from the packet forwarding plane.

More specifically, under this BB architecture, The QoS reservation states are stored at and

managed solely by the bandwidth broker(s) in a network domain. Despite this fact, our

bandwidth broker architecture is stillcapable of providing end-to-end guaranteed services,

whether fine-grain per-flow delay guarantees or coarse-grain class-based delay guaran-

tees. This bandwidth broker architecture is built upon thevirtual time reference system

developed in [86]. This virtual time reference system is designed as aunifyingscheduling

framework based on which both theper-hop behaviorsof core routers (in terms of their

abilities to provide delay and bandwidth guarantees) and theend-to-end propertiesof their

concatenation can be characterized. Furthermore, it also provides a QoS abstraction for

scheduling mechanisms of core routers that allows the bandwidth broker(s) in a network

domain to perform (either per-flow or aggregate) QoS control functions such as admission

control and reservation set-up with no or minimal assistance from core routers.

Because of this decoupling of data plane and QoS control plane, our bandwidth broker ar-

chitecture is appealing in several aspects. First of all, by maintaining QoS reservation states

only in a bandwidth broker (or bandwidth brokers), core routers are relieved of QoS con-

trol functions such as admission control, making them potentially more efficient. Second,

82

and perhaps more importantly, a QoS control plane that is decoupled from the data plane

allows a network service provider to introduce new (guaranteed) services without neces-

sarily requiring software/hardware upgrades at core routers. Third, with QoS reservation

states maintained by a bandwidth broker, it can perform sophisticated QoS provisioning

and admission control algorithms to optimize network utilization in anetwork-widefash-

ion. Such network-wide optimization is difficult, if not impossible, under the conventional

hop-by-hop reservation set-up approach. Furthermore, the problem of inconsistent QoS

states facing the hop-by-hop reservation set-up approach is also significantly alleviated un-

der our approach. Last but not the least, under our approach, the reliability, robustness

and scalability issues of QoS control plane (i.e., the bandwidth broker architecture) can be

addressedseparately from, and without incurring additional complexity to, the data plane,

for example, by using distributed or hierarchical bandwidth brokers [88].

To illustrate some of the advantages presented above, in this chapter we will primarily fo-

cus on the design of efficient admission control under the proposed bandwidth broker archi-

tecture. We consider bothper-flowend-to-end guaranteed delay services andclass-based

guaranteed delay services with flow aggregation. Using our bandwidth broker architecture,

we demonstrate how admission control can be performed at an entirepath level, instead

of on a “hop-by-hop” basis. Such an approachcansignificantly reduce the complexity of

the admission control algorithms. In designing class-based admission control algorithms,

we investigate the problem of flow aggregation in providing guaranteed delay services, and

devise a new apparatus to effectively circumvent this problem using our bandwidth bro-

ker architecture. We conduct extensive analysis to provide theoretical underpinning for

our schemes as well as to establish their correctness. Simulations are also performed to

demonstrate the efficacy of our schemes.

The remainder of this chapter is structured as follows. In Section 6.2, we first briefly review

the virtual time reference system, and then present an overview of our proposed bandwidth

broker architecture. In Section 6.3, we present per-flow path-oriented admission control

algorithms. These admission control algorithms are extended in Section 6.4 to address

class-based guaranteed delay services with flow aggregation. Simulation investigation is

conducted in Section 6.5, and the chapter is concluded in Section 6.6.

83

6.2 Bandwidth Broker Architecture Overview

In this section we present a brief overview of a novel bandwidth broker architecture for

scalable support of guaranteed services. This bandwidth broker architecture relies on the

virtual time reference system, which we studied in the last chapter, to provide a QoS ab-

straction of the data plane. First, we need to provide an end-to-end delay bound within

the virutal time reference system by incoporating the delays packet experienced at edge

routers.

An important consequence of the virtual time reference system outlined above is that the

end-to-end delay bound on the delay experienced by packets of a flow across the network

core can be expressed in terms of the rate-delay parameter pair of a flow and the error terms

of the routers along the flow’s path. Suppose there are totalh hops along the path of flowj,

of which q routers employ rate-based schedulers, andh − q delay-based schedulers. Then

for each packetpj,k of flow j, we have

f̂ j,k
h − âj,k

1 ≤ dj
core = q

Lj,max

rj
+ (h− q)dj +

h∑

i=1

Ψi +
h−1∑

i=1

πi (6.1)

whereLj,max is the maximum packet size of flowj.

Suppose the traffic profile of flowj is specified using the standard dual-token bucket regu-

lator (σj, ρj, P j, Lj,max) whereσj ≥ Lj,max is the maximum burst size of flowj, ρj is the

sustained rate of flowj, P j is the peak rate of flowj. Then the maximum delay packets of

flow j experienced at the edge shaper is bounded by

dj
edge = T j

on

P j − rj

rj
+

Lj,max

rj
(6.2)

whereT j
on = (σj−Lj,max)/(P j−ρj) is the maximum duration that flowj can inject traffic

at its peak rate into the network (here the edge traffic conditioner). Hence the end-to-end

delay bound for flowj is given by

dj
end−to−end = dj

edge+dj
core = T j

on

P j − rj

rj
+(q+1)

Lj,max

rj
+(h−q)dj+

h∑

i=1

Ψi+
h−1∑

i=1

πi.(6.3)

Observe that the end-to-end delay formula is quite similar to that specified in the IETF

Guaranteed Service using the WFQ as the reference system. In this sense, the virtual time

84

reference system provides a conceptualcore statelessframework based on which guaran-

teed services can be implemented in a scalable manner using the DiffServ paradigm.

Now let’s move to the overview of the bandwidth broker architecture. Each router1 in the

network domain is characterized by an error term. The novelty of the proposed bandwidth

broker architecture lies in thatall QoS reservation and other QoS control state information

(e.g., the amount of bandwidth reserved at a core router) is removed from core routers,

and is solely maintained at and managed by bandwidth broker(s).In supporting guaran-

teed services in the network domain, core routers performno QoS control and management

functionssuch as admission control, but onlydata plane functionssuch as packet schedul-

ing2 and forwarding. In other words, the data plane of the network domain is decoupled

from the QoS control plane. Despite the fact that all the QoS reservation states are removed

from core routers and maintained solely at the bandwidth broker, the proposed bandwidth

broker architecture is capable of supporting guaranteed services with the same granular-

ity and expressive power (if not more) as the IntServ/Guaranteed Service model. This is

achieved without the potential complexity and scalability problems of the IntServ model.

Furthermore, as mentioned in the introduction, our bandwidth broker architecture for sup-

porting guaranteed services has many appealing features that makes it moreflexible, and

arguably, morescalable. In this chapter, we will illustrate some of these advantages by ad-

dressing the admission control problem under the proposed bandwidth broker architecture.

The major components of the bandwidth broker architecture (in particular, those pertinent

to the admission control) are described below.

As shown in Figure 6.1, the bandwidth broker (BB)3 consists of several modules such as

admission control, QoS routing and policy control. In this chapter, we will focus primar-

ily on the admission control module. The BB also maintains a number of management

1The bandwidth broker architecture presented in this chapter is designed for supporting guaranteed ser-
vices only. We assume that each router deploys an appropriate (i.e., characterizable by the notion of error
term) scheduler with certain amount of bandwidth and buffer size provisioned for supporting guaranteed de-
lay service. Hence precisely speaking, the error term of a router is that of the scheduler deployed at the router.
Throughout the chapter, by a router we mean the scheduler of the router used for supporting guaranteed ser-
vices.

2Since the virtual time reference system does not mandate the scheduling mechanism used by a core
router, in particular, that core stateless schedulers such asC 6SV C and VT-EDF be used, it is possible for
some routers (e.g., those at or near the network edge) to implement stateful scheduling algorithms (e.g.,
static WFQ or even per-flow WFQ [86]) to support guaranteed services. In the latter case, certainscheduling
parameters (either class-based or per-flow) may need to statically or dynamically configured by the bandwidth
broker, e.g., during a path set-up or at other occasions.

3For simplicity, we assume that there is a single centralized BB for a network domain. In practice, there
can be multiple BBs for a network domain to improve reliability and scalability [88].

85

Edge
conditioner

S1 S2
ShS hi

Core router

BB

A network domain

arrival
new flow

service request
Step 1: new flow

Data plane

Control plane

Step 3: decision (accept/reject)

Step 2: admission control process

- topology information base
- policy information base
- flow information base
- network QoS state information base

* path QoS state information base
* node QoS state information base

- admission control module
- QoS routing module

Management information bases (MIBs)

Service modules

- policy control module

Figure 6.1: Illustration of a bandwidth broker (BB) and its operation in a VTRS network
domain.

information bases (MIB) for the purpose of QoS control and management of the network

domain. For example, thetopology information basecontains topology information that

the BB uses for route selection and other management and operation purposes; and thepol-

icy information basecontains policies and other administrative regulations of the network

domain. In the following we describe the MIBs that are used by the admission control

module.

Flow Information Base. This MIB contains information regarding individual flows such

as flow id., traffic profile (e.g.,(σj, ρj, P j, Lj,max)), service profile (e.g., end-to-end delay

requirementDj), route id. (which identifies path that a flow traverses in the network do-

main) and QoS reservation (〈rj, dj〉 in the case of per-flow guaranteed delay services, or a

delay service class id. in the case of class-based guaranteed services) associated with each

flow. Other administrative (e.g., policy, billing) information pertinent to a flow may also be

maintained here.

Network QoS State Information Bases. These MIBs maintain the QoS states of the

network domain, and thus are the key to the QoS control and management of the network

domain. Under our BB architecture, the network QoS state information is represented in

two-levels using two separate MIBs:path QoS state information baseandnode QoS state

information base. These two MIBs are presented in detail below.

Path QoS state information basemaintains a set of paths (each with a route id.) be-

tween various ingress and egress routers of the network domain. These paths can

86

be pre-configured or dynamically set up4. Associated with each path are certain

static parameters characterizing the path and dynamic QoS state information regard-

ing the path. Examples of static parameters associated a pathP are the number

of hopsh on P, the number of rate-based schedulers(q) and delay-based sched-

ulers (h − q) alongP, sum of the router error terms and propagation delay along

P, DPtot =
∑

i∈P(Ψi + πi), and the maximum permissible packet size (i.e., MTU)

LP,max. The dynamic QoS state information associated withP include, among oth-

ers, the set of flows traversingP (in the case of per-flow guaranteed delay services) or

the set of delay service classes and their aggregate traffic profiles (in the case of class-

based guaranteed delay services) and a number of QoS state parameters regarding the

(current) QoS reservation status ofP such as the minimal remaining bandwidthCPres

alongP, a sorted list of delay parameters currently supported alongP and associated

minimal residual service points, and the set of “bottleneck” nodes alongP.

Node QoS state information basemaintains information regarding the routers in the net-

work domain. Associated with each router is a set of static parameters characterizing

the router and a set of dynamic parameters representing the router’s current QoS state.

Examples of static parameters associated a routerS are the scheduler type(s) (i.e.,

rate- or delay-based), its error term(s)Ψ, propagation delays to its next-hop routers

π’s, configured total bandwidthC and buffer sizeB for supporting guaranteed delay

services, and if applicable, a set of delay classes and their associated delay param-

eters, and/or a set of pre-provisioned bandwidth and buffer size pairs〈Ck, Bk〉 for

each delay class supported byS. The dynamic router QoS state parameters include

the current residual bandwidthCSres atS, a sorted list of delay parameters associated

with flows traversingS and their associated minimal residual service points atS, and

so forth.

In the following sections we will illustrate how some of the path and router parameters will

be utilized and maintained by the BB to perform efficient admission control. Before we

move to the problem of admission control using the proposed BB architecture, we briefly

discuss the basic operations of the BB, in particular, those pertinent to theadmission control

module.
4Note that during the process of a path set-up, no admission control test is administered. The major func-

tion of the path set-up process is to configure forwarding tables of the routers along the path, and if necessary,
provision certain scheduling/queue management parameters at the routers, depending on the scheduling and
queue management mechanisms deployed. Hence we refer to such a path atraffic engineered(TE) path. Set-
up of such a TE path can be done by using a path set-up signaling protocol, say, MPLS [9, 66], or a simplified
version (minus resource reservation) of RSVP.

87

When a new flow with traffic profile(σj, ρj, P j, Lj,max) and end-to-end delay requirement

Dj,req arrives at an ingress router, the ingress router sends a new flow service request mes-

sage to the BB. Upon receiving the service request, the BB first checks for policy and other

administrative information bases to determine whether the new flow is admissible. If not,

the request is immediately rejected. Otherwise, the BB selects a path5 (from the ingress to

an appropriate egress router in the network domain) for the new flow, based on the network

topology information and the current network QoS state information, in addition to other

relevant information (such as policy constraints applicable to this flow).

Once the path is selected, the BB will invoke the admission control module to determine

if the new flow can be admitted. The details of admission control procedure for support-

ing per-flow guaranteed delay services and class-based guaranteed delay services will be

presented in Section 6.3 and Section 6.4, respectively. Generally speaking, the admission

control procedure consists of two phases: 1)admission control testphase during which it

is determined whether the new flow service request can be accommodated and how much

network resources must be reserved if it can be accommodated; and 2)bookkeepingphase

during which the relevant information bases such as the flow information base, path QoS

state information base and node QoS state information base will be updated, if the flow is

admitted. If the admission control test fails, the new flow service request will be rejected,

no information bases will be updated. In either case, the BB will inform the ingress of the

decision. In the case that the new flow service request is granted, the BB will also pass

the QoS reservation information (e.g.,〈rj, dj〉) to the ingress router so that it can set up

a new or re-configure an existing edge conditioner (which is assumed to be co-located at

the ingress router) for the new flow. The edge conditioner will appropriately initialize and

insert the packet states into packets of the new flow once it starts to send packets into the

network.

Before we proceed to discuss admission control algorithms in the proposed bandwidth

broker architecture, it is worth noting that the proposed bandwidth broker architecture is

only aconceptually centralizedarchitecture. It can be implemented in a distributed matter

in practice. In particular, the separation ofPath QoS State Information BaseandNode QoS

State Information Basefacilitates the design of distributed (hierarchical) bandwidth broker

5If necessary, a new path may be set up dynamically. The problem of QoS routing, i.e., finding an
“optimal” path for the flow can be handled relatively easily under our BB architecture. Since it is beyond the
scope of this chapter, we will not discuss it here. As an aside, our BB architecture can also accommodate
advance QoS reservation in a fairly straightforward fashion, owing to decoupling of the QoS control plane
and data plane and the centralized network QoS state information bases.

88

systems [88]. Moreover, the admission control algorithms developed in this chapter can be

used as middlewares to build distributed bandwidth broker systems.

6.3 Admission Control for Per-Flow Guaranteed Services

In this section, we study the problem of admission control for support of per-flow guaran-

teed services under the proposed bandwidth broker architecture. We present apath-oriented

approach to perform efficient admission control test and resource allocation. Unlike the

conventionalhop-by-hopapproach which performs admission controlindividually based

on thelocal QoS stateat each router along a path, this path-oriented approach examines

the resource constraintsalong the entire path simultaneously, and makes admission con-

trol decision accordingly. As a result, we can significantly reduce the time of conducting

admission control test. Furthermore, we can also perform path-wide optimization when

determining resource allocation for a new flow. Clearly, such a path-oriented approach is

possible because the availability of QoS state information of the entire path at the band-

width broker.

6.3.1 Path with Only Rate-based Schedulers

To illustrate how the path-oriented approach works, we first consider a simple case, where

we assume that the pathP for a new flowν consists of only rate-based schedulers. Hence

in this case, we only need to determine whether a reserved raterν can be found for the

new flow for it to be admitted. The delay parameterdν will not be used. For simplicity

of exposition, we assume that a scheduler such ascore-stateless virtual clock(C6SVC) or

core-jitter virtual clock(CJVC) is employed at the routersSi alongP. Let j ∈ Fi denote

that flow j currently traversesSi, andCi be the total bandwidth atSi. Then as long as
∑

j∈Fi
rj ≤ Ci, Si can guarantee each flowj its reserved bandwidthrj. We useCSi

res to

denote the residual bandwidth atSi, i.e., CSi
res = Ci − ∑

j∈Fi
rj. We consider the two

phases of the admission control procedure.

Admission Test.Let (σν , ρν , P ν , Lν,max) be the traffic profile of a new flowν, andDν,req

be its end-to-end delay requirement. Leth be the number of hops inP, the path for the new

flow. From (6.3), in order to meet its end-to-end delay requirementDν,req, the reserved rate

rν for the new flowν must satisfy: 1)ρν ≤ rν ≤ P ν , and 2)

Dν,req ≥ dν
edge + dν

core = T ν
on

P ν − rν

rν
+ (h + 1)

Lν,max

rν
+ DPtot (6.4)

89

whereT ν
on = (σν − Lν,max)/(P ν − ρν) andDPtot =

∑
i∈P Ψi +

∑
i∈P,i 6=h πi.

Furthermore,rν must not exceed the minimal residual bandwidthCPres along pathP, where

CPres = mini∈P CSi
res is maintained, as a path QoS parameter associated withP, in the path

QoS state MIB.

Let rν
min be the smallestrν that satisfies (6.4), i.e.,rν

min = [T ν
onP

ν + (h + 1)Lν,max]/[Dν,req −DPtot + T ν
on].

Define

rlow
fea = max{ρν , rν

min} andrup
fea = min{P ν , CPres}.

ThenR∗fea = [rlow
fea, r

up
fea] is thefeasible rate range, from which a feasible reserved raterν

can be selected. Clearly, ifR∗fea is empty, then the service request of the new flowν must

be rejected. Otherwise, it is admissible, andrν = rlow
fea is theminimalfeasible reserved rate

for the new flowν. Given that the path QoS parametersDPtot andCPres associated withP
are maintained in the path QoS state MIB, the above admission test can be done inO(1).

Bookkeeping. If the new flowν is admitted into the network, several MIBs (e.g., the flow

MIB, the path and node QoS state MIBs) must be updated. The flow id., traffic profile and

service profile of the new flow will be inserted into the flow MIB. The minimal residual

bandwidthCPres will be subtracted byrν , the reserved rate for flowν. Similarly, for each

Si alongP, its residual bandwidthCSi
res will also be subtracted byrν . Furthermore, for

any pathP ′ that traversesSi, its minimal residual bandwidthCP
′

res may also be updated,

depending on whether the update ofCSi
res changesCP

′
res. Lastly, note that when an existing

flow departs the network, the relevant MIBs should also be updated.

6.3.2 Path with Mixed Rate- and Delay-based Schedulers

We now consider the general case where the pathP for a new flowν consists of both

rate-based and delay-based schedulers. In this case, we need to determine whether a rate-

delay parameter pair〈rν , dν〉 can be found for the new flowν for it to be admitted. Letq

be the number of rate-based schedulers andh − q the number of delay-based schedulers

along pathP. For simplicity of exposition, we assume6 that the rate-based schedulersSi

along pathP employC6SVC (or any similar) scheduling algorithm whose schedulability

condition is
∑

j∈Fi
rj ≤ Ci, whereas the delay-based schedulersSi employ theVT-EDF

6The schedulability conditions ofC 6SV C and VT-EDF scheduling algorithms are representative of rate-
based and delay-based scheduling algorithms [86]. Hence the results presented here for these two schedulers
are also applicable to other schedulers, perhaps with some modifications.

90

scheduling algorithm, whose schedulability condition is given in (4.33). Hence ifSi is a

rate-based scheduler alongP, it can guarantee each flowj its reserved bandwidthrj, as

long as
∑

j∈Fi
rj ≤ Ci. Similarly, if Si is a delay-based scheduler alongP, it can guarantee

each flowj its delay parameterdj, as long as the schedulability condition (4.33) is satisfied.

We now consider the two phases of the admission control procedure.

Admission Test. Because of the inter-dependence of the reserved raterν and the delay

parameterdν in the end-to-end delay bound (6.3) as well as the more complex schedula-

bility condition (4.33) for the delay-based schedulers, the admission test for this case is

less straightforward. By uncovering the monotonicity properties of the end-to-end delay

formula (6.3) and schedulability condition (4.33), we show how an efficient admission test

can be designed using the path-oriented approach. In addition, if the new flowν is admis-

sible, this admission test finds anoptimal feasible rate-delay parameter pair〈rν , dν〉 in the

sense thatrν is theminimalfeasible rate. In other words, no other rate-delay parameter pair

〈rν′ , dν′〉 such thatrν′ < rν is feasible.

Before we present the algorithm, we need to introduce some notation and transform the

end-to-end delay formula (6.3) as well as the schedulability condition (4.33) into a form

such that their monotonicity properties can be derived. As before, let(σν , ρν , P ν , Lν,max)

be the traffic profile of the new flowν, andDν,req its end-to-end delay requirement. In order

for the new flowν to be admitted along the pathP with a rate-delay parameter pair〈rν , dν〉,
its end-to-end delay requirementDν,req must be satisfied, namely, 1)ρν ≤ rν ≤ P ν , and

Dν,req ≥ dν
edge + dν

core = T ν
on

P ν − rν

rν
+ (q + 1)

Lν,max

rν
+ (h− q)dν + DPtot. (6.5)

Furthermore, the schedulability condition at each schedulerSi must not be violated. Let

CPres be the minimal residual bandwidth alongP, i.e.,CPres = mini∈P CSi
res. Then from the

schedulability conditions for the rate- and delay-based schedulers, we see thatrν ≤ CPres.

Furthermore, for every delay-based schedulerSi alongP, let 〈rk
i , d

k
i 〉 be the rate-delay

parameter pair of flowk, wherek ∈ Fi. Then for eachk ∈ Fi, Si ∈ P such thatdk
i ≥ dν ,

we must have

∑

{j∈Fi:d
j
i≤dk

i }
[rj(dk

i − dj
i) + Lj,max] + [rν(dk

i − dν) + Lν,max] ≤ Cid
k
i . (6.6)

In summary, in order for〈rν , dν〉 to be a feasible rate-delay parameter pair for the new flow

ν, we must have thatrν ∈ [ρν , min{P ν , CPres}] and thatrν anddν must satisfy (6.5) and

91

(6.6). We now transform (6.5) and (6.6) into simple constraints onrν that are functions of

dν .

Definetν = 1
h−q

(Dν,req −DPtot + T ν
on) andΞν = 1

h−q
[T ν

onP
ν + (q + 1)Lν,max]. After some

simple algebraic manipulations, we can rewrite (6.5) in the following form:

dν ≤ tν − Ξν

rν
(6.7)

or equivalently,

rν ≥ Ξν

tν − dν
. (6.8)

Note that from (6.7), it is clear thatdν ≤ tν . Furthermore, ifdν decreases, the upper bound

on rν in (6.8) also decreases. Hence the feasible range forrν shrinks from the right, asdν

decreases.

We now consider the delay constraints (6.6). Given any flowk traversing a delay-based

schedulerSi such thatdk
i ≥ dν , define

Sk
i = Cid

k
i −

∑

{j∈Fi:d
j
i≤dk

i }
[rj(dk

i − dj
i) + Lj,max]. (6.9)

Then (6.6) becomes

rν(dk
i − dν) + Lν,max ≤ Sk

i . (6.10)

Note thatSk
i denotes theminimum residual serviceover any time interval of lengthdk

i at

schedulerSi. Hence (6.10) states that the new flowν can be accommodated atSi with a

rate-delay parameter pair〈rν , dν〉 while withoutaffecting the delay guarantee for flowk, if

the service required by the new flowν over any time interval of lengthdk
i does not exceed

Sk
i . For simplicity, we shall refer toSk

i as theminimum residual serviceof Si at timedk
i .

We can consolidate the delay constraints at all the delay-schedulers alongP as follows.

LetFdel be the union of the sets of the flows at all the delay-based schedulers, i.e.,Fdel =

∪{j ∈ Fi : Si is delay-based}. Suppose there are a total ofM distinctivedelay parameters

92

associated with the flows inFdel. Let these distinctiveM delay parameters be denoted by

d1, d2, . . . , dM , where0 ≤ d1 < d2 < · · · < dM . Form = 1, 2, . . . , M , define

Sm = min{Sk
i : k ∈ Fi anddk

i = dm,Si is delay-based}. (6.11)

Clearly, Sm denotes the minimal residual serviceamong all the delay-based schedulers

at timedm. Hence we refer toSm as theminimal residual service of pathP at timedm.

With this notation, we see that the new flowν can be accommodated along pathP with a

rate-delay parameter pair〈rν , dν〉 while withoutaffecting the delay guarantee for any flow

at any delay-based scheduler along the path, if for anydm ≥ dν , we have

rν(dm − dν) + Lν,max ≤ Sm.

Using (6.8), we can re-write the above inequality as the following constraint onrν :

rν(dm − tν) ≤ Sm − Ξν − Lν,max. (6.12)

We now show how to use (6.8) and (6.12) to determine whether a feasible rate-delay pa-

rameter pair〈rν , dν〉 exists, and if it exists, how to find the minimum feasiblerν . Define

d0 = 0 anddM+1 = ∞. Then if the new flowν is admissible, there must exist a rate-delay

parameter pair〈rν , dν〉, wheredν ∈ [dm−1, dm) for somem = 1, 2, . . . , M +1. From (6.7),

it is clear that0 ≤ dν ≤ tν . Letm∗ be such thatdm∗−1 < tν ≤ dm∗
. Clearly,[dm∗−1, dm∗

) is

the rightmost delay interval that may contain a feasibledν . We now examineiterativelythe

validity of each of the delay intervals[dm−1, dm), starting fromm = m∗ down tom = 1.

For m = m∗,m∗ − 1, . . . , 2, 1, supposedν ∈ [dm−1, dm). Then from (6.8) as well as the

constraint thatrν ∈ [ρν , min{P ν , CPres}], we must haverν ∈ Rm
fea = [rm,l

fea, r
m,r
fea], where

rm,l
fea = max{ Ξν

tν − dm−1
, ρν}, rm,r

fea = min{ Ξν

tν − dm
, P ν , CPres}. (6.13)

Similarly, from (6.12), it is not too hard to see thatdν ∈ [dm−1, dm) implies thatrν ∈
Rm

del = [rm,l
del , r

m,r
del], where

rm,l
del = max

m≤k<m∗{
Sk − Ξν − Lν,max

dk − tν
},

rm,r
del = min

{
min

m≤k<m∗{
Ξν + Lν,max

tν − dk
}, min

k≥m∗

Sk − Ξν − Lν,max

dk − tν

}
. (6.14)

93

d = 0
0 1 2d d d d d dd mm-1 m -1 m M* *

d =
M+1

dν

delay

rate

.

[[feaRdelRm m

r
del

r r r
fea fea

]]

t ν

interval shrinking interval moving towards leftat each iteration at each iteration

m,l
del
m,r m,l m,r

(constant)

Figure 6.2: The behavior of feasible rangeRm
fea and delay constraint rangeRm

del at themth
iteration in the search of feasible rate-delay parameter pair〈rν , dν〉 for a new flowν.

Observe that when we move from the current delay interval[dm−1, dm) to the next delay

interval to the left[dm−2, dm−1), the corresponding feasible rate rangeRm
fea determined by

(6.13) also shifts to the left (see Figure 6.2). In contrast, the corresponding feasible rate

rangeRm
del determined by the delay constraints (6.14) shrinks: the left edgerm,l

del increases

while the right edgerm,r
del decreases (see Figure 6.2). Using these monotonicity properties

of Rm
fea andRm

del, we obtain the following theorem, which states whether a feasible rate-

delay pair〈rν , dν〉 exists such thatdν ∈ [dm−1, dm]. In addition, it also specifies whether

the intervals to the leftmaycontain a feasible solution, or a feasible solution with a smaller

rν mayexist.

Theorem 13 If Rm
fea ∩ Rm

del is empty, then no feasible rate-delay pairs〈rν , dν〉 exist such

that dν ∈ [dm−1, dm]. Furthermore, ifRm
fea is empty, orRm

del is empty, orrm,r
fea < rm,l

del ,

then no intervals to the left contain a feasible solution either. More precisely, no feasible

rate-delay pairs〈rν , dν〉 exist such thatdν ∈ [0, dm).

If Rm
fea ∩ Rm

del is not empty, then a feasible rate-delay pair〈rν , dν〉 exists such thatdν ∈
[dm−1, dm]. Furthermore, ifrm,l

fea < rm,l
del , thenrν = rm,l

del is the smallest rate such that there

exists somedν ≥ 0 for which 〈rν , dν〉 is a feasible rate-delay pair. In other words, any

rate-delay pair〈rν , dν〉 whererν < rm,l
del is not feasible.

Based on Theorem 13, the admission test is presented (in pseudo-code) in Figure 6.3. Start-

ing with the rightmost interval[dm∗−1, dm∗
), this algorithm determines iteratively whether

a feasible rate-delay pair〈rν , dν〉 exists such thatdν ∈ [dm∗−1, dm∗
). If the new flowν is

admissible, the algorithm also finds thefeasiblerate-delay parameter pair〈rν , dν〉 such that

94

0. tν = 1
h−q

[Dν,req −DPtot + T ν
on]

1. Letm∗ such thatdm∗−1 < tν ≤ dm∗

2. for m = m∗, m∗ − 1, . . . , 2, 1

3. Rm
fea ← [rm,l

fea
, rm,r

fea
]

4. Rm
del ← [rm,l

del
, rm,r

del
]

5. if (Rm
fea ∩Rm

del == ∅)
6. if (Rm

fea == ∅||Rm
del == ∅||rm,r

fea
< rm,l

del
)

7. break with dν = dm

8. else/*Rm
fea ∩Rm

del 6= ∅*/
9. if (rm,l

fea
< rm,l

del
)

10. rν ← rm,l
del

11. dν ← tν − Ξν

rν

12. break with dν

13. if (dν > tν) no feasible value found
14. else returndν

Figure 6.3: Admission test for a new flowν on a path with mixed rate- and delay-based
schedulers.

rν is minimal. The time complexity of the algorithm isO(M). Note that in general, we

haveM ≤ |Fdel| ≤ ∑
Si is delay-based|Fi|. Hence the complexity of the algorithm hinges only

on the number of distinctive delay parameters supported by the schedulers along the path of

the new flow. This reduction in complexity can be significant if many flows have the same

delay requirements. This is particularly the case when we consider class-based admis-

sion control with flow aggregation where a number of fixed delay classes are pre-defined.

Clearly this reduction in complexity is achieved because our admission control algorithm

considers all the admissibility constraints along a path simultaneously. This isnotpossible

using the conventional hop-by-hop reservation set-up approach (e.g., as employed in the

IETF IntServ model with RSVP).

Bookkeeping.When a new flow is admitted in the network, the BB needs to update the flow

MIB, path QoS state MIB and node QoS state MIB, among others. For a pathP with mixed

rate-based and delay-based schedulers, in addition to path parameters such asDPtot andCPres,

we assume that the minimum residual serviceSm at eachdm is also maintained, wheredm

is a distinctive delay parameter supported by one of the delay-based schedulers alongP.

These parameters facilitate the admission test described in Figure 6.3. Hence when a new

flow is admitted along pathP, these parameters need also to be updated. Furthermore,

we assume that for each delay-based schedulerSi, the minimum residual serviceSk
i of Si

at eachdk
i is also maintained at the node QoS state MIB. Hence these parameters must

be updated accordingly. Furthermore, for any path traversingSi, the corresponding path

minimum residual service parameters may also need to be updated.

95

...

...

.

.

. . . .

Core Router Core RouterCore Router
Edge Conditioners

microflows

class 1

class K

scheduler scheduler scheduler

macroflows

Figure 6.4: Class-based guaranteed services: dynamic flow aggregation along a path.

6.4 Admission Control with Dynamic Flow Aggregation

Traffic aggregation is a powerful technique that can be used to significantly reduce the

complexity of both the data plane and the control plane of a network domain. This reduc-

tion in complexitymaycome at a price— that guaranteed services may only be provided

to individual flows at acoarser granularity. In this section we address the problem of

admission control for class-based guarantee services, where a fixed number of guaranteed

delay service classes are offered in a network domain. The class-based guaranteed delay

service model is schematically shown in Figure 6.4. A new user flow will be placed in one

of the delay service classes if it can be admitted into the network. All flows in the same

delay service class that traverse the same path will be aggregated into a singlemacroflow.

This macroflow is shaped using an aggregate reserved rate at the edge conditioner, and is

guaranteed with an end-to-end delay bound determined by the service class. We refer to

the individual user flows constituting a macroflow as themicroflows.

A key issue in the design of admission control for this class-based service model is the

problem ofdynamicflow aggregation. The dynamics come from the fact thatmicroflows

may join or leave a macroflow at any time. Hence the aggregate traffic profile for the

macroflow may change dynamically, and as a result, the reserved rate for the macroflow

may need to be adjusted accordingly.This dynamic change in the aggregate traffic profile

can cause some undesirable effect on the end-to-end delay experienced by the macroflow

(see Section 6.4.1). As far as we are aware, this problem of dynamic flow aggregation has

not been identified nor addressed before in the literature. The existing work on traffic ag-

gregation (in particular, in the context of guaranteed services, see, e.g. [40]) has implicitly

assumedstaticflow aggregation: a macroflow is an aggregation ofn fixedmicroflows, with

no new microflows joining or existing constituent microflows leaving in the duration of

96

the macroflow. The remainder of this section is organized as follows. In Section 6.4.1 we

first illustrate the impact of dynamic flow aggregation on providing end-to-end guaranteed

services, and then in Section 6.4.2 we propose solutions to circumvent the problems using

our BB architecture. In Section 6.4.3, we will briefly describe how to perform admission

control for class-based guaranteed services.

6.4.1 Impact of Dynamic Flow Aggregation on End-to-End Delay

Before we illustrate the impact of dynamic flow aggregation, we first introduce some nota-

tion and assumptions. Consider a macroflowα which currentlyconsists ofn microflows.

Let (σj, ρj, P j, Lj,max) be the traffic profile of the microflowj, 1 ≤ j ≤ n. For simplic-

ity, we will use a dual-token bucket regulator,(σα, ρα, P α, Lα,max), as the aggregate traffic

profile for the macroflowα. Hence we haveσα =
∑n

j=1 σj, ρα =
∑n

j=1 ρj, Pα =
∑n

j=1 P j,

andLα,max =
∑n

j=1 Lj,max. Note thatLα,max =
∑n

j=1 Lj,max is because a packet of the

maximum size may arrive from each of then microflows at the same time. Hence the

edge conditioner may see a burst ofLα,max at any time. In contrast, since only one packet

from the macroflowα may leave the edge conditioner at any given time, the “maximum

burst” the macroflow may carry into the network core ismaxn
j=1 Lj,max. LetP denote the

path of the macroflowα, andLP,max denote the maximum packet size permissible in a

macroflow (i.e., a delay service class) alongP. ThenLP,max ≥ maxn
j=1 Lj,max. Without

loss of generality, we assume thatLP,max is fixed.

Supposewe treat the macroflowα asstatic, i.e., with no microflows joining or leaving at

any time. Let〈rα, dα〉 be the rate-delay parameter pair reserved for the macroflow. For

simplicity, assume that pathP consists of only rate-based schedulers (h of them in total).

Then from the end-to-end delay formula (6.3), the end-to-end delay experienced by the

macroflowα (and therefore by any packets from any constituent microflows) is bounded

by

dα
end−to−end = dα

edge + dα
core = T α

on

Pα − rα

rα
+

Lα,max

rα
+ h

LP,max

rα
+ DPtot (6.15)

whereDPtot =
∑

i∈P Ψi +
∑

i∈P,i6=h πi.

We claim that if we allow microflows to dynamically join or leave a macroflow, the end-to-

end delay bound (6.15) mayno longerhold. We illustrate this through an example. Con-

sider a new microflowν joins the existing macroflowα at timet∗. Let (σν , ρν , P ν , Lν,max)

97

+

+

+

+Qdynamic
Qstatic

Qdynamic Qstatic>

α

α

ν

να

να

ν

α
on

on

αTononT
ν

Lα

Arrival process

Time0 T

ρ

P

One dynamic flow arrival pattern

α
L ,max P

r

r α

Static flow aggregation

T

ν

,max

Figure 6.5: An example illustrating the edge delay bound violation when a new microflow
joins.

be the traffic profile of the new microflow. Denote the “new” macroflow after the microflow

ν has been aggregated (i.e., the macroflow that enters the network core aftert∗) by α′, and

let (σα′ , ρα′ , P α′ , Lα′,max) be its traffic profile. Suppose that the reserved rate for the “new”

macroflow increases fromrα to rα′ at timet∗.

We first show that the packets from the “new” macroflow may experience a worst-case

delay at the edge conditioner that is larger thandα′
edge = T α′

on
P α′−rα′

rα′ + Lα′,max

rα′ . This can hap-

pen, for example, in the scenario shown in Figure 6.5. In this scenario,T α
on ≥ T ν

on, and thus

T ν
on ≤ Tα′

on ≤ Tα
on. We assume that all the constituent microflows of the existing macroflow

α start at the same time (i.e., time 0) and aregreedy: they dump the maximum allowed burst

into the network at any timet, i.e.,Aα(0, t) = Eα(t) = min{Pαt+Lα,max, ραt+σα}. The

new microflowν joins the existing macroflowα at timet∗ = Tα
on−T ν

on, and it is alsogreedy:

at any timet ≥ t∗, Aν(t∗, t) = Eν(t − t∗) = min{P ν(t − t∗) + Lν,max, ρν(t − t∗) + σν}.
Then it is not difficult to see that at timet = T α

on, the total amount of traffic that is queued

at the edge conditioner is given by

Q(t) = (Pα − rα)Tα
on + (P ν + rα − rα′)T ν

on + Lα′,max.

Hence the delay experienced by a packet arriving the edge conditioner at timet = Tα
on will

be at leastQ(t)/rα′ , which can be shown to be larger thandα′
edge in general. This larger

delay is caused by the fact that at the time a new microflow is aggregated into an existing

macroflow flow, the buffer at the edge conditionermay not be empty. The “old” packets

98

Qdynamic Qstatic>

Q

-

+staticQ

-

dynamic

ν

-

-

αr

r

,max

Arrival process

Time0

ρ

P

One dynamic flow arrival pattern
Static flow aggregation

να

α

α ν

L

α ν

αL

Lν ,max

Ton

,max

α

ν

Figure 6.6: An example illustrating the edge delay bound violation when a constituent
microflow leaves.

queued there can cause the “new” packets to experience additional delay that is no longer

bounded bydα′
edge.

We now consider the delay experienced by packets from the “new” macroflowα′ inside

the network core. Despite the fact that packets from the “new” macroflowα′ are serviced

with a higher reserved raterα′ (≥ rα), it can be formally established that some of these

packets may experience a worst-case delay in the network core that is bounded bydα
core =

hLP,max/rα+DPtot, not bydα′
core = hLP,max/rα′+DPtot. Intuitively, this can happen because

the packets from the “new” macroflow may catch up with the last packets from the “old”

macroflow. Hence they may be queued behind the “old” packets, incurring a worst-case

delay bounded bydα
core instead ofdα′

core. Considering both the delay at the edge conditioner

and that in the network core, we see that packets of the “new” macroflow may experience

an end-to-end delay that is no longer bounded by the end-to-end delay formula (6.15).

A similar situation may also occur when a constituent microflow leaves an existing macroflow,

if we immediately decrease the reserved raterα to a new lowerrα′. For example, consider

the scenario illustrated in Figure 6.6. Assume that a microflowν dumps one packet with

the maximum packet size of the microflow at time0, and this packet is serviced first by

the edge conditioner. Furthermore, we assume that the microflow leaves the system at the

timeLν,max/rα. Suppose all other microflows in the macroflow are all greedy from time0.

Then it is not hard to see, if the reserved rate forα′ is immediately reduced torα′, that at

99

time t = T α′
on the total amount of traffic that is queued at the edge conditioner is given by,

Q(t) = Lα′,max + Tα′
onPα′ − rα′Tα′

on + Lν,max rα′

rα

Hence the delay experienced by a packet arriving the edge conditioner at timet = Tα′
on will

be at leastQ(t)/rα′, which is larger thandα′
edge.

In conclusion, we see that when a new microflow joins or a constituent microflow leaves

an existing macroflow, the end-to-end delay experienced by the resulting macroflow after

the microflow is aggregated or de-aggregated may not be bounded by the end-to-end delay

formula (6.15). In other words, we cannot simply treat the resulting macroflowas if it were

a completely new and independent flow.This is because when a new microflow joins or

a constituent microflow leaves an existing macroflow, the buffer at the edge conditioner

may not be empty in general. These packets queued at the edge conditioner may have a

lingering effect that invalidates the end-to-end delay formula (6.15).New apparatuses are

thus needed to tackle the problem caused by dynamic flow aggregation.Before we move

on, we would like to comment that the problem of dynamic flow aggregation isnot unique

to the virtual time reference system used in this chapter. The same problem exists in a

more general context. For example, dynamic flow aggregation will have the same effect

on a network of WFQ schedulers, the reference system used in the IntServ model. This is

because the situation happening at the edge conditioner described above will also apply to

a WFQ scheduler.

6.4.2 End-to-End Delay Bounds under Dynamic Flow Aggregation

In this section we present new mechanisms to effectively circumvent the problems caused

by dynamic flow aggregation. The basic objective of our approach is to enable the band-

width broker to make admission control decisions at any given time, using only the traffic

profile and reserved rate of the macroflow at that time. In other words, we do not want

the bandwidth broker to maintain an elaborate history record of the microflow arrival and

departure events of a macroflow. To take care of the potential extra delay at the edge con-

ditioner, in Section 6.4.2.1 we introduce the notion ofcontingency bandwidthwhich is

allocated for a short period of time (referred to ascontingency period) after a microflow

joins or leaves an existing macroflow to eliminate the lingering delay effect of the pack-

ets queued in the edge conditioner at the time the microflow joins or leaves an existing

macroflowα. In Section 6.4.2.2 we extend the virtual time reference system to accommo-

100

date the problem of dynamic flow aggregation. With these new mechanisms implemented,

we can show that the end-to-end delay of the macroflow after a microflow joins or leaves is

bounded by a modified end-to-end delay formula. We shall see in Section 6.4.2.2 that this

modified end-to-end delay bound can be computed based on the old delay bound (before a

microflow joins/leaves) and the traffic profile of the “new” macroflow.

6.4.2.1 Contingency Bandwidth and Edge Delay Bound

We introduce the notion ofcontingency bandwidthto eliminate the lingering delay effect of

the backlog queued in the edge conditioner at the time a microflow is aggregated into or de-

aggregated from an existing macroflow. It works as follows: Suppose at timet∗ a microflow

ν joins or leaves an existing macroflowα. In other words, the traffic from the microflow

will start arriving or stop arriving at the edge conditioner aftert∗. Besides the reserved

raterα being adjusted to a new reserved raterα′ at t∗, a contingency bandwidth∆rν is

also temporarily allocated to the resulting “new” macroflowα′ for a contingency period

of τ ν time units. In other words, in addition torα′ , an extra∆rν amount of bandwidth is

allocated to the “new” macroflowα′ from time t∗ to t∗ + τ ν , but de-allocated after time

t∗ + τ ν . The contingency bandwidth∆rν and contingency periodτ ν is chosen in such a

manner that the maximum delay in the edge conditioner experienced by any packet from

the “new” macroflowα′ after timet∗ is bounded above by

dnew
edge ≤ max{dold

edge, d
α′
edge}. (6.16)

wheredold
edge denotes the maximum edge delay bound on the “old” macroflow (i.e., before

t∗) anddα′
edge = T α′

on(Pα′ − rα′)/rα′ + Lα′,max/rα′.

The following two theorems state the sufficient conditions on∆rν andτ ν so that (6.16)

holds, the proofs of which are fairly straightforward, which are delegated to Appendix C.1.

Theorem 14 (Microflow Join) Suppose at timet∗ a new microflowν with the traffic profile

(σν , ρν , P ν , Lν,max) joins an existing macroflowα. Letrν = rα′ − rα andQ(t∗) be the size

of the backlog in the edge conditioner at timet∗. Then (6.16) holds if

∆rν ≥ P ν − rν andτ ν ≥ Q(t∗)
∆rν

. (6.17)

101

Theorem 15 (Microflow Leave) Suppose at timet∗ a constituent microflowν with the

traffic profile (σν , ρν , P ν , Lν,max) leaves an existing macroflowα. Let rν = rα − rα′ and

Q(t∗) be the size of the backlog in the edge conditioner at timet∗. Then (6.16) holds if

∆rν ≥ rν andτ ν ≥ Q(t∗)
∆rν

. (6.18)

When a microflowν joins or leaves an existing macroflowα, the BB can choose a con-

tingency bandwidth allocation∆rν using the two theorems above. For example, when a

microflowν joins, we can set∆rν = P ν−rν = P ν +rα−rα′. Whereas when a microflow

ν leaves, we can set∆rν = rν = rα−rα′. To compute the contingency periodτ ν precisely,

we need to know the backlogQ(t∗) in the edge conditioner at timet∗. Since at timet∗ the

maximum delay at the edge conditioner is bounded bydold
edge, we have

Q(t∗) ≤ dold
edger(t

∗) = dold
edge(r

α + ∆rα(t∗)) (6.19)

wherer(t∗) is total bandwidth allocated to the macroflow at timet∗, which includes the

reserved raterα and thetotal contingency bandwidth∆rα(t∗) allocated to the macroflow

α at timet∗. Given this upper bound onQ(t∗), the BB can determine an upper boundτ̂ ν

on the contingency periodτ ν as follows:

τ̂ ν = dold
edge

rα + ∆rα(t∗)
∆rν

. (6.20)

Hence after̂τ ν , the BB can de-allocate the contingency bandwidth∆rν at timet∗+ τ̂ ν . We

refer to this method of determining contingency periodτ ν as the (theoretical)contingency

period boundingapproach. This scheme does not require any feedback information from

the edge conditioner regarding the status of its buffer occupancy. However in general it can

be quiteconservative.

A morepractical approach is to have the edge conditioner tofeedback the actual contin-

gency periodto the BB. This scheme is referred as thecontingency feedbackmethod, and

works as follows. When a new microflowν joins or leaves an existing macroflowα, the

BB sends anedge conditioner reconfigurationmessage to the edge conditioner. In this

message, in addition to the new reserved raterα′, the contingency bandwidth∆rν is also

102

included. Suppose the edge conditioner receives this message at timet∗. It checks the

current queue lengthQ(t∗), and computes the new contingency periodτ ν . It can immedi-

ately inform the BB of the actual value ofτ ν . Or it can wait untilt∗ + τ ν , and then send

a contingency bandwidth resetmessage back to the BB. Note that whenever the buffer in

the edge conditioner becomes empty, acontingency bandwidth resetmessage can also be

sent back to the BB, resettingall of the contingency bandwidth allocated to the macroflow

α (i.e., setting∆rα = 0). This is because after this point, the maximum delay experienced

by any packets of the macroflowα is bounded bydα
edge, which is solely determined by the

currentaggregate traffic profile of the macroflowα.

6.4.2.2 Extension to VTRS and Core Delay Bound

Recall that in the core stateless virtual time reference system, packets from the same flow

carry virtual time stamps. These virtual time stamps satisfy, among the others, thevirtual

time spacingproperty, which depends on the reserved rate of the flow. The virtual time

reference system is developed based on the assumption that the reserved rate of a flow is

fixed. In this section we illustrate how the virtual time reference system can be extended

to accommodate flow aggregation with dynamic rate changes. Based on this extension, we

also derive a modified core-delay bound for flow aggregation.

Consider an existing macroflowα which traverses the pathP. For simplicity of exposition,

we first assume that all the schedulersSi’s along the path are rate-based. Suppose that

at timeτ ∗, the reserved rate of the macroflowα is adjusted at the edge shaper fromr to

r′ (this happens every time the rate of the edge conditioner is adjusted). Letpk∗ be the

last packet that leaves the edge conditioner before the rate change atτ ∗, andpk∗+1 be the

first packet that leaves the edge conditioner after the rate change atτ ∗. Then fork < k∗,

âk+1
1 − âk

1 ≥ Lk+1/r, and fork ≥ k∗, âk+1
1 − âk

1 ≥ Lk+1/r′, where recall that̂ak
1 denotes

the time packetpk departs the edge conditioner and arrives at the first-hop scheduler.

To accommodate reserved rate change in the virtual time reference system, we need to

modify the definition of the virtual time adjustment for the transitional packetpk∗+1 as

follows. Define

∆k∗+1 = max

{
0, ∆k∗ + h(

Lk∗

r
− Lk∗+1

r′
) + âk∗

1 − âk∗+1
1 +

Lk∗+1

r′

}
. (6.21)

For the packets afterpk∗+1, the definition of∆k is not changed, namely, it is given in (4.8)

with rj replaced byr′. Indeed we can show that fork = k∗ + 1, k∗ + 2, . . ., ∆k is the

103

cumulative delay experienced by packetpk along the pathP in theideal dedicated per-flow

system[86], where the rate of the servers is changed fromrα to rα′ at timeτ ∗.

With the above modification, we can show that the following theorem holds. For its proof,

see Appendix C.2.

Theorem 16 For k = k∗ + 1, k∗ + 2, . . ., let δk = ∆k/h, where fork = k∗ + 1, ∆k is

given by (6.21), and fork = k∗+2, . . ., ∆k is given in (4.8) withr replaced byr′. Then the

virtual spacing and reality check properties hold for the macroflow after the rate change at

τ ∗. Namely, fork = k∗ + 1, . . ., ω̃k
i − ω̃k−1

i ≥ Lk/r′, and âk
i ≤ ω̃k

i , i ∈ P. Furthermore,

the delay experienced by these packets in the network core is bounded by the following

modified core delay formula:

f̂k
h − âk

1 ≤ h max

{
LP,max

r
,
LP,max

r′

}
+ DPtot. (6.22)

The above modified core delay bound is derived under the assumption that all the sched-

ulers along pathP are rate-based. We now consider the case where some schedulers along

pathP aredelay-based. In order to ensure the validity of the virtual time reference system

under this case, we need to impose an assumption7: the delay parameterdα associated with

a macroflowα is fixed, no matter whether there are microflow arrivals or departures in the

macroflow. Under this assumption, delay-based schedulers can be easily incorporated into

the extended virtual time reference system presented above. Suppose there areq rate-based

schedulers andh− q delay-based schedulers along pathP. Then the delay experienced by

packetspk’s, k = k∗ + 1, k∗ + 2, . . . from the macroflowα after the rate change atτ ∗ is

bounded by the following core delay formula:

f̂k
h − âk

1 ≤ q max

{
LP,max

r
,
LP,max

r′

}
+ (h− q)dα + DPtot. (6.23)

6.4.3 Admission Control with Dynamic Flow Aggregation

We now illustrate how to perform admission control and resource reservation with dynamic

flow aggregation, based on the results obtained in Section 6.4.2.1 and Section 6.4.2.2. Con-

sider a macroflowα. Let Dα,req be its end-to-end delay requirement, which we assume is

7This assumption isnot too restrictive in a network where a number offixeddelay service classes are
provided.

104

fixedthroughout theentireduration of the macroflow. Whenever a microflow joins or leaves

the macroflowα, we need to ensure that its end-to-end delay requirement is still satisfied.

At a given time, letrα be thereservedrate of macroflowα excluding the contingency

bandwidth allocated. Let ∆rα(t) denote thetotal contingency bandwidth allocated toα at

any timet. (Here we denote∆rα(t) as a function toemphasize its time dependent nature,

as every time a contingent periodτ ν expires, the corresponding contingency bandwidth

is reduced from∆rα.) Hence at any given timet the actual bandwidth allocated to the

macroflowα is r(t) = rα + ∆rα(t) ≥ rα. Using this fact and (6.23), we see that if no

new microflow joins or leaves, the delay in the network core experienced by packets of

macroflowα is always bounded bydα
core = qLP,max/rα + (h − q)dα + DPtot, despite that

the actual rate for macroflowα is not a constant. LetP be the path of macroflowα, and

let CPres be the minimal residual bandwidth along pathP. Hence at mostCPres additional

amount of bandwidth (reserved and contingent) can be allocated to any macroflow along

P. We now consider how to deal with microflow joins and leaves. We consider these two

cases separately below.

Microflow Join. Consider a new microflowν wanting to join the existing macroflowα

at timet∗. If the new microflow can be admitted, we need to determine, for the resulting

“new” macroflowα′, a new reserved raterα′ ≥ rα as well as∆rν amount of new con-

tingency bandwidth for a contingency period ofτ ν . From Theorem 14, without loss of

generality, we choose∆rν = P ν−rα′ +rα. In other words, during the contingency period,

an additionalP ν amount of bandwidth is allocated to macroflowα. Hence in order to be

able to admit the new microflowν into the existing macroflowα, first of all, we must have

P ν ≤ CPres. If this condition is satisfied, then we need to find the minimal new reserved

raterα′ so that the end-to-end delay requirementDα,req can be satisfied for the resulting

macroflowα′. Note that after contingency period, the edge queueing delay for any packets

of the class is determined by the new class traffic profile and the reserved rate, therefore,

dα′
end−to−end = dα′

edge + max{dα
core, d

α′
core} ≤ Dα,req. (6.24)

Sincerα′ ≥ rα, LP,max/rα′ ≤ LP,max/rα. Hencedα
core ≤ dα′

core. The constraint (6.24)

is reduced to ensure thatdα′
edge ≤ Dα,req − dα

core. From this constraint,rα′ can be easily

computed. Hence the new microflow can be admitted if the new reserved raterα′ can be

accommodated along pathP (i.e., if ρν ≤ rα′ − rα ≤ P ν ≤ CPres).

If the microflow can be admitted,rα + P ν is allocated to the macroflow during the con-

tingency period (i.e., fromt∗ to t∗ + τ ν), and aftert∗ + τ ν , only rα′ will be allocated for

105

E2

D1

D2

E1I1S1

I2S2

R2 R3 R4 R5

Figure 6.7: The network topology used in the simulations.

Table 6.1: Traffic profiles used in the simulations
Type Burst size (b) Mean rate (b/s) Peak rate (b/s) Max pkt size (B) Delay Bounds (s)

0 60000 0.05M 0.1M 1500 2.44 2.19
1 48000 0.04M 0.1M 1500 2.74 2.46
2 36000 0.03M 0.1M 1500 3.24 2.91
3 24000 0.02M 0.1M 1500 4.24 3.81

macroflowα′.

Microflow Leave. When a constituent flowν leaves the macroflowα at timet∗, we may

reduce the current reserved raterα to rα′. Clearly, we must ensure that the amount of

bandwidth reduced,rν = rα − rα′, is chosen such that the end-to-end delay requirement

Dα,req must not be violated. Furthermore,this reduction in reserved rate may not take place

immediately in general.From Theorem 15 and choosing∆rν = rν , we must continue

to service the macroflowα with the current reserved raterα for a period ofτ ν . Only

after the contingency period ends att∗ + τ ν , can we reduce the current reserved rate by

rν = rα − rα′ amount. To determinerν = rα − rα′, we must ensure that (6.24) holds.

Sincerα′ ≤ rα, we havedα
core ≤ dα′

core. Hence we need to find a new reserved raterα′

such thatdα′
edge + dα′

core ≤ Dα,req. In either of these cases, the minimalrα′ (if it exists) that

satisfies the end-to-end delay bound (6.24) can be found easily.

6.5 Simulation Investigation

In this section, we conduct simulations to explore the efficacy of our admission control

algorithms for both per-flow and class-based guaranteed services. In particular, we com-

pare the performance of our per-flow admission control algorithm with that used in IntServ

106

Guaranteed Service (GS) model. We also investigate the impact of dynamic flow aggrega-

tion on class-based guaranteed services.

Figure 6.7 depicts the network topology used in the simulations, where flows generated

from source 1 (S1) are destined to destination 1 (D1) via the path connecting the ingress

node (I1) to the egress node (E1), and flows generated from source 2 (S2) are destined to

destination 2 (D2), via the path connecting the ingress node (I2) to the egress node (E2).

Each ingress node consists of two components: edge conditioners; and acore stateless

scheduler, which is the first-hop scheduler along the path. Letx → y denote the outgoing

link from nodex to nodey. The capacity of outgoing links of all core routers is set to

1.5Mb/s. The link capacity ofSi → Ii and that ofEi → Di, i = 1, 2, are assumed

to be infinity. All the links are assumed to have zero propagation delay. We consider two

simulation settings. In the first setting (rate-based schedulers only), all core routers employ

C 6SVC schedulers. In the second setting (mixed rate/delay based schedulers), schedulers

employed for the outgoing linksI1 → R2, I2 → R2, R2 → R3, R5 → E1 areC 6SVCs,

while those forR3 → R4, R4 → R5, andR5 → E2 are VT-EDFs. The flow traffic

profiles and possible delay requirements used in the simulations are listed in Table 6.1.

We first conduct a set of simulations to compare the efficacy of the admission control

schemes (both per-flow and class-based) in the BB/VTRS model with the standard admis-

sion control scheme [34, 69] used for the GS in the IntServ model. In the GS model,

the counterpart of aC 6SVC scheduler is VC, while for VT-EDF, it is RC-EDF. The RC-

EDF [34, 82] scheduler employs a per-flow shaper to enforce that the traffic of each flow

entering the EDF scheduler conforms to its traffic profile. In this set of simulations, traffic

is sentonly from sourceS1 to destinationD1 (i.e., there is no cross traffic). All flows are of

type0, and have the same end-to-end delay requirement (either2.44 s or 2.19 s). Moreover,

each flow has an infinite lifetime. Note that under the per-flow guaranteed services, when

the delay requirement of a type0 flow is 2.44 s, a reserved rate equal to its mean sending

rate will meet the delay requirement. Whereas, when the delay requirement is2.19 s, a

higher reserved rate is needed to meet the delay requirement. In the BB/VTRS aggregate

scheme, a single delay service class is used, where the end-to-end delay requirement of the

class is set to either either2.44 s or 2.19 s. For each flow in the class, a fixed delay parame-

ter (cd) is used at all of the delay-based schedulers (this parameter will only be used in the

mixed rate/delay-based scheduler setting). Simulations are conducted using three different

values ofcd (0.10 s, 0.24 s and0.50 s). The objective of our simulation investigation is

to compare themaximumnumber of flows that can be admitted under the three different

107

Table 6.2: Comparison of IntServ/GS, per-flow BB/VTRS and aggregate BB/VTRS
schemes.

Number of Calls admitted
Rate-Based Only Mixed Rate/Delay-Based

Delay bounds (s) 2.44 2.19 2.44 2.19

IntServ/GS 30 27 30 27
Per-flow BB/VTRS 30 27 30 27

cd = 0.10 (s) 29 29
Aggr BB/VTRS cd = 0.24 (s) 29 29 29 29

cd = 0.50 (s) 29 28

admission control schemes: IntServ/GS, Per-flow BB/VTRS and Aggr BB/VTRS.

The simulation results are shown in Table 6.2. From the table we see that the IntServ/GS

and Per-flow BB/VTRS schemes accept exactly the same number of flows under all the

simulation settings. Whereas the Aggr BB/VTRS scheme has either slightly worse or better

performance, depending on the end-to-end delay requirements of the flows. When the delay

requirement is2.44 s, the Aggr BB/VTRS scheme accepts one fewer flow than that can be

accepted by either the IntServ/GS or Per-flow BB/VTRS scheme. This performance loss is

due to contingency bandwidth allocation in the Aggr BB/VTRS scheme: when a new flow

is accepted into the delay service class, an amount of bandwidth equal to its peak rate is

reserved during the contigency period to avoid potential delay bound violation. In contrast,

in both the IntServ/GS and Per-flow BB/VTRS schemes, the bandwidth reserved for the

new flow is equal to its mean rate. However, when the delay requirement is2.19 s, the

Aggr BB/VTRS scheme can accept one or two more flows than that can be accepted by

either the IntServ/GS or Per-flow BB/VTRS scheme. This performance gain is due to a

number of factors: 1) each flow has precisely the same delay requirement as is provided by

the delay service class; 2) the aggregate flow has a smaller core-delay bound than that of

each individual flow in the per-flow guaranteed services; and 3) all flows have infinite life

time, which, in this case, masks thetransienteffect of contingency bandwidth allocation

used in the Aggr BB/VTRS scheme.

To better understand why the Aggr BB/VTRS scheme yields better performance in the case

when the end-to-end delay requirement of the flows is2.19 s, we examine more closely

the bandwidth allocation allocated under the three schemes. Figure 6.8 plots the average

bandwidth allocated to each flow using the three schemes (under the mixed rate/delay-

based scheduler setting) as a function of the number of flows accepted into the network.

108

45000

50000

55000

60000

65000

70000

0 5 10 15 20 25 30

M
ea

n
re

se
rv

ed
 b

an
dw

id
th

Flows accepted

IntServ/GS
Per-flow BB/VTRS

Aggr BB/VTRS (cd = 0.10s)
Aggr BB/VTRS (cd = 0.24s)
Aggr BB/VTRS (cd = 0.50s)

Figure 6.8: Mean reserved bandwidth.

0.05

0.1

0.15

0.2

0.25

35 40 45 50 55

B
lo

ck
in

g
pr

ob
ab

ili
tie

s

Offered loads

Per-flow BB/VTRS
Contingency Period Feedback

Contingency Period Bound

Figure 6.9: Flow blocking rates.

From the figure we see that under the Aggr BB scheme, the average reserved bandwidth

per flow decreases, as more flows are aggregated into the delay service class. (Note in

particular that with the fixed delay parametercd = 0.10 s, a per-flow bandwidth allocation

that is equal to the mean rate of the flows is sufficient to support the end-to-end delay

bound2.19 s of the delay service class.) The average reserved bandwidth eventually drops

considerably below those of the Per-flow BB/VTRS and IntServ/GS schemes. As a result,

under the Aggr BB/VTRS scheme there is sufficient residual bandwidth left to admit one

or two more flows into the network. Under the Per-flow BB/VTRS scheme, a VT-EDF

scheduler starts with allocating the minimum possible delay parameter to a flow, thereby

producing the minimum bandwidth allocation (i.e., the mean rate of the flow). However,

as more flows are admitted, the feasible delay parameter that can be allocated to a new

flow becomes larger, resulting in higher reserved rate. As a result, the average reserved

bandwidth per flow increases. It is interesting to note that although the Per-flow BB/VTRS

and IntServ/GS admit the same number of flows (i.e., 27), the Per-flow BB/VTRS scheme

has a slight smaller average reserved rate per-flow. Hence there is more residual bandwidth

left under the Per-flow BB/VTRS scheme than that under the IntServ/GS scheme, albeit

this residual bandwidth is not enough to admit another flow. This slight gain in the residual

bandwidth is due to the ability of the Per-flow BB/VTRS scheme to perform path-wide

optimization when determining the minimum feasible rate-delay parameter pair for a flow.

In contrast, in the IntServ/GS scheme, the reserved rate of a flow is determined using the

WFQ reference model, which then limits the range that the delay parameter can be assigned

to the flow in an RC-EDF scheduler.

In the above simulations, we have assumed that all flows have infinite life time. We now

conduct another set of simulations in which flows have finite holding times, and investigate

109

the impact of dynamic flow aggregation on the flow blocking performance of class-based

guaranteed services. In this set of simuatations, flow holding time is generated using an

exponential distribution with a mean of200 seconds. Flows may originate from either of

the two sourcesS1 or S2. We vary the flow inter-arrival times to produce various offered

loads. We implement two versions of the aggregate BB/VTRS scheme: one using the

contingency period bounding method, and another using the contingency period feedback

method, as described in Section 6.4.2.1. Figure 6.9 shows the flow blocking rates of these

two schemes as well as that of the per-flow BB/VTRS scheme, as we increase the flow

arrival rates (and thus the offered load to the network). Each point in the plots of this figure

is the average of 5 simulation runs. From the figure we can see that with dynamic flow

arrivals and departures, the per-flow BB/VTRS scheme has the lowest flow blocking rate,

as is expected. The theoretical contingency period bounding method has the worst flow

blocking rate, because it uses the worst-case bound on the backlog of the edge conditioners.

This leads to a portion of the link bandwidth used as the contingency bandwidth, which is

not immediately released. Using the contingency period feedback method, the contingency

periodτ ν is in general very small, thus the contingency bandwidth allocated is de-allocated

in a very short period of time. In general, because it requires peak rate allocation at the

time a new microflow arrives, the Aggr BB/VTRS schemes have a higher flow blocking

rate than that of the per-flow BB/VTRS scheme. However, as the offered load increases,

the flow blocking rates of these schemes converge. Hence as the network is close to its

saturation point, the (transient) effect of contigency bandwidth allocation under the Aggr

BB/VTRS scheme on the flow blocking performance becomes much less prominent.

6.6 Summary

In this chapter we have presented a novel bandwidth broker architecture for scalable sup-

port of guaranteed services that decouples the QoS control plane from the packet forward-

ing plane. More specifically, under this architecture,core routers do not maintain any QoS

reservation states, whether per-flow or aggregate. Instead, the QoS reservation states are

stored at and managed by a bandwidth broker. There are several advantages of such a band-

width broker architecture. Among others, it avoids the problem of inconsistent QoS states

faced by the conventional hop-by-hop, distributed admission control approach. Further-

more, it allows us to design efficient admission control algorithms without incurring any

overhead at core routers. The proposed bandwidth broker architecture is designed based

on acore statelessvirtual time reference system developed in [86]. In this chapter we fo-

110

cused on the design of efficient admission control algorithms under the proposed bandwidth

broker architecture. We consider bothper-flowend-to-end guaranteed delay services and

class-basedguaranteed delay services with flow aggregation. Using our bandwidth broker

architecture, we demonstrated how admission control can be done on an entirepathbasis,

instead of on a “hop-by-hop” basis. Such an approach may significantly reduce the com-

plexity of the admission control algorithms. In designing class-based admission control

algorithms, we investigated the problem of dynamic flow aggregation in providing guaran-

teed delay services, and devised new mechanisms to effectively circumvent this problem.

We conducted extensive analysis to provide theoretical underpinning for our schemes as

well as to establish their correctness. Simulations were also performed to demonstrate the

efficacy of our schemes.

111

Chapter 7

A Hierarchical Bandwidth Broker

Architecture

7.1 Introduction

The objective of this chapter is to study the scaling issues in the centralized bandwidth

broker model for flow-level dynamic QoS control and management. We consider the fac-

tors that may potentially affect the scalability of the centralized bandwidth broker model

— in particular, we identify two major limiting factors: the memory and disk access speed

and communication capacity between the bandwidth broker and edge routers. Because of

the need to access and update the network QoS states during admission control operations,

the number of memory and disk accesses/updates plays a dominant role in the time the

bandwidth broker takes to process flow reservation requests. Therefore, reducing the over-

all number of QoS state accesses and updates is a key means to enhance the overall call

processing capability of the bandwidth broker, thereby its scalability. In this chapter we

develop a path-oriented, quota-based dynamic bandwidth allocation approach to address

this issue. This approach is designed based on the two-level representation of the network

QoS states proposed in [85], i.e., a path QoS state database representing the path-level QoS

states as well as a link QoS state database representing the link-level QoS states of the net-

work domain. By allocating bandwidth in units of quota to paths on demand, the proposed

dynamic bandwidth allocation approach limits the majority of flow reservation requests to

the path state accesses/updates only, avoiding the more time-consuming link state accesses

and updates. As a result, the overall number of QoS state accesses and updates is sig-

nificantly reduced, thus increasing the overall call processing capability of the centralized

112

bandwidth broker system.

This path-oriented, quota-based dynamic bandwidth allocation approach also leads to a

natural architectural extension to the centralized bandwidth broker model: a hierarchically

distributed bandwidth broker architecture to address the scaling problem caused by the

potential communication bottleneck between the centralized bandwidth broker and edge

routers. The proposed hierarchically distributed architecture consists of a number of edge

bandwidth brokers, each of which manages a (mutually exclusive) subset of path QoS states

and performs admission control for the corresponding paths, and a central bandwidth bro-

ker which maintains the link QoS state database and manages the quota allocation among

the edge bandwidth brokers. We conduct extensive simulations to investigate the impact of

the proposed mechanisms and architectural extensions on the network system performance,

and to demonstrate their efficacy in enhancing the scalability of the centralized bandwidth

broker model. Our study shows that the scalability issue of the centralized bandwidth bro-

ker model can be addressed effectively, without incurring any additional overhead at core

routers.

The remainder of the chapter is organized as follows. In Section 7.2, we first present a

centralized bandwidth broker architectural model, and then discuss the potential scaling is-

sues of the centralized bandwidth broker architecture. In Section 7.3, we describe the basic

path-oriented, quota-based dynamic bandwidth allocation approach, and study its efficacy

in enhancing the overall call processing capability of the centralized bandwidth broker sys-

tem. In Section 7.4 we present the hierarchically distributed multiple bandwidth broker

architecture designed using the path-oriented, quota-based dynamic bandwidth allocation

approach. Its impact on the system performance is investigated. We conclude the chapter

in Section 7.6.

7.2 Bandwidth Broker Architecture: Basic Model and Scaling Issues

As the basis for our study, in this section we first present a basic centralized bandwidth

broker architectural model and describe how admission control is performed under such a

model. We then discuss the potential scaling issues in this centralized bandwidth broker

model, and briefly outline the solutions that we will develop in this chapter to address these

issues.

113

Edge node

Edge nodeEdge node

Core nodeEdge node

Core node

Control Plane
(BB) - admission control module

 - QoS routing module
 - policy control module

Service modules

 - flow information base
 - topology information base

 - path QoS state information base

Data Plane

 - link QoS state information base

Two level QoS states
path level QoS states
link level QoS states

Management information bases (MIBs)

 - policy information base

Figure 7.1: Illustration of a bandwidth broker.

7.2.1 The Basic Bandwidth Broker Model

The basic centralized bandwidth broker (BB) model for the management and control of

the QoS provisioning of a network domain is schematically depicted in Figure 7.1. This

model is based on the bandwidth broker architecture proposed in [85]. In this architectural

model, the bandwidth broker centrally manages and maintains a number of management

information (data)bases (MIBs) regarding the network domain. Among them, the network

topology database and network QoS state databases are most relevant to the study of this

chapter. The network topology database and network QoS state databases together provide

a logical representation (i.e., a QoS abstraction) of the network domain and its entire state.

With this QoS abstraction of the network domain, the bandwidth broker performs QoS

control functions by managing and updating these databases. In this sense, the QoS control

plane of the network domain is decoupled from its data plane. The core routers of the

network domain are removed from the QoS control plane: core routers do not maintain any

QoS reservation states, whether per-flow or aggregate, and do not perform any QoS control

functions such as admission control.

In our centralized bandwidth broker model, the network QoS states are represented at two

levels: link-level and path-level. The link QoS state database maintains information regard-

ing the QoS state of each link in the network domain, such as the total reserved bandwidth

or the available bandwidth of the link. The path QoS state database maintains the QoS state

information regarding each path of the network domain, which is extracted and “summa-

rized” from the link QoS states of the links of the path. An example of the path QoS state is

the available bandwidth along a path, which is the minimal available bandwidth among all

its links. As shown in [85], by maintaining a separate path-level QoS state, the bandwidth

broker can conduct fast admissibility test for flows routed along the path. Furthermore,

114

path-wise resource optimization can also be performed based on the (summarized) path

QoS state. As will be demonstrated in this chapter,this two-level representation of the net-

work QoS states is also the key feature that leads to scalable design of bandwidth broker

architectures for dynamic flow-level QoS provisioning.Lastly, we note that both the link

QoS states and path QoS states are aggregate QoS states regarding the links and paths.

No per-flow QoS states are maintained in either of the two QoS databases. The QoS and

other control state information regarding each flow1 such as its QoS requirement and re-

served bandwidth is maintained in a separate flow information database managed by the

bandwidth broker [85].

We now briefly describe a simple admission control scheme to illustrate how flow-level

dynamic QoS provisioning can be performed under the basic centralized bandwidth broker

model. For simplicity of exposition, throughout this chapter we assume that bandwidth is

the critical network resource that we are concerned about. We consider the flow reservation

set-up request first. When a new flow arrives at an edge router, requesting a certain amount

of bandwidth to be reserved to satisfy its QoS requirement, the flow reservation set-up re-

quest is forwarded by the edge router to the bandwidth broker. The bandwidth broker then

applies an admissibility test to determine whether the new flow can be admitted. More

specifically, the bandwidth broker examines the path QoS state (obtained from the corre-

sponding link states) and determines whether there is sufficient bandwidth available along

the path to accommodate the new flow. If the flow can be admitted, the bandwidth bro-

ker updates the path QoS state database and link QoS state database (as well as the flow

information database) to reflect the new bandwidth reservation along the path. If the ad-

missibility test fails, the new flow reservation set-up request will be rejected, and no QoS

information databases will be updated. In either case, the BB will signal the ingress edge

router of its decision. For a flow reservation tear-down request, the bandwidth broker will

simply update the corresponding link state database and path state database (as well as the

flow information database) to reflect the departure of the flow. Clearly, using the basic

admission control scheme presented above, processing either the flow reservation set-up or

tear-down request requires access/update to the link QoS state database as well as the path

QoS state database. Access and update of the link QoS states are necessary to ensure that

the link QoS states are always up-to-date, so that the bandwidth broker can obtain accurate

path QoS state information and make correct admission control decisions. We refer to this

1In this chapter a flow can be either an individual user flow, or an aggregate flow of multiple users,
defined in whatever appropriate manner (e.g., an aggregate flow representing traffic from an institution or a
sub-network).

115

“naive” admission control scheme that requires per-flow link QoS state access/update, as

the link-updateadmission control scheme. In this chapter we will present a more efficient

approach to performing bandwidth allocation and admission control that can significantly

reduce the overall number of QoS state accesses and updates.

7.2.2 Scaling Issues

The issue of scalability is an important consideration in the design of a (centralized) band-

width broker system. An important measure of scalability is the ability of the bandwidth

broker system to handle large volumes of flow reservation requests, as the network system

scales. For example, as the network link capacity increases, thecall processing capability

of the bandwidth broker system, defined as the number of flow requests that can be pro-

cessed by the bandwidth broker system per unit of time, must scale with the increasing

number of flows that can be accommodated in the network system. In particular, the band-

width broker system shouldnot become the bottleneck while the network system has not

been overloaded.

Although it is possible to enhance the call processing capability of a bandwidth broker sys-

tem by simply adding more processing power or increasing memory and disk access speed,

such an approachin itself in general does not provide a scalable solution. To develop a

scalable bandwidth broker architecture, we need to gain a fundamental understanding of

the potential scaling issues and problems in a centralized bandwidth broker architecture,

and then devise appropriate mechanisms and architectural extensions to address these is-

sues and problems. This is precisely the objective of this chapter. In this section we will

identify two key factors that can potentially limit the scalability of the centralized band-

width broker architecture, and outline the solutions we will develop in the remainder of the

chapter.

There are many factors that may potentially affect the call processing capability of a band-

width broker system. Among them, the speed of memory and disk accesses plays a promi-

nent role. Recall that when processing a flow reservation set-up request, the bandwidth

broker must perform an admissibility test, and if the request can be granted, update the

relevant QoS states. Likewise, when processing a flow reservation tear-down request, the

bandwidth broker needs to update the relevant QoS states. In either case, access and/or up-

date to QoS states are involved. Since memory/disk access speed is typically much slower

than processing speed, we argue that the processing time of flow requests is determined in

a large part by the number of memory/disk accesses and updates. Therefore, an important

116

means to enhance the call processing capability of a bandwidth broker system is to reduce

the number of accesses and updates to the network QoS states maintained by the bandwidth

broker.

Another factor that may affect the overall call processing capability of a centralized band-

width broker system is the capacity of the communication channels (e.g., the network or

I/O bandwidth) between a centralized bandwidth broker system and various edge routers.

As the number of flows increases, these communication channels can become a potential

bottleneck, limiting the number of flow requests delivered to the centralized bandwidth

broker system, thereby reducing its overall call processing capability. To scale with the

demand of the network system, a distributed multiple-bandwidth-broker architecture may

be called for. Therefore, architectural extension to the basic centralized bandwidth broker

model must be considered.

The focus of this chapter is on the design of mechanistic enhancement and architectural

extension to the basic centralized bandwidth broker model to improve its scalability. In

particular, we propose and develop apath-oriented, quota-based(in short, PoQ) dynamic

bandwidth allocation mechanism for performing admission control. This PoQ dynamic

bandwidth allocation mechanism exploits the two-level representation of the network QoS

states used in the basic centralized bandwidth broker model, and attempts to avoid ac-

cessing and updating the link QoS states every time a flow reservation set-up or tear-down

request is processed. In other words, this mechanism limits the majority of accesses and up-

dates to path QoS states only, thereby reducing the overall number of accesses and updates

to the network QoS states. The basic PoQ mechanism is described in detail in Section 7.3.

Using the PoQ dynamic bandwidth allocation mechanism, in Section 7.4, we extend the

basic centralized architecture with a single bandwidth broker to a hierarchically distributed

architecture with multiple bandwidth brokers to address the scaling problem posed by the

potential communication bottleneck between the bandwidth broker system and the edge

routers. Our results demonstrate that the proposed path-oriented and quota-based dynamic

bandwidth allocation mechanism is indeed an effective means to increase the overall call

processing capability of the bandwidth broker. Furthermore, the bandwidth broker archi-

tecture can be designed in such a manner that it scales, as the network capacity increases.

117

15. opp: if opp == 0, pathp is in the normal mode.
16. if opp > 0, pathp is in the critical mode.
17. clp: list of critical links along pathp.
18. Rp: total reserved rate along pathp.
19. Qp: number of quotas allocated to pathp; it also denotes
20. the total quota bandwidth alongp, if no confusion.
21. aqbp: available quota bandwidth onp: aqbp = Qp −Rp.
22. opl: if opl == 0, link l is not critical.
23. if opl == 1, link l is critical.
24. Cl: capacity of linkl.
25. Ql: total quotas of linkl.
26. aql: available quota of linkl. aql = Ql −

∑
p:l∈p

Qp.

27. rbl: residual bandwidth of linkl. rbl = Cl −
∑

p:l∈p
Rp.

Figure 7.2: Notation used in the algorithm.

7.3 Single Bandwidth Broker Design

In this section we present the path-oriented, quota-based (PoQ) mechanism for dynamic

bandwidth allocation under a single bandwidth broker. We first describe the basic operation

of the mechanism (the base scheme), and then analyze its complexity and performance.

Simulation results are presented at the end of the section to illustrate the efficacy of the

scheme.

7.3.1 The Basic PoQ Scheme

As pointed out in Section 7.2, using the basic link-update admission control scheme to

process a flow reservation set-up or tear-down request, the bandwidth broker needs to ac-

cess/update the link QoS state of each link along the flow’s path. Hence the per-flow request

processing time is proportional to the number of link state accesses/updates. As the vol-

ume of flow requests increases, these per-flow QoS state accesses/updates can slow down

the operations of the bandwidth broker, limiting its flow processing capability. Therefore,

reducing the number of link QoS state accesses/updates is an important means to prevent

the bandwidth broker from becoming a potential bottleneck.

In this section we present the basic PoQ dynamic bandwidth allocation mechanism for a

single centralized bandwidth broker, and illustrate how it can be employed to reduce the

overall number of link QoS state accesses and updates. We first outline the basic ideas be-

hind the PoQ mechanism, and then provide a more formal and detailed description. Under

the basic PoQ scheme, the total bandwidth of each link of the network is (virtually) divided

into quotas. A quota is a “chunk” of bandwidth, appropriately chosen, that is much larger

than the average bandwidth requirement of typical flows.Bandwidth is normally allocated

118

0. Upon an arrival of a new flowf at a pathp:
1. case 1:(opp == 0 andaqbp ≥ rf)
2. Rp ← Rp + rf ; accept the flow; return.
3. case 2:(opp == 0 andaqbp < rf)
4. request more quota on all the linksl: l ∈ p (Fig. 4);
5. case 3:(opp > 0)
6. request bandwidthrf on all critical links:l ∈ clp (Fig. 4);
7. for l 6∈ clp
8. if (aqbp < rf) request more quota (Fig. 4);
9. if (all requests are granted)
10. updateQp if more quotas are allocated;
11. Rp ← Rp + rf ; accept the flow; return.
12. elsereject the flow reservation set-up request.

Figure 7.3: Path level admission control.

on-demand to each path in units of quotas.To be more precise, bandwidth allocation along

a path operates in two possible modes: thenormalmode andcritical mode. During the nor-

mal mode, the bandwidth broker allocates and de-allocates bandwidth in unit of one quota

at a time. The path QoS state of a path maintains the number of quotas of bandwidth that

have been allocated to the path, in addition to the actual bandwidth that has been reserved

for the flows routed along the path. When a flow reservation set-up request along a path

arrives, the bandwidth broker only needs to check the corresponding path QoS state to see

whether the quotas of bandwidth allocated to the path are sufficient to satisfy the flow’s

request. If the answer is positive, the flow request is accepted, and the relevant path QoS

state is updated accordingly (i.e., the actual reserved bandwidth along the path is increased

by the amount requested by the flow). Similarly, when a flow reservation tear-down request

arrives, the bandwidth broker simply needs to update the relevant path QoS state (i.e., the

actual reserved bandwidth of the path is decreased by the amount reserved for the flow).

We see that in the above two cases, flow requests can be processed by accessing and updat-

ing the path QoS states only, without the need to access/update the link QoS state database.

When there are a large number of flows arriving and departing in a short period of time,

with an appropriately chosen quota size we expect that many of these flow requests (either

reservation set-up or tear-down) will be processed by the bandwidth broker using only the

path QoS states. This key observation is the major motivation behind our PoQ dynamic

bandwidth allocation mechanism.

In the case that the bandwidth allocated to a path is not sufficient to satisfy the reservation

set-up request of a flow, the bandwidth broker will attempt to allocate a new quota to the

path to accommodate the flow reservation set-up request. In this case, the bandwidth broker

needs to check each link QoS state along the path to see whether there is a quota available

at all the links. If this is the case, a new quota is allocated to the path, and the number of

119

available quotas at each link of the path is decremented by 1. When there is an extra unused

quota available along a path (due to flow departures), the extra quota will be re-claimed by

the bandwidth broker, and the extra quota is returned to each link along the path. The

available number of quotas at these links will be increased by 1. Clearly, quota allocation

and de-allocation incur some overhead. In particular, the bandwidth broker needs to access

and update the link QoS states to keep track of the available quotas at each link. Generally

speaking, large quota size tends to reduce the overhead of quota management. On the other

hand, large quota size has other performance implications, as we will see later.

Quota allocation for a path can fail if one of the links along the path does not have sufficient

quotas left. In this case, bandwidth allocation for the path enters into thecritical mode.

More generally, when the available quota of a link falls below a threshold (say, no quota

left), we say that the link iscritically loaded(or the link is critical). When a link is critically

loaded, all paths traversing this link enter the critical mode. Once a path is in the critical

mode, the bandwidth broker will cease allocating bandwidth along the path in units of

quota. Instead, the bandwidth is allocated or de-allocated on a per-flow basis, as in the

basic link-update scheme described in Section 7.2. In particular, it maintains an accurate

link QoS state for each critically loaded link (e.g., the precise amount of reserved bandwidth

at the link). Hence when processing a flow reservation set-up or tear-down request for a

path in the critical mode, the bandwidth broker must access and update the link QoS states

of those critically loaded links along the path. In this way, we ensure that the admission

control decision is always made correctly. We switch to the link-update admission control

scheme so that no flow reservation set-up request will be rejected unnecessarily. As a result,

whenever a flow is admitted using the link-update scheme, it will also be admitted using the

basic PoQ scheme. In the next section, we will consider a “lossy-path” model in the context

of the multiple bandwidth broker. The “lossy-path” model can also be used in combination

with the basic PoQ scheme to reduce the link QoS state access/update overhead.

In the above we have provided an outline of the basic PoQ dynamic bandwidth allocation

scheme. A more formal and detailed description of the scheme is presented in pseudo-code

in Figures 7.3, 7.4, and 7.5. Figure 7.2 summarizes the notation used in the description.

For the ease of exposition, the scheme is divided into three function blocks. Figure 7.3

describes the path-level admission control for flow reservation set-up and quota allocation

management. Figure 7.4 describes the link-level bandwidth allocation and quota allocation

management. Finally, Figure 7.5 describes both the path-level and link-level bandwidth

and quota management operations for handling flow departures.

120

0. Upon a pathp requestsrp on a linkl:
1. /* rp can be a quota or a flow’s request rate */
2. case 1:(opl == 0 andaql < rp)
3. collect residual bandwidth:rbl ← Cl −

∑
p:l∈p

Rp;

4. if (rbl < rp) reject the request; return.
5. case 2:(opl == 1 andrbl < rp) reject the request; return.
6. /* The request can be honored */
7. if (opl == 0 andaql < rp)
8. opl ← 1; /* transition: normal→ critical */
9. for (p′ : l ∈ p′)
10. clp′ ← clp′ ∪ l; opp′ ← opp′ + 1;
11. case 1:(opl == 0) aql ← aql − 1
12. case 2:(opl == 1) rbl ← rbl − rp.

Figure 7.4: Link level bandwidth/quota allocation.

0. Upon an existing flowf departs on a pathp:
1. Rp ← Rp − rf ;
2. if (opp > 0)
3. for (l ∈ clp)
4. rbl ← rbl + rf ; recomputeaql;
5. if (aql ≥ 0) /* transition: critical→ normal */
6. for (p′ : l ∈ p′)
7. opp′ ← opp′ − 1; setQp′ ;
8. clp′ ← clp′ − l;
9. else if(opp == 0 andp has excess quota)
10. Qp ← Qp − 1; /* return excess quota */
11. for (l ∈ p)
12. aql ← aql + 1;

Figure 7.5: Scheme for handling flow departure.

121

7.3.2 Complexity and Performance

In this section, we will provide a simple analysis of the complexity of the basic PoQ dy-

namic bandwidth allocation scheme, and compare it with the link-update admission control

scheme in terms of the QoS state access/update overhead. Since the path QoS states are

always accessed/updated for every flow reservation set-up or tear-down request, we focus

on the number of link QoS state accesses/updates. We measure the complexity of the PoQ

scheme by theexpected cost of link QoS state access/update per flow, i.e., the number of

link QoS state accesses and updates incurred by processing a flow arrival and departure.

Consider a network domain whose average path length isP . Let φ be the probability that

an “average” path of lengthP is in the critical mode, andγ be the probability a flow is

rejected due to unavailability of bandwidth along the path. Note that under the basic PoQ

scheme, a flow can only be rejected when the path is in the critical mode. In addition, letϕ

andχ denote, respectively, the probability that the flow reservation set-up request triggers

a quota allocation, and the probability that the flow reservation tear-down request triggers

a quota de-allocation, conditioned on that the flow is admitted. Then the expected link

access/update cost, denoted byΘPoQ, is given by the following expression:

ΘPoQ = Pγ + 3Pφ(1− γ) + P (ϕ + χ)(1− γ). (7.1)

The first term in the above expression is the number of link QoS state accesses for a flow

that is rejected. The second term is the number of link QoS accesses and updates for

processing a flow arrival in the critical mode plus the number of link QoS state updates for

processing a flow departure in the critical mode. Here we assume that to admit a flow in

the critical mode, the relevant link states are first accessed for the admissibility test, and

then updated after the flow is admitted. Note also that for a flow admitted in the normal

mode, no link QoS state is accessed or updated. The last term in (7.1) reflects the overhead

of quota allocation and de-allocation.

Comparing the expected link QoS state access/update cost of the PoQ scheme with that

of the naive link-update admission control scheme,ΘL−U = Pγ + 3P (1 − γ), we see

that the reduction in the per-flow link QoS access/update cost under the PoQ scheme is

(approximately) proportional to1 − φ. Hence if the network system can accommodateN

flows, then the reduction in the total link QoS access/update cost is in the order ofN(1−φ).

For a largeN , this can amount to significant cost reduction, even whenφ is fairly close to

1 (say,φ = 0.9). On the other hand, this reduction in the link QoS state access/update

122

I1

I2

IK

R1 E1

Figure 7.6: Topology used in the simulations.

cost is offset to some degree by the overhead of quota allocation and de-allocation. Hence

judicious choice of quota size is important in controlling this overhead and balancing the

overall cost reduction. This issue will be investigated in our simulation study reported in

the next section.

Before we leave this section, we comment that the complexity of the PoQ scheme can be

analyzed formally using queueing theory. In particular, under the assumption of exponen-

tial flow arrival and departure, the PoQ scheme can be modeled as a Markovian system,

and the probabilitiesγ, φ, ϕ andχ can be derived either precisely or approximately. A key

result from the analysis is that as the network capacity increases (thus the number of flows

that can be accommodated also increases), the probabilityφ that a path enters the critical

mode decreases, while the normalized network load (defined as the ratio of the offered load

to the network capacity) is fixed. As we will see in the next section, this observation is also

supported by our simulation results. Hence the PoQ scheme indeed improves the scalability

of the centralized bandwidth broker model.

7.3.3 Simulation Investigation

In this section we conduct simulations to study the performance of the basic PoQ scheme.

In particular, we will investigate the impact of quota size on the performance of the scheme

and its scaling property as the network capacity increases.

Table 7.1: Call admission and quota allocations (C = 5400).
normalized load a = 0.95 a = 1.00
quota size 30 60 100 120 150 30 60 100 120 150

total flow arrivals 22946 22946 22946 22946 22946 24099 24099 24099 24099 24099
total accepted flows 22946 22946 22946 22946 22946 23878 23878 23878 23878 23878
flows accepted in normal 22946 22946 22570 22464 22395 17519 11204 7582 7370 7319
flows accepted in critical 0 0 376 482 551 6359 12674 16296 16508 16559
quotas allocated 736 396 220 155 39 499 114 6 0 0
quotas deallocated 739 397 222 156 39 499 114 6 0 0

123

Since using the PoQ scheme the QoS state of a link is only accessed and updated when the

link becomes critical, in our simulations we use a simple network topology with a bottle-

neck link to study the cost of link QoS state accesses and updates. This simple topology

allows us to focus on the key features of the PoQ scheme and provide an adequate environ-

ment to explore its performance. The network topology is shown in Figure 7.6, whereK

ingress routers,I1, I2, . . . , IK, are connected via a core routerR1 to an egress routerE1.

The link R1 → E1 is thebottlenecklink of the network topology, and the linksIi → R1

are assumed to have infinite capacity,i = 1, 2, . . . , K. Flows arriving at the ingress routers

have an exponential interarrival time with its mean denoted by1/λ, and an exponential

holding time with its mean denoted by1/µ. In our simulations the mean flow holding

time1/µ is fixed at 900 seconds, while we vary the mean flow interarrival time to produce

different offered load. Theofferedloadρ is λ/µ, which represents theaveragenumber of

flows that may exist in a system (if no flows are blocked). Each flow requests a unit of

bandwidth, and the bottleneck linkR1 → E1 hasC units of bandwidth. Hence the maxi-

mum number of flows that can be accommodated by the bottleneck link isC. We introduce

thenormalized network loada = ρ/C as a metric for measuring how heavy the bottleneck

link is loaded. For example, ifa < 1, then the offered load (i.e., the average number of

flows that may exist at any time) is less than what can be accommodated by the bottleneck

link, the system is not overloaded. Otherwise, the network system is overloaded. In our

simulation study, all simulations last 10000 simulated seconds, of which 6000 seconds are

the warm-up times. Each value reported in the results is the mean value of 5 simulation

runs with different random seeds for the mean flow interarrival times.

In the first set of simulations, we examine the impact of quota size on the performance

of the scheme. In this set of simulations, the bottleneck link capacityC is 5400. The

number of pathsK is set to 3, i.e., we have three ingress routers, I1, I2, and I3. Flow

arrivals are uniformly distributed onto the three ingress routers. We conduct simulations

using five different quota sizes, namely 30, 60, 100, 120, and 150. The simulation results

are summarized in Table 7.1 under two different normalized loads (a=0.95 and a=1.00).

In this table, we list the total number of flow arrivals at all the ingress routers, the total

number of flows accepted into the network system, and among the flows accepted, the total

number of flows accepted in the normal mode as well as the total number of flows accepted

in the critical mode. We also list the total number of quota allocation and de-allocation

operations performed by the bandwidth broker after the warm-up period (i.e., when the

network system is in a more stable state).

124

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.94 0.96 0.98 1 1.02 1.04 1.06

Pr
op

or
tio

n

Normalized network load (a)

Proportion of flows accepted in critical mode

quota = 30
quota = 60

quota = 100
quota = 120
quota = 150

Figure 7.7: Proportion of flows accepted in
critical mode
(C = 5400).

0

0.2

0.4

0.6

0.8

1

0.94 0.96 0.98 1 1.02 1.04 1.06

Pe
r f

lo
w

 li
nk

 Q
oS

 s
ta

te
 u

pd
at

e

Normalized network load (a)

Expected link QoS state update for each accepted flow

link-update scheme
quota = 30
quota = 60

quota = 100
quota = 120
quota = 150

Figure 7.8: Expected link level QoS up-
date/accepted flow (C = 5400).

From Table 7.1 we see that in the case ofa = 0.95, i.e., the network is relatively light-

loaded, the majority of the flows are accepted in the normal mode. In particular, when the

quota sizes are 30 and 60, all flows are accepted in the normal mode, whereas when the

quota size increases to 100, 120 and 150, only a few hundreds of flows are accepted in the

critical mode. Hence in this light-load case, the portion of calls accepted in the critical mode

is very small. In contrast, in the case ofa = 1.00, i.e., the network is now heavily loaded,

the portion of flows accepted in the critical mode increases significantly. In particular, when

the quota sizes are large, the majority of flows are accepted in the critical mode. Figure 7.7

shows the portion of flows accepted in the critical mode with the five different quota sizes,

as the normalized network load increases. We see that when the network is relatively light-

loaded (say,a ≤ 0.95), the quota size has little impact on the portion of the flows accepted

in the critical mode. However, as the network load increases, the impact of the quota size is

more significant. In particular, in the case that the quota size is 60 or bigger more than half

of the flows are accepted in the critical mode when the normalized load reachesa = 1.00.

Hence when the network is over-loaded, the quota size has a significant impact on the

performance of the PoQ scheme. However, it is also interesting to observe that in the heavy

load cases, increasing the quota size beyond a certain value (say, 100) does not seem to

have any further impact.

We now shift our attention to the cost of the PoQ scheme, namely, the expected cost of link

QoS state access/update. To simplify discussion, we focus on the link QoS state update cost

incurred by flow arrivals and the overhead of quota allocation and de-allocation. Hence,

instead of the expected cost of link QoS state access/update per flow,ΘPoQ, defined in

Section 7.3.2, we use a simplified metric, the expected cost of link QoS state update for

125

accepted flows, defined below:

Θ̂PoQ =
M + G + L

N
, (7.2)

whereN denotes the total number of accepted flows,M the number of flows accepted in

the critical mode, andG andL denote a number of quota allocations and de-allocations,

respectively.

Figure 7.8 shows the expected cost of link QoS state update per accepted flow as a function

of the normalized network load for various quota sizes. The bottleneck link capacityC is

set to5400. From the figure we see that when the normalized network load is below0.98,

the expected cost of link QoS state update per accepted flow is less than0.5 for all the

quota sizes. Hence on the average more than half of the flows accepted do not require any

link QoS updates. Even for the network is heavily overloaded, say,a = 1.03, the expected

cost of link QoS state update per accepted flow is still less than0.8. In other words, the

PoQ scheme is capable of reducing the overhead of per-flow processing even at the heavily

loaded scenarios. In general, smaller quota sizes tend to have better performance when

the network is heavily loaded. This is because the link QoS update cost is dominated by

the cost incurred by flows accepted in the critical mode. On the other hand, when the

network is not heavily loaded (say,a = 0.95), smaller quota size (say, 30) actually incurs

more overheads because of the more frequent quota allocation and de-allocation operations.

These observations are supported by the data shown in Table 7.1.

To demonstrate the scalability of our PoQ dynamic bandwidth allocation scheme, we ex-

amine how the expected cost of link QoS state update per accepted flow changes as we

increase the network capacity (in this case the bottleneck link capacityC). The results are

plotted in Figure 7.9 for two different quota sizes (a) 30 and (b) 100. From the figures,

we see that as the network capacity increases, the expected link level QoS update cost per

accepted flow decreases. This is actually not too surprising (see our comments at the end

of Section 7.3.2): with the normalized network load fixed, the probability that a flow is

accepted in the critical mode decreases as the link capacity increases, due to the increased

multiplexing gains. From these results we conclude that the PoQ scheme scales well as the

network capacity increases. This is particularly the case, when the network is not heavily

overloaded. When the network is heavily loaded, our scheme still leads to some amount of

cost reduction (especially with appropriately chosen quota size), albeit not as significant as

when the network is not heavily loaded. Note that when the network is heavily overloaded,

126

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1500 2000 2500 3000 3500 4000 4500 5000 5500

Pe
r f

lo
w

 li
nk

 Q
oS

 s
ta

te
 u

pd
at

e

Normalized link capacity with respect to flow rate

Expected link QoS state update for each accepted flow

link-update scheme
a = 0.95
a = 1.00
a = 1.05

(a) Quota size = 30.

0

0.2

0.4

0.6

0.8

1

1500 2000 2500 3000 3500 4000 4500 5000 5500

Pe
r f

lo
w

 li
nk

 Q
oS

 s
ta

te
 u

pd
at

e

Normalized link capacity with respect to flow rate

Expected link QoS state update for each accepted flow

link-update scheme
a = 0.95
a = 1.00
a = 1.05

(b) Quota size = 100.

Figure 7.9: Expected cost of link QoS state updates as the network capacity increases.

127

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16

Pr
op

or
tio

n

Number of paths sharing the link

Proportion of flows accepted in critical mode

quota = 30
quota = 60

Figure 7.10: Proportion of flows accepted in critical mode as the number of paths increases
(C = 5400, a = 0.95).

some slow-down in flow request processing may not be a severe problem, since the network

itself is not capable of accommodating all the flows. Furthermore, in this case we can use

an extended PoQ scheme (the lossy-path PoQ scheme introduced in the next section) to

further improve the flow processing capability of the bandwidth broker.

Lastly, we consider the impact of the number of paths sharing a bottleneck link on the

performance of the PoQ scheme. Figure 7.10 shows the proportion of flows accepted in

critical mode as we increase the number of paths sharing the bottleneck link. In this set of

simulations the normalized loada is set to0.95. Note that when there are a small number

of paths, most of the flows can be accepted in the normal mode. But when the number

of paths are large, large quota size causes more flows to be accepted in the critical mode.

This is because there are not enough quotas to go around among all the paths. As a general

rule-of-thumb, in order to make the PoQ scheme work efficiently, the ratio of the number of

quotas a link has over the number of the paths sharing the link should be reasonably large.

In particular, a network with many paths sharing a bottleneck link, smaller quota sizes are

preferred.

7.4 Multiple Bandwidth Broker Design

In this section we extend the centralized bandwidth broker architecture with a single band-

width broker to a hierarchically distributed architecture with multiple bandwidth brokers.

This multiple bandwidth broker (MBB) architecture addresses the scaling problem posed

by the potential communication bottleneck between the bandwidth broker system and the

edge routers. The MBB architecture is presented in Section 7.4.1, where an extended PoQ

mechanism — thelossy-path PoQdynamic bandwidth allocation scheme — is also in-

128

troduced to further reduce the call processing overheads at the central bandwidth broker.

Simulation results are presented in Section 7.4.2.

7.4.1 The MBB Architecture and the Lossy-Path PoQ scheme

The hierarchically distributedmultiple bandwidth broker architecture we propose is de-

signed based on the two-level network QoS representation and the PoQ dynamic band-

width broker architecture. As illustrated in Figure 7.11, the proposed MBB architecture

consists of acentral bandwidth broker (cBB) and a number ofedgebandwidth brokers

(eBBs). The central bandwidth broker maintains the link QoS state database and manages

quota allocation and de-allocation among the edge bandwidth brokers. Whereas, each of

the edge bandwidth brokers manages amutually exclusivesubset of the path QoS states and

performs admission control for the corresponding paths. The number of eBBs can vary, de-

pending on the size of the network domain. In the extreme case, for example, we can have

one eBB for each edge router (as shown in Figure 7.11), and the eBB can co-locate at the

edge router.

When a flow arrives at an edge router, the flow reservation set-up request is forwarded by

the edge router to the eBB that is in charge of the flow’s path. The eBB will make admis-

sion control based on the path state it maintains such as the currently available bandwidth

allocated to the path. If no sufficient bandwidth is available on the path, the eBB requests

a new quota for the path from the cBB. If the request is granted, the eBB admits the flow

and updates its path QoS state. If the request fails (i.e., one or more links along the path

are critically loaded), we can operate just like the basic PoQ scheme: the eBB forwards

the flow reservation request to the cBB, which will perform admission control using the

per-flow link-update scheme. We refer to this eBB operation model thenon-lossy-path

model, as no flows will ever be rejected by the eBB, based on its path QoS state. We now

introduce an alternative eBB operation model — thelossy pathmodel. Under this model,

when a quota request fails, the eBB will simply reject the flow reservation request, instead

of passing it to the cBB. We refer to the PoQ dynamic bandwidth allocation scheme under

the lossy path model thelossy-path PoQscheme. With the lossy-path PoQ scheme, the role

of cBB is much simpler: it performs only quota management, and all admission control

decisions are now delegated to the eBBs. Combining the proposed MBB architecture with

this lossy-path PoQ scheme, we can not only avoid the communication bottleneck to the

cBB, but also significantly reduce the processing burden at the cBB. This is particularly

desirable in a large network with high traffic intensity. Clearly, the enhanced scalability of

129

Edge node

Edge node

cBB
eBB 2

eBB 1

eBB 3

eBB 4

Edge node

Data Plane

Control Plane

Core nodeEdge node

Core node

Figure 7.11: Multiple bandwidth brokers on the control plane for a network domain.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.94 0.96 0.98 1 1.02 1.04 1.06

Fl
ow

 b
lo

ck
in

g
ra

te

Normalized network load (a)

Flow blocking rates with different load (a)

non-lossy-path model
lossy-path model (quota = 30)
lossy-path model (quota = 60)

lossy-path model (quota = 100)

Figure 7.12: Flow blocking rates of the non-
lossy-path
and lossy-path models (C = 5400).

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66

R
at

io
 o

f q
uo

ta
s

al
lo

ca
te

d
to

 th
e

pa
th

Ratio of flows on the path

Ratio of quotas v.s. ratio of load

quota = 30
quota = 60

quota = 120

Figure 7.13: Quotas allocated to a path is pro-
portional to the traffic load distributed on the
path (C = 5400, a = 0.95).

the architecture is gained at the expense of some loss in performance, as some flows that

are rejected may be accommodated if the non-lossy-path model is used. In the next section

we will investigate the performance implication of the lossy-path MBB architecture model.

Before we move on to the simulation investigation, we would like to comment on some of

the advantages of the proposed MBB architecture. Note that a straightforward approach to

building a distributed bandwidth broker architecture to avoid the communication bottleneck

problem would be a replicated bandwidth broker system, with multiple identical bandwidth

brokers geographically dispersed in the network system. However, due to the need to both

access and update the network QoS states, maintainingconsistent QoS state databases

requires synchronization among the bandwidth brokers, which can be time-consuming and

problematic. In contrast, our hierarchically distributed bandwidth broker architecture does

not suffer such a problem, owing to the appropriate partition of the path QoS states and the

PoQ dynamic bandwidth allocation mechanism we employ.

130

7.4.2 Simulation Investigation

In this section, we conduct simulations to study the performance of the MBB architecture

using the lossy-path PoQ dynamic bandwidth allocation scheme. We use the same network

topology as shown in Figure 7.6, with the number of paths traversing the bottleneck link

set to 3. We assume that there is an eBB associated with each path. The normalized

link capacity with respect to the flow rate is 5400. All flows have an exponential holding

time with a mean of 900 seconds. We again vary the flow arrival rate to produce different

network loads.

Recall that under the lossy-path MBB architecture, an eBB will reject a flow when its

request to the cBB for a new quota fails, i.e., when the bottleneck link has no quota left.

Note that in this case, the total unreserved bandwidth on the linkmay be sufficient to

accommodate the flow, since it is possible that not all the paths have used up the bandwidth

allocated to it. Hence in general, the lossy-path model may result in a higher flow blocking

rate than the non-lossy-path model. Figure 7.12 shows the flow blocking rates of the lossy-

path model with three different quota sizes, as we vary the network load. The flow blocking

rate of the non-lossy-path model is also plotted for comparison. We see that when the

normalized network load is below 0.95, all flows are accepted under all the schemes. As

the load is increased, a small portion of flows is rejected. The lossy-path model suffers some

performance loss compared to the non-lossy-path model. The larger the quota size is, the

bigger the performance loss is. In addition, the performance loss enlarges as the network

load increases. However, after the normalized network load reaches 1, the performance loss

does not seem to increase visibly, in particular for the two larger quota sizes. This is likely

due to the fact that once the network is overloaded, a large portion of those flow reservation

set-up requests that are forwarded by the eBBs to the cBB for admission control under the

non-lossy-path model end up being rejected by the cBB. Hence rejecting these flow requests

at the eBBs does not degrade the system performance significantly, in particular when the

network is highly overloaded. Overall, we observe that the performance loss caused by

the lossy-path model is fairly small. We believe that at the expense of a relatively small

performance loss, the reduced bandwidth broker system overhead may well be worthwhile,

in particular when the network system itself is overloaded.

Lastly, we show the importance of dynamic quota allocation used in our PoQ scheme in

adapting to the offered load along a path. Dynamically allocating quotas to match the flow

activity along a path is particularly important under the lossy-path model, as inadequate

quota allocation can unnecessarily cause flows being rejected, and thus degrade the system

131

36 37 383534

0.3557

0.0033

0.0704

0.0469

0.0345 0.0233

0.15990.032

Figure 7.14: Quota state transition rate (C = 3600, a = 0.9, quota = 30).

performance. For this reason, we conduct simulations to evaluate the ability of the dynamic

PoQ scheme to track the traffic load on a path. Figure 7.13 shows the ratio of quotas

allocated to a path to the total quotas, as we increase the proportion of flows distributed

onto the path. The normalized network load is fixed at 0.95. The results in this figure show

that the dynamic quota allocation used in our scheme is indeed able to track the traffic

intensity of a path very well.

7.5 Improvements on the Performance of the PoQ Scheme

As we discussed in Sections 7.3 and 7.4, the performance of the PoQ scheme depends crit-

ically on the quota management used in the scheme. For example, to control the impact

of the scheme on the flow blocking rate of the system, smaller quotas are preferred; on the

other hand, smaller quotas introduce more overhead into the system, because of potentially

more frequent quota allocations and de-allocations. In this section, we propose several

extensions to the quota management of the PoQ scheme, aiming to improve the perfor-

mance and enhance the flexibility of the PoQ scheme under different environments. For

each extension, we will first briefly describe the mechanism, and then conduct simulations

to investigate the performance of the mechanism. These extensions can be applied to both

the lossy-path and non-lossy-path models. In the simulation study presented here, however,

we will mainly focus on the lossy-path model. Throughout this section, we use the same

network topology as depicted in Figure 7.6 for the simulations, where the number of paths

traversing the bottleneck link is set to three.

7.5.1 PoQ with Hysteresis

In the PoQ scheme we presented in Sections 7.3 and 7.4, a path will immediately return

an excess quota to the links along the path whenever there is one available. In this way,

the returned excess quota can be used by other paths which share a link with the path.

However, it is possible that a path has an excess quota only because ofshort-term, local

132

flow fluctuations. Therefore, the path may need to request a quota shortly after it returns an

excess quota to the links.

To have a better understanding of this phenomenon, we introduce the notion ofquota state

transition rateof a path as follows. We say a path is in a quota statei if currently i quotas

are allocated on the path. LetTi denote the total time that a path stays in a quota statei in

an arbitrary time interval, letNi,j be the number of transitions from quota statei to statej

during the same time interval. Then the quota state transition rateqstri,j of the path from

statei to j in the time interval is defined as,

qstri,j =
Ni,j

Ti

. (7.3)

Figure 7.14 shows the quota state transition rates of the pathI1 → E1 after warm-up of the

simulation, where the capacity of the bottleneck link is set to 3600, the normalized network

load is 0.9, and the quota size is 30. All flows have an exponetial holding time with a mean

of 900 seconds. From the figure we see that the quota state transition rates from the state

34 to 35 and from the state 38 to 37 are much higher than the transition rates between other

states. A close examination of the trace data reveals that most of the time the path has 35,

36 or 37 quotas and only occasionally goes to the states 34 and 38. Moreover, when the

path quota state goes to 34 or 38, it will only stay there in avery shorttime.

Such a short time state visit is caused by the short-term local flow fluctuations where a

small number of consecutive flow arrivals and departures triggers both a quota allocation

and a de-allocation in a very short time. Note that short-term local flow fluctuations also

occur in the state transitions between 35, 36 and 37 even though they are not exposed in

this simple figure.

Recall that the operations of quota allocations and de-allocations involveper linkQoS state

updates along the path, which increases the overall overhead of the system. Therefore,

we should limit the amount of quota allocations and de-allocations as small as possible.

One simple strategy maybe just allow a path to hold excess quotas without returning them.

However, this may cause higher flow blocking rates on the other paths which share a link

with the path because of the shortage of available quotas, which is undesirable.

To regulate the behavior of a path in handling excess quotas, we develop the following

simple mechanism based on the notion ofhysteresis: Each path will maintain a threshold

to determine if the path should return an excess quota. Instead of returning an excess quota

133

0

0.005

0.01

0.015

0.02

0.025

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Fl
ow

 b
lo

ck
in

g
ra

te

Normalized network load (a)

Flow blocking rates with different loads

quota = 30 without hysteresis
quota = 60 without hysteresis

quota = 30 with hysteresis
quota = 60 with hysteresis

Figure 7.15: Effects of hysteresis on flow
blocking rates
(C = 3600, hysteresis = 0.05).

0

0.0002

0.0004

0.0006

0.0008

0.001

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fl
ow

 b
lo

ck
in

g
ra

te

Hysteresis

Flow blocking rates with different hysteresis thresholds

Figure 7.16: Flow blocking rates with differ-
ent hysteresis thresholds (C = 3600, a = 0.95,
quota = 60).

immediately after it is available, a path will only return an excess quota after the reservation

rate along the path is below some threshold with respect to the current allocated quotas on

the path. More formally, letCP denote the bandwidth allocated on a pathP, let RP be the

total reservation rate of flows along the path. Then the path will only return an excess quota

if,

RP ≤ CP − (1 + hysteresis)Bquota, (7.4)

whereBquota is the bandwidth of a quota, andhysteresis ≥ 0.

The intuition of the hysteresis based scheme is quite straightforward. Instead of returning

an excess quota whenever it is available, the hysteresis based scheme ties the policy of

quota de-allocation of a path to the (flow) traffic load on the path. When the reservation

rate on a path is below some threshold, it is possible that the path will not use the excess

quota in a relatively long time interval. Therefore, it is desirable to release the excess quota

so that it can be re-used by other paths.

In the following, we conduct simulations to study the effectiveness of the hysteresis based

scheme. The normalized capacity of the bottleneck link with respect to the flow rate is

3600. All flows have an exponential holding time with a mean of 900 seconds. We vary

the flow arrival rate to produce different network loads. In these simulations, the value of

hysteresis is set to 0.05.

Figure 7.15 shows the flow blocking rates of the hysteresis based PoQ scheme under the

lossy-path model for two quota sizes: 30 and 60. For comparison, we also include the

134

Table 7.2: Effects of hysteresis on quota allocations and deallocations (C = 3600, hysteresis
= 0.05)

PoQ without hysteresis PoQ with hysteresis
quota size 30 60 30 60
normalized load 0.925 1.000 0.925 1.000 0.925 1.000 0.925 1.000

quotas allocated 517 424 361 123 168 167 92 43
quotas deallocated 523 424 364 123 173 167 94 43

corresponding curves of the PoQ scheme without hysteresis. From the figure we see that

when the normalized network load is below 0.95, no flow gets rejected no matter hystere-

sis based mechanism is used or not. In these cases, the quota-based bandwidth allocation

scheme actually does not affect the flow blocking rate because of the low network load.

As the network load increases, the results are different for different quota sizes. When the

quota size is 30, the effects of the hysteresis based scheme on the flow blocking rate is

minor. There are two possible reasons. First, the quota size (30) is relatively small, the ma-

jor contributor to the flow blocking rate is the network load instead of the quota allocation

scheme. Second, when the quota size is 30, the threshold ((1 + hysteresis)Bquota) for the

PoQ schemewith hysteresis to return an excess quota is 31.5, which is close to the quota

size (30), thethresholdfor the PoQ schemewithout hysteresis to return an excess quota.

Therefore the extra bandwidth that may bewastedby the hysteresis scheme is small (1.5).

When the quota size is 60, however, the hysteresis based scheme causes a slightly higher

flow blocking rate because of the relatively larger hysteresis threshold.

As discussed above, the motivation of the hysteresis based mechanism is to reduce the

amount of quota allocations and de-allocations of the PoQ scheme. Table 7.5.1 presents

the corresponding quota allocation and de-allocation activities after the warm-up of the

simulations. From the table we see that the reductions are significant by such a hysteresis

based mechanism. Compared with PoQ without hysteresis, there are roughly 3 to 4 times

reduction in the number of quota allocations and de-allocations in the hysteresis based

scheme.

Clearly, the performance and effectiveness of the hysteresis based scheme relies on the

value ofhysteresis of a path. If the value is too conservative, more flows may get rejected

on other paths which share a link with the path because of the shortage of available quotas.

On the other hand, a too optimistic value may undermine the scheme because the threshold

is not large enough to hold an excess quota which the path will need shortly after it is

available. Therefore, high frequent quota allocations and de-allocation may still occur.

135

Figure 7.16 shows the flow blocking rate of the system for a case where the quota size is

60, and Table 7.5.1 presents the corresponding quota allocation and de-allocation activities

of the simulations. Note that when the value ofhysteresis is 0.01, the hysteresis based

scheme has the same flow blocking rate (i.e., 0) as the PoQ scheme without hysteresis

(hysteresis = 0). However, as we can see from the table, whenhysteresis = 0.01

the amount of quota allocations and de-allocations is still quite high. As the value of

hysteresis increases to 0.2, the number of quota allocations and de-allocations drops dra-

mantically with a slight increase in the flow blocking rate of the system. However, even we

further increase the value ofhysteresis, the reduction of the amount of quota allocations

and de-alloctions is little. From the above discussion we can see that a modest value of

hysteresis should work well in balancing the reduction of the amount of quota allocations

and de-allotions and the increase in the flow blocking rate of the system.

Note that when the values ofhysteresis are 0.2, 0.3 and 0.4, the curve of the flow block-

ing rate of the system is flat. This is partly caused by the fact that the threhold with

hysteresis = 0.2 has caught the trend in the flow fluctuation in a degree, that is, when

the reservation rate of a path is below the threshold withhysteresis = 0.2, it will soon

be below the threshold withhysteresis equal to 0.3 or 0.4. Therefore, they all have the

similar effects on the quota de-alloctions (see also Table 7.5.1) , and hence the similar flow

blocking rates.

So far, we have discussed the employment of the hysteresis based approach for a path to

hold an excess quota to accommodate the short-term flow fluctuations. Note that it may

be desirable for a path to employ aforward thresholdto request an extra quota before the

path has used up all the allocated quotas on the path [38], especially in the multiple BB

architecture. By such a forward threshold, the path may handle flow requests immediately

when the requests come instead of waiting for a new quota if the allocated quota bandwidth

has been used up on the path. We leave it as an engineering choice and will not elaborate

on this in this chapter.

Table 7.3: Effects of different hystereses on quota allocations and deallocations (C = 3600,
a = 0.95, quota = 60)

hysteresis 0 0.01 0.1 0.2 0.3 0.4 0.5

quotas allocated 172 87 30 16 15 15 13
quotas deallocated 173 88 31 18 17 17 15

136

7.5.2 PoQ with Variable Quota Size

Allocating bandwidth based on the notion of quota instead of per flow bandwidth requests

provides us with an efficient bandwidth allocation and admission control mechanism. How-

ever, As shown in Sections 7.3 and 7.4, the performance and cost of the scheme is closely

related to the size of the quota used in the scheme. Generally speaking, smaller quotas are

preferred as the flow blocking rate concerns; on the other hand, to reduce the amount of

quota allocations and de-allocations, larger quotas are favored. In this section, we propose

a scheme based on the notion ofvariable sizequota to overcome the dilemma on how to

choose a proper quota size.

Let δ1, δ2, . . . , δN denote the quota sizes that will be used in a network domain. Without loss

of generality, we assume thatδ1 > δ2 > . . . > δN . Corresponding to eachδi, there is a link

bandwidth allocation thresholdθi, i = 1, 2, . . . , N , whereθi < θi+1 for i = 1, 2, . . . , N−1.

Let C denote the capacity of a link,B the current total bandwidth allocated to all the paths

traversing the link. We define the quota allocation mechanism as follows: A quota of size

δi is allocated when there is a quota allocation request ifθi−1 < B
C
≤ θi for i = 1, 2, . . . , N ,

where we used the convention thatθ0 = 0.

Figure 7.17 shows the flow blocking rates of the variable quota size scheme (VQS), where

the link capacity is set to3600 with respect to the flow rate. In these simulations, the quota

bandwidth allocation thresholds are 0.9 and 1. For example, when the configured quota

sizes are 60 and 30 in a network domain, a link will allocate a quota of size 60 to meet a

quota request if the proportion of the link bandwidth that has been allocated is less than or

equal to 0.9. Otherwise, a quota with size 30 will be allocated. For comparison, the flow

blocking rates of the original PoQ uniform quota size (UQS) bandwidth allocation scheme

are also included with a quota size 60 and 30, respectively.

Note that the curve of the flow blocking rate of VQS with quota sizes 60 and 30 is almost

identical with the curve of UQS with a quota size 30. These results are not surprising

because, when the allocated bandwidth goes beyond 90 percent of the link capacity, the

smaller quota size is used under VQS, which is equal to the quota size used in the corre-

sponding UQS.

To examine the advantage of the variable quota size scheme in quota allocation, we present

the quota allocation and de-allocation activities in Table 7.5.2 for both VQS and UQS. For

VQS, the quota sizes are 60 and 30, while for UQS the quota size is 30.

137

0

0.005

0.01

0.015

0.02

0.025

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Fl
ow

 b
lo

ck
in

g
ra

te

Normalized network load (a)

Flow blocking rate

VQS (quota = 60, 30)
UQS (quota = 30)
UQS (quota = 60)

Figure 7.17: Effects of variable quota size
on flow blocking rates (C = 3600,θ1 = 0.9).

0

0.005

0.01

0.015

0.02

0.025

0.03

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Fl
ow

 b
lo

ck
in

g
ra

te
 w

ith
 re

sp
ec

t t
o

flo
w

 re
qu

es
t r

at
e

Normalized network load (a)

Flow blocking rate

DFT (quota = 1Mb/s)
DFT (quota = 5Mb/s)
UFT (quota = 5Mb/s)

Figure 7.18: Flow blocking rate with differ-
ent flow treatment (C=3000).

As shown from the table, when the normalized network load is 0.9, the VQS scheme has a

relatively smaller amount of quota allocations and de-allocations compared with the UQS

scheme. As the network load increases, both schemes have the almost identical amount of

quota allocations and de-allocations. Note that the threshold for the VQS scheme to allocate

a quota of size 30 instead of 60 is 0.9. Therefore, when the network load is below or equal

to 0.9, a quota with larger size (60) is allocated each time under the VQS scheme. Hence the

VQS scheme has a relatively small amount of quota allocations and de-allocations in these

cases. As the network load increases, the VQS scheme will allocate a quota of smaller size

(30), which is identical to the quota size in the UQS scheme. Therefore, they have almost

the same amount of quota allocations and de-allocations when the network load is beyond

the quota bandwidth allocation threshold (0.9).

Table 7.4: Effects of the variable quota size scheme on quota allocations and de-allocations
(C = 3600,θ1 = 0.9)
quota size quota = 30 (UQS) quota = 60, 30 (VQS)
normalized load 0.900 0.925 0.950 0.975 1.000 0.900 0.925 0.950 0.975 1.000

quotas allocated 483 517 538 523 424 419 510 536 523 424
quotas deallocated 483 523 540 524 424 419 516 538 524 424

From the above discussion and the simulation results, we note that by using variable quota

sizes, the VQS scheme has more freedom to allocate large quota sizes when the network

load is low. When the network load becomes higher, it can start to behave more conserva-

tive on bandwidth allocation. In this way, it may reduce the cost of the system meanwhile

maintaining a smaller flow blocking rate.

138

7.5.3 PoQ with Differentiated Flow Treatments

In both lossy-path and non-lossy-path models we have studied, flows are treated identically

based the flow requests and the availability of the resources. For example, in the lossy-path

model, as soon as there is no quota available at the central bandwidth broker, a flow will be

rejected. However, under certain environments it may be desirable to treat flows differently

based on some pre-defined policies. For example, some types of flows may be critical to

the revenue of an ISP, therefore, instead of rejecting these flows at an eBB because of the

shortage of the quotas, the eBB may forward the flow requests to the cBB, and the cBB can

conduct the admission control for these flows based on different rules.

To illustrate the idea of the differentiated flow treatments with the PoQ scheme, we define

two types of flows. One is the long-termlargeflows, another is the short-termsmallflows.

A large flow normally requires a large amount of bandwidth, and a small flow requests a

relatively small amount of bandwidth. As an example, we may consider video applications

as large flows, while audio applications like IP Telephony as small flows.

Instead of treating large flows at the edge BBs, an eBB will forward these flow requests to

the central BB. The cBB will conduct the admissibility test using thelink-updateadmission

control scheme, that is, no large flows will be rejected as soon as there is enough bandwidth

along the path. We call such a scheme as the PoQ with differentiated flow treatment (DFT),

and the original lossy-path scheme as the PoQ with uniform flow treatment (UFT). Note

that, the PoQ with DFT scheme can be considered as a hybrid of the lossy-path and non-

lossy-path models: treating small flows with the lossy-path model while treating large flows

with the non-lossy-path model. Moreover, because large flows are forwarded to the cBB,

a smaller quota size can be used by the cBB to meet the quota requests from the eBBs.

Recall that as the flow blocking rate concerns, a smaller quota size is preferred, therefore,

we may have lower flow blocking rate by such a DFT scheme.

We conduct a set of simulations to study the property of the PoQ scheme with DFT. In these

simulations, small flows have a request rate uniformly chosen in a range from 16 Kb/s to

64 Kb/s; large flows have a request rate uniformly chosen in another range from 0.5 Mb/s to

1.5 Mb/s. The mean holding time for a small flow is 900 seconds, while for a large flow, it

is 1800 seconds. We vary the interarrival times of flows to produce different network load,

however, the ratio of the offered load of the small flows over that of the large flows is set to

9/1. Therefore the overall per flow mean rate is 136 Kb/s. The normalized link capacity is

3000 with respect to the mean flow rate (136 Kb/s). All the simulations last 15000 seconds,

139

of which the first 10000 seconds are the warm-up times.

To accommodate the effect of different rate requirements of small and large flows, we

define the flow blocking ratewith respect to flow request ratesas follows.

Υ =

∑
i∈F1

ri∑
i∈F2

ri

, (7.5)

whereF1 is the set of flows rejected,F2 the set of all the flows during the simulation, and

ri the requested rate of a flowi.

Figure 7.18 shows the flow blocking rates with respect to flow request rates for the PoQ

with DFT and PoQ with UFT schemes. From the figure we see that, when the quota size is

5 Mb/s, UFT has a higer flow blocking rate compared to the DFT scheme. Recall that DFT

can be considered as a hybrid scheme of the lossy-path and non-lossy-path models, while

the UFT is a lossy-path model. Therefore, a flow is rejected in the UFT scheme whenever

there is no quota available, but a (large) flow may still get accepted even there is no quota

available by thelink-updateadmission control scheme in the DFT model. As we discussed

earlier, a quota of size 1.5M b/s should be the smallest quota size that an UFT scheme can

use because large flows may have a request rate equal to 1.5M b/s. On the other hand, the

DFT scheme may choose a relatively small quota size (quota = 1M b/s) to have a smaller

flow blocking rate, as illustrated in the figure.

7.6 Summary

In this chapter we studied the scalability issue in the design of a centralized bandwidth bro-

ker model for dynamic control and management of QoS provisioning. We identified two

major factors that may potentially affect the scalability of the centralized bandwidth broker

architecture: the memory and disk access speed and communication capacity between the

bandwidth broker and edge routers. To reduce the overall number of QoS state accesses

and updates, we developed a path-oriented quota-based (PoQ) dynamic bandwidth alloca-

tion mechanism for efficient admission control operations under the centralized bandwidth

broker model. Based on the proposed dynamic bandwidth allocation mechanism, we also

extended the centralized bandwidth broker architecture to a hierarchically distributed archi-

tecture with multiple bandwidth brokers to address the scaling problem posed by the po-

tential communication bottleneck between the bandwidth broker system and edge routers.

140

Our simulation investigation demonstrated that the proposed PoQ dynamic bandwidth al-

location mechanism is indeed an effective means to increase the overall call processing

capability of the bandwidth broker. Furthermore, the bandwidth broker architecture can be

designed in such a manner that it scales with the increase in the network capacity. Further

extensions to the PoQ scheme were also investigated to improve the performance of the

PoQ scheme and to enhance the flexibility of the bandwidth broker architecture.

141

Part III

Service Overlay Networks

142

Chapter 8

Bandwidth Provisioning for Service

Overlay Networks

8.1 Introduction

Today’s Internet infrastructure supports primarilybest-effort connectivityservice. Due

to historical reasons, the Internet consists of a collection of network domains (i.e., au-

tonomous systems owned by various administrative entities). Traffic from one user to an-

other user typically traverses multiple domains; network domains enter various bilateral

business relationships (e.g., provider-customer, or peering) for traffic exchange to achieve

global connectivity. Due to the nature of their business relationships, a network domain

is only concerned with the network performance of its own domain and responsible for

providing service guarantees for its customers. As it is difficult to establish multi-lateral

business relationship involving multiple domains, deployment of end-to-end services be-

yond the best-effort connectivity that requires support from multiple network domains is

still far from reality. Such problems have hindered the transformation of the current Internet

into a truly multi-service network infrastructure with end-to-end QoS support.

We propose and advocate the notion ofservice overlay network(SON) as an effective

means to address some of the issues, in particular, end-to-end QoS, plaguing the current

Internet, and to facilitate the creation and deployment ofvalue-added Internet servicessuch

as VoIP, Video-on-Demand, and other emerging QoS-sensitive services. The SON network

architecture relies on well-defined business relationships between the SONs, the underlying

network domains and users of the SONs to provide support for end-to-end QoS: the SON

143

purchases bandwidth with certain QoS guarantees from the individual network domains

via bilateral service level agreement (SLA)to build a logical end-to-end service delivery

infrastructure on top of the existing data transport networks; via a service contract (e.g., a

usage-based or fixed price service plan), users1 directly pay the SON for using the value-

added services provided by the SON.

Figure 8.1 illustrates the SON architecture. The SON is pieced together viaservice gate-

wayswhich perform service-specific data forwarding and control functions. Thelogical

connection between two service gateways is provided by the underlying network domain

with certain bandwidth and other QoS guarantees. These guarantees are specified in a

bilateral SLA between the SON and the network domain. This architecture, for exam-

ple, bypasses the peering points among the network domains, and thus avoids the poten-

tial performance problems associated with them. Relying on the bilateral SLAs the SON

can deliver end-to-end QoS sensitive services to its users via appropriate provisioning and

service-specific resource management.

In addition to its ability to deliver end-to-end QoS sensitive services, the SON architecture

also has a number of other important advantages. For example, it decouples application

services from network services, thereby reducing the complexity of network service man-

agement and control, especially in terms of QoS management and control. The network

domains are now concerned primarily with provisioning of data transport services with as-

sociated bandwidth management, traffic engineering and QoS guarantees on a much coarser

granularity (per SON). In particular,the notion of SON also introduces a new level of traf-

fic aggregation –service aggregate: the underlying network domains can aggregate traffic

based on the SONs they belong to and perform traffic and QoS control accordingly based

on the corresponding SLAs. Under the SON architecture, a SON is responsible for ensur-

ing end-to-end QoS for its services. Because of its service awareness, a SON can deploy

service-specific provisioning, resource management and QoS control mechanisms (e.g., at

service gateways) to optimize its operations for its services. Hence the SON architecture

not only simplifies the network QoS management and makes it more scalable, but also

enables flexible creation and deployment of new (value-added) services.

Obviously deployment of SON is a capital-intensive investment. It is therefore imperative

to consider thecost recoveryissue for the SON. Among the many costs the SON deploy-

ment incurs (e.g., equipment such as service gateways), a dominantrecurring cost is the

cost of bandwidth that the SON must purchase from the underlying network domains to
1Users may also need to pay (i.e., a monthly fee) the access networks for their right to access the Internet.

144

� � � � �� �� �� �
� �� �� �
� �

� �� �� �
� �� �� � �������� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � �� � � � � �� � � � � �� � � � � �
	 	 	 	 	 		 	 	 	 	 		 	 	 	 	 		 	 	 	 	 	

���

 ���
� �� ����

� �� ����

�����

� �� ����

� �� ����

�������
� �� ����

����������
! !! !! !�""

#$ $ $ $ $
% % % % % %& & & & &

' '' '' '
' '' '' '
' '

((((((
((((((

))))))
))))))
* ** ** *
* ** ** *

+ + + + + +, , ,, , ,, , ,, , ,, , ,, , ,, , ,

- - -- - -- - -- - -- - -- - -

Se
rv

ic
e

O
ve

rl
ay

 N
et

w
or

k
(S

O
N

)
D

at
a

T
ra

ns
po

rt
 N

et
w

or
ks

A logical link

SON

Network Domains

service gateway

service gateway

Access Networks

Figure 8.1: An illustration of a service over-
lay network.

T
t

t, basic time unit for measuring traffic demand

T, time period for static bandwidth provisioning

traffic demand

Figure 8.2: Traffic demands.

support its services. The SON must provision adequate bandwidth to support its end-to-

end QoS-sensitive services and meet traffic demands while minimizing the bandwidth cost

so that it can generate sufficient revenue to recover its service deployment cost and stay

profitable.The bandwidth provisioning problem is therefore a critical issue in the deploy-

ment of the SON architecture.This chapter is devoted to the study of this issue.

We develop analytical models to study the problem of SON bandwidth provisioning and

investigate the impact of various factors on SON bandwidth provisioning: SLAs, service

QoS, bandwidth costs and traffic demands. We consider the so-calledpipeSLA model as

an example to illustrate how the SON bandwidth provisioning problem can be formally

defined. The analyses and solutions can be adapted to the so-calledhoseSLA model. In

Section 8.2 we describe how the SON logical topology can be represented under the pipe

SLA model and present the model assumptions. Using the pipe SLA model we present a

basic static SON bandwidth provisioning solution in Section 8.3, and study the problems

of the more generalstaticanddynamicSON bandwidth provisioning, respectively in Sec-

tion 8.4 and Section 8.5. Analytical models and approximate solutions are developed for

both static and dynamic bandwidth provisioning. Numerical studies are also performed

to illustrate the properties of the proposed solutions and demonstrate the effect of traffic

demand distributions and bandwidth costs on SON bandwidth provisioning.

The notion of overlay networks has been used widely in telecommunication and data net-

works. For example, more recently content distribution networks and application layer mul-

ticast networks have been used for multimedia streaming [12];Detour [67] andResilient

Overlay Network(RON) [1] employ the overlay technique to provide better routing sup-

port. Moreover, the overlay technique has attracted a lot of attention from industry [16, 17]

as a means to deliver diverse QoS-sensitive services over the Internet. The service over-

145

lay networks we propose here is simply a generalization of these ideas. Perhaps what is

particularly interesting is the use of SONs to address end-to-end QoS deployment issue.

The major contribution of our work however lies in the study of the SON bandwidth pro-

visioning problem. Our approach and formulation also differ from the traditional capacity

planning in telephone networks (e.g. [35, 48]) in that we explicitly take into account various

factors such as SLAs, QoS, traffic demand distributions.

8.2 Assumptions and Bandwidth Provisioning Problems

In this section we first describe a logical topology representation of the SON under the

pipe SLA model and a simplifying assumption on service QoS. Two modes of bandwidth

provisioning—staticanddynamicbandwidth provisioning—that we will study in this chap-

ter is then introduced. We conclude this section by describing the traffic demand model and

a few notations regarding service revenue and bandwidth cost that will be used later in this

chapter.

8.2.1 SON and Service QoS

The pipe SLA model is a common SLA model used in today’s Internet. Under the pipe

model, the SON can request bandwidth guarantees between any two service gateways

across a network domain (see Figure 8.1); in other words a “pipe” with certain bandwidth

guarantee is provisioned between the two service gateways across the network domain. To

emphasize the relationship between the service gateways and the underlying network do-

mains, we denote thelogical (uni-directional) connection from a service gatewayu to a

neighboring service gatewayv across a network domainD by 〈u, v; D〉, and refer to it as

a logical link (or simply alink) betweenu andv acrossD. Note that between the SON

and access networks where traffic to the SON originate and terminate, thehoseSLA model

is assumed to be used where certain amount of bandwidth is reserved for trafficentering

or exiting the SON. We can treat each access networkA as afictitious service gateway

uA. Then we can talk about “connection”betweenuA and a neighboring service gatewayv

acrossA and the corresponding “logical link”〈uA, v; A〉.

Given a logical linkl = 〈u, v; D〉, the SON provider will contract with the network domain

D to provide a certain amount of bandwidth guaranteecl between the service gateways

u andv acrossD. The SON bandwidth provisioning problem is then to determine how

much bandwidth to be provisioned for each linkl = 〈u, v; D〉 so that: 1) the end-to-end

146

QoS required by its services can be supported adequately; and 2) its overall revenue or net

income can be maximized.

Although the QoS a SON must support for its services can be quite diverse (e.g., bandwidth,

delay or delay jitter guarantees), in almost all cases a key component in providing such

guarantees is to exert some form of control on the link utilization level, i.e., to ensure the

overall load on a link does not exceed some specified condition. In other words, for the

purpose of bandwidth provisioning, we assume that it is possible to map the service QoS

guarantee requirements to a link utilization threshold2. To state this assumption formally,

we assume that a link utilization thresholdηl is specified for each linkl; and to ensure

service QoS, the bandwidthcl provisioned for linkl must be such that the (average) link

utilization stays belowηl.

8.2.2 Bandwidth Provisioning Modes

We consider two modes of bandwidth provisioning under the pipe model:static band-

width provisioning anddynamicbandwidth provisioning. Instaticbandwidth provisioning

mode, a SON contracts and purchases a fixed amount of bandwidtha priori for each pipe

connecting the service gateways from the underlying network domains. In other words, the

bandwidth is provisioned for (relatively) long period of time without changing. Indynamic

bandwidth provisioning mode, in addition to the ability to contract and purchase bandwidth

for each pipea priori, a SON can alsodynamicallyrequest for additional bandwidth from

the underlying network domains to meet its traffic demands, and pay for the dynamically

allocated bandwidth accordingly. To account for the potential higher cost in supporting dy-

namic bandwidth provisioning, it is likely that the underlying network domains will charge

the SON different prices for statically provisioned and dynamically allocated bandwidth.

Hence in either mode the key question in bandwidth provisioning is to determine the ap-

propriate amount of bandwidth to be purchaseda priori so that the total overall net income

of a SON is maximized while in the meantime meeting the traffic demands as well as

maintaining the service QoS.

2This particularly will be the case if the underlying network domain employs aggregate packet scheduling
mechanisms such as FIFO or priority queues. For example, it has been shown [11, 45, 87] that in order to
provide end-to-end delay guarantees, link utilization must be controlled at a certain level. Hence from the
bandwidth provisioning perspective we believe that this assumption on service QoS is not unreasonable in
practice. In fact it is said that many of today’s network service providers use a similar utilization based rule
(e.g., an average utilization threshold of 60% or 70%) to provision their Internet backbones.

147

8.2.3 Traffic Demand, Service Revenue and Bandwidth Cost

We now describe the traffic demand model for the SON. Recall that we assume that traffic

always originates from and terminates at access networks. Given a source nodes and

destination noded, for simplicity we assume that a fixed router consisting of a series of

links connectings andd is used to forward traffic froms to d. Let R denote the collection

of routes between the source and destination nodes. Then the traffic demands over the SON

can be represented by the traffic demands over these routes: for eachr ∈ R, let ρr denote

the (average) traffic demand (also referred to as traffic load) along router measured over

some period of timet (see Figure 8.2). The periodt is relatively short, for example in

seconds or several minutes, compared to the time scale of static bandwidth provisioning,

denoted byT , which could be in several hours or days. The periodt is considered as the

basic unit of time. The set{ρr : r ∈ R} then represents the traffic demands over the SON

during the time unit they are measured, and is referred to as the traffic demand matrix of

the SON. Note also that the traffic demands are always measured in units of bandwidth.

To capture the traffic demand fluctuations over time, we assume that the traffic demandρr

along each router varies according to some distribution3. We denote the probability density

function of the traffic demand distribution ofρr by dρr. Then the probability that the traffic

demandρr exceedsx units of bandwidth is given by
∫∞
x dρr. Let ρ̄r =

∫∞
0 ρrdρr, i.e., ρ̄r is

the (long-term) average traffic demand along router over the time period for static band-

width provisioning. Furthermore, we assume that the traffic demand distributions along the

different routes areindependent. In this chapter, we will study the bandwidth provision-

ing problem by considering two different traffic demand models. The first one takes into

account the widely observed self-similar property of the Internet traffic by employing the

M/G/∞ input model [61, 63]; the second is based on the measurements of real Internet

traffic.

For each router, we assume that the SON receiveser amount of revenue for carrying one

unit of traffic demand per unit of time along router. On the other hand, for each logical

link or pipel connecting two service gateways, the SON must pay a cost ofΦl(cl) per unit

of time for reservingcl amount of bandwidth from the underlying network domain. We

refer toΦl as the bandwidth cost function of linkl. Without loss of generality, we assume

thatΦl is anon-decreasingfunction.

3This traffic demand distribution can be obtained, for example, through long-term observation and mea-
surement.

148

8.3 Basic Static Bandwidth Provisioning Model

In static bandwidth provisioning, a certain amount of bandwidthoverprovisioningis needed

to accommodate some degree of fluctuation in traffic demands. The key challenge in static

bandwidth provisioning is therefore to decide theoptimalamount of bandwidth overprovi-

sioning. In this section, we present a basic static bandwidth provisioning model and analyze

its properties. This basic model will serve as the basis for other bandwidth provisioning

models we will consider in this chapter.

In the basic model, the SON provisions bandwidth on each link based on the long-term

average traffic demand matrix{ρ̄r}, and attempts to maximize theexpectednet income. To

accommodate some degree of fluctuation from the long-term average traffic demands, we

introduce anoverprovisioning parameterεl on each linkl, εl ≥ 0. The meaning of the over-

provisioning parameterεl is given as follows: we will provisioncl amount of bandwidth

on link l such that as long as the overall traffic load on linkl does not exceed its long-term

average load byεl, the service QoS can be maintained, i.e., the link utilization is kept below

the prespecified thresholdηl. To put it formally, definēρl =
∑

r:l∈r ρ̄r, wherel ∈ r denotes

that link l lies on router. Then

ρ̄l(1 + εl) = (1 + εl)
∑

r:l∈r

ρ̄r ≤ ηlcl,∀l ∈ L (8.1)

whereL is the set of all links of the SON.

Given thatcl amount of bandwidth is provisioned on each linkl, the expected net income

of the SON isW̄ =
∑

r∈R erρ̄r − ∑
l∈L Φl(cl). Hence the basic bandwidth provisioning

problem can be formulated as the following optimization problem:

max
cl:l∈L

W̄ subject to (8.1).

SinceΦl’s are non-decreasing, it is easy to see that the optimal solution to the optimization

problem is given by

c∗l = (1 + εl)ρ̄l/ηl ∀l ∈ L. (8.2)

Hence under the basic bandwidth provisioning model, once we fix the overprovisioning

parameters, the optimal amount of bandwidth to be provisioned for each link can be derived

using (8.2).

149

Assuming thatΦl’s are sub-additive, we see that a sufficient condition for the SON to have

positive expected net income is to ensure that

er >

∑
l∈r Φl(c

∗
l)

ρ̄r

=

∑
l∈r Φl(

ρ̄r(1+εl)
ηl

)

ρ̄r

. (8.3)

The relationship (8.3) provides a useful guideline for the SON to determine how it should

set its price structure for charging users of its services to recover its cost of bandwidth

provisioning. It has a simple interpretation: we can regardΦl(ρ̄r(1+εl)/ηl)
ρ̄r

as the average cost

of carrying one unit of traffic demand per unit of time along router on link l. Then the

right-hand side of (8.3) is the total cost of carrying one unit of traffic demand per unit of

time along router. To recover its cost, the SON must then charge users of its services more

than this amount. IfΦl’s are strictly concave (i.e., non-linear), in other words, the per-unit

bandwidth cost decreases as the amount of reserved bandwidth increases, the economy of

scale will benefit the SON: the higher the average long-term traffic demands, the lower

the average cost of providing its services, yielding higher net income. In the caseΦl’s are

linear, i.e.,Φl(cl) = φlcl, then (8.3) becomeser >
∑

l∈r φl(1 + εl)/ηl which is independent

of the traffic demands.

8.4 Static Bandwidth Provisioning with Penalty

In the basic static bandwidth provisioning model we assume that the overprovisioning pa-

rameters are given. We now consider the problem of how to obtain theoptimal overpro-

visioning parameters under given traffic demand distributions. We study this problem by

taking into account the consequence of potential QoS violation when the actual traffic de-

mands exceed the target link utilization. For this purpose, we assume thatthe SON may

suffer a penalty when the target utilization on a link is exceeded, and therefore service QoS

may potentially be violated.For example, it is quite likely that the service contract between

the SON and its user is such that when the service QoS is poor (e.g., due to network con-

gestion), a lower rate is charged, or the user may demand a refund. In the case that some

form of admission control is used by the SON to guide against possible QoS violation, the

penalty can be used to reflect the lost revenue due to declined user service requests. We

will refer to this model as thestatic bandwidth provisioning with penalty model, or in short,

static-penaltymodel.

For each router, let πr denote the average penalty suffered by per unit of traffic demand

per unit of time along router when the service QoS along router is potentially violated.

150

Given the traffic demand matrix{ρr}, let Br({ρr}) denote the probability that the service

QoS along router is potentially violated, more specifically,the target utilization on one of

its links is exceeded. Then the total net income of the SON for servicing the given traffic

demand matrix{ρr} can be expressed as follows:

W ({ρr}) =
∑

r∈R

erρr −
∑

l∈L

Φl(cl)−
∑

r∈R

πrρrBr({ρr}), (8.4)

where in the above we useW ({ρr}) to emphasize the dependence of the total net income

on the traffic demand matrix{ρr}. When there is no confusion, we will drop{ρr} from the

notation.

Let d{ρr} denote the joint probability density function of the traffic demand matrix{ρr},
where recall thatdρr is the probability density function of the traffic demandρr along route

r. Then the expected net income of the SON under the traffic demand distributions{dρr}
is given by

E(W) =
∫
·
∫

{ρr}
W ({ρr})d{ρr}, (8.5)

where
∫ · ∫{ρr} denotes multiple integration under the joint traffic demand distribution{dρr}.

Now we can state the problem of static bandwidth provisioning with penalty as the follow-

ing optimization problem: finding the optimal overprovisioning parameters{εl} to maxi-

mize the expected net income, i.e.,

max
{εl}

E(W) subject to (8.1). (8.6)

Unfortunately, the exact solution to this optimization problem is in general difficult to ob-

tain. It depends on both the particular forms of the traffic demand distributions{dρr} and

the service QoS violation probabilitiesBr. To circumvent this difficulty, in the follow-

ing, we shall derive an approximate solution (a lower bound) based on the so-calledlink

independence assumption: the link overloadevents (i.e., exceeding the target utilization

threshold) occur on different linksindependently. Clearly this assumption does not hold

in reality, but it enables us to expressBr in terms ofBl(ρl, cl), the probability that the

target utilization levelηl on link l is exceeded, whereρl =
∑

r:l∈r ρr. (Again, we may

drop the variablesρl andcl in Bl(ρl, cl) if there is no confusion.) Such link independence

151

assumption has been used extensively in teletraffic analysis and capacity planning in the

telephone networks (see e.g., [48]). Under the link independence assumption, the service

QoS violation probabilityBr, i.e., at least one of the links on router is overloaded, is given

by

Br = 1−∏

l∈r

(1−Bl). (8.7)

Before we present the approximate optimal solution, we need to introduce one more set of

notations. Define a small real numberδ > 0. For each router, let ρ̂r > ρ̄r be such that

∫ ∞
ρ̂r

ρrdρr ≤ δ. (8.8)

Since
∫∞
ρ̂r

ρrdρr ≥ ρ̂r

∫∞
ρ̂r

dρr = ρ̂rPr{ρr ≥ ρ̂r}, we havePr{ρr ≥ ρ̂r} ≤ δ/ρ̂r. In other

words, (8.8) basically says thatρ̂r is such that the probability the traffic demand along route

r exceedŝρr is very small, and thus negligible.

With these notations in place, we now present a lower bound onE(W) as follows (see

Appendix D.1 for the detailed derivation).

E(W) ≥ ∑

r∈R

erρ̄r −
∑

l∈L

Φ(cl)−
∑

r∈R

πrρ̄rBr({ρ̂r})−
∑

r∈R

πrδ(1 +
∑

r′ 6=r

ρ̄r

ρ̂r′
), (8.9)

Denote the right-hand side of the above equation byV , thenE(W) ≥ V . Comparing

the lower boundV with the expected net incomēW =
∑

r∈R erρ̄r − ∑
l∈L Φl(cl) without

taking penalty into account, we see that ignoring the extremal traffic demands (i.e., when

ρr ≥ ρ̂r), we pay at most a penalty ofπrBr({ρ̂r}) per unit of traffic demand on router

for potential service QoS violations. For givenδ > 0, the penalty incurred due to extremal

traffic demands is upper bounded by
∑

r∈R πrδ(1 +
∑

r′ 6=r
ρ̄r

ρ̂r′
). Note also thatBr({ρ̂r}) is

the probability of service QoS violation along router when the long-term average traffic

demands are assumed to beρ̂r. Thus in usingV as an approximation toE(W), we are

being conservative by over-estimating the probability of potential QoS violations.

FromE(W) ≥ V , we havemax{εr}E(W) ≥ max{εr} V . Therefore we can obtain thebest

overprovisioning parameters that maximizeV instead of the expected net incomeE(W)

as an approximate solution to the original optimization problem (8.6). Using the solution

to the basic bandwidth provisioning problem (8.2), we assumecl = (1 + εl)ρ̄l/ηl for a

152

given set of{εl}, i.e., the target utilization constraints (8.1) hold with equality. Under

this assumption, let{ε∗l } be the solution to the optimization problemmax{εr} V , and refer

to them as theapproximate optimal overprovisioning parameters. In the following we

demonstrate how{ε∗l } can be derived.

Using (8.7) we can re-writeV as follows:

V =
∑

r∈R

(er−πr)ρ̄r−
∑

l∈L

Φl(cl)+
∑

r∈R

πrρ̄r

∏

l∈r

(1−Bl(ρ̂l, cl))−
∑

r∈R

πrδ(1+
∑

r′ 6=r

ρ̄r

ρ̂r′
),(8.10)

whereρ̂l =
∑

r:l∈r ρ̂r.

AssumeBl is a continuous and everywhere differentiable function ofcl. (See the next

section for a discrete case.) For each linkl, define

ŝl =
∑

r:l∈r

πrρ̄r

∏

k∈r,k 6=l

[1−Bk(ρ̂k, ck)]ζl, (8.11)

whereζl = − d
dcl

Bl(ρ̂l, cl).

Through some simple algebraic manipulation, it is not too hard to show that

∂V

∂εl

=
∂V

∂cl

∂cl

∂εl

= (−∂Φl(cl)

∂cl

+ ŝl)
ρ̄l

ηl

. (8.12)

Suppose that{ε∗l } are strictly positive, then a necessary condition for them to be an optimal

solution is that the gradient∇V (with respect to{εl}) must vanish atε∗l ’s. Thus from (8.12)

we must have

∂Φl(cl)

∂cl

= ŝl ∀l ∈ L. (8.13)

Intuitively, ŝl measures the sensitivity of potential penalty reduction to bandwidth increase

on link l, whereas∂Φl(cl)
∂cl

measures the sensitivity of bandwidth cost to bandwidth increase

on link l. Hence the “optimal” (or rather, the approximate optimal) overprovisioning pa-

rameterε∗l should be chosen such that the two values coincide. In the following discussion,

we will loosely refer toŝl as the “per-unit bandwidth gain in potential penalty reduction”

and ∂Φl(cl)
∂cl

as the “increase in per-unit bandwidth cost.”

153

In the above derivation of the approximate optimal solution to the static bandwidth provi-

sioning problem, we have simply assumed the existence ofBl, the probability that the target

utilization levelηl on link l is exceeded. The particular form of it depends on the distribu-

tion of (average) traffic demands on the link. In the following sections, we consider two

different traffic demand models—a self-similar traffic demand model and a traffic demand

model based on real Internet traffic measurements to demonstrate the static bandwidth pro-

visioning problem.

8.4.1 M/G/∞ Traffic Demand Model

Since the pioneering work by Leland, Taqqu, Willinger and Wilson [53], the self-similar (or

long-range dependent) property has been observed in Ethernet Local Area Network [53],

Wide Area Network [63], and World Wide Web traffic [19]. The observed self-similar

property of the Internet traffic has important implications on the dementioning and provi-

sioning of the IP networks. In this section, we consider a traffic demand model,M/G/∞,

that captures the (asymptotically) self-similar property of the Internet traffic [61, 63].

Consider anM/G/∞ queue, where the service time has a heavy-tailed distribution. We as-

sume that the distribution of the service time has a finite mean. LetXt denote the number of

customers in the system at timet, for t = 0, 1, 2, Then the count process{Xt}t=0,1,2,... is

asympotically self-similar. Letρ denote the customer arrival rate to theM/G/∞ queue and

µ the mean service time, thenXt has a Poisson marginal distribution with meanρµ [18].

Now we are ready to present theM/G/∞ traffic demand model on each route. Consider

an arbitrary router. We assume that the traffic demand (i.e., the average traffic arrival rate

per unit time) is governed by the count process{Xt}t=0,1,2,... of anM/G/∞ queue. Let

ρr denote the mean traffic demand on the route. It is easy to see thatρr = ρµ, whereρ

andµ are the customer arrival rate and the mean service time, respectively, of theM/G/∞
queue. As traffic demands along all the routes are assumed to be independent, the average

overall traffic load on a linkl is ρl =
∑

r:l∈r ρr.

Given the average overall loadρl and the link capacitycl, it can be shown that the proba-

bility that the total load on linkl exceeds̄cl = ηlcl during any given unit of time is given

by Bl(ρl, cl) = (
∑∞

i=(c̄l+1)
ρi

l

i!
)e−ρl . Extending the definition ofBl(ρl, cl) to non-integer val-

ues ofcl by linear interpolation. At integer values ofcl define the derivative ofBl(ρl, cl)

with respect tocl to be the left derivative. Thend
dcl

Bl(ρl, cl) = Bl(ρl, cl) − Bl(ρl, cl − 1).

Therefore,ζl = − d
dcl

Bl(ρ̂l, cl) = ηl{Bl(ρ̂l, (ηlcl − 1)) − Bl(ρ̂l, ηlcl)} = ηl
ρ̂
dηlcle
l

dηlcle! e
−ρ̂l. By

154

this definition ofBl, we are able to obtain the (approximate) optimal overprovisioning pa-

rametersε∗l ’s by solving (8.13).

We now discuss theshapesof ŝl’ and Φl on (approximate) optimal overprovisioning pa-

rametersε∗l ’s as well as their implication in static bandwidth provisioning. Note first that

the shape of̂sl is determined byζl, which has a shape of (skewed) bell-shape with a center

approximately at̂ρl (it is essentially a Poisson probability density function). Henceŝl is

a concave function ofεl ≥ 0. In particular, there existŝεl such that̂sl is an increasing

function in the range[0, ε̂l] and a decreasing function in the range[ε̂l,∞) (see Figure 8.3).

Intuitively, this means that asεl moves from 0 towardŝεl, there is an increasing benefit in

bandwidth overprovisioning in terms ofreducing potential QoS violation penalty. How-

ever, asεl moves beyond̂εl, there is adiminished returnin overprovisioning in terms of

reducing potential QoS violation penalty.

Suppose thatΦl’ is a linear function, i.e.,Φl(cl) = φlcl. Then ∂Φl(cl)
∂cl

= φl. Hence (8.13)

becomesφl = ŝl. Supposeφl = ŝl holds for someεl ≥ 0. Because of the shape ofŝl,

there potentially exists two solutionsεl,1 andεl,2, 0 ≤ εl,1 ≤ ε̂l ≤ εl,2 such thatφl = ŝl. In

particular, aŝsl is a decreasing function in the range[ε̂l,∞), εl,2 always exists. As∂V
∂cl

is

positive in the range(εl,1, εl,2), and is negative in the ranges[0, εl,1) and(εl,2,∞), we see

that with respect to linkl, V is maximized at eitherε∗l = εl,2 or at ε∗l = 0 (whereas it is

minimized atεl,1). Intuitively, when only a small amount of bandwidth is overprovisioned

on link l, the per-unit bandwidth gain in potential penalty reduction is too small to offset

the per-unit bandwidth cost, henceV decreases. However, as we increases the amount of

bandwidth overprovisioned, the per-unit bandwidth gain in potential penalty reduction be-

comes sufficiently large and offsets the per-unit bandwidth cost, henceV increases until it

reaches a maximum. Due to the diminished return in the per-unit bandwidth gain in po-

tential penalty reduction,V decreases again when too much bandwidth is overprovisioned

on link c. In the special case thatφl is such thatφl > ŝl for all εl ≥ 0, then as∂V
∂cl

< 0,

V attains its maximum atε∗l = 0 with respect to linkl. Intuitively it says that when the

per-unit bandwidth cost on linkl is higher than the per-unit bandwidth gain in potential

penalty reduction, there is no benefit in overprovisioning any bandwidth on linkl to guide

against any potential QoS violation penalty. These observations can be extended to other

bandwidth cost functions such as concave or convex cost functions. In general we see that

the trade-off between the bandwidth cost and overprovisioning bandwidth to guide against

service QoS violations is critical to the problem of SON bandwidth provisioning. It is also

clear from the above discussion that as the per-unit bandwidth cost decreases, there is more

155

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

Overprovisioning parameter (ε)

s l

π = 1
π = 2
π = 3
Unit bandwidth price (φ)

Figure 8.3: Relationship betweenŝl, ε, & φl.

200 220 240 260 280 300 320 340 360 380 400
400

500

600

700

800

900

1000

1100

Expected traffic demand

R
ev

en
ue

Approximate revenue (V), δ = 5
Expected revenue (E(W)), δ = 5
Rev. of basic static model, δ = 5
Approximate revenue (V), δ = 30
Expected revenue (E(W)), δ = 30
Rev. of basic static model, δ = 30

Figure 8.4: Comparison ofV andE(W).

benefit in overprovisioning. Lastly, we comment that from (8.13) and (8.11) and the above

observations, we can compute the approximate optimal overprovisioning parametersε∗l ’s

usingfixed point approximation.

8.4.1.1 Numerical Examples

We conduct numerical studies to illustrate the properties of the analytic results we obtained

and demonstrate the effects of various parameters on static bandwidth provisioning. For

this purpose, we consider a simple setting: a single route over a single link. Numerical

studies in more complex settings will be performed in a later section.

Unless other stated, the following parameters will be used in the numerical studies: the

long-term average traffic demand on the route is 200 (measured in unit of bandwidth per

unit of time), i.e.,ρ̄r(= ρ̄l) = 200, ander = 4, φl = 1, πr = 2. We setδ = 5 and the target

utilization thresholdηl = 0.8.

Figure 8.3 showŝsl as a function ofεl with three different values ofπr: πr = 1, 2, 3. In the

figure we also include a line corresponding toφl = 1 to illustrate howε∗l can be obtained

as the solution tôsl = φl. Recall from Section 8.4,ε∗l = εl,2 (the right intersecting point).

From Fig. 8.3 we see that as the penaltyπr increases,ε∗l also increases. Hence for higher

penalty it is necessary to overprovision more bandwidth to guide against potential QoS

violations. Likewise, as we increase the per-unit bandwidth costφl (i.e., moving up the

line of φl), ε∗l decreases. In other words, as the bandwidth cost increases, it is beneficial to

reduce overprovisioned bandwidth so as to maximize the net income.

In Figure 8.4 we compare the lower boundV with the actual expected net incomeE(W) for

156

0 10 20 30 40 50 60
360

380

400

420

440

460

Ap
pr

ox
im

at
e

re
ve

nu
e

0 10 20 30 40 50 60
0.15

0.2

0.25

0.3

0.35

O
ve

rp
ro

vi
si

on
in

g
pa

ra
m

et
er

 (ε
)

δ

Figure 8.5: Impact ofδ onV andε∗.

11.11.21.31.41.51.61.71.81.92
0.25

0.26

0.27

0.28

0.29

0.3

0.31

Unit bandwidth price (φ)

O
ve

rp
ro

vi
si

on
in

g
pa

ra
m

et
er

 (ε
)

Figure 8.6: Impact of unit bandwidth price
on ε∗.

two given values ofδ (5 and30). For comparison, we also include the expected net income

W̄ under the basic static model, where the overprovisioning parameterε∗l is obtained from

the static-penalty model. From the figure we see that for both values ofδ, the lower bound

V provides a reasonable approximation toE(W). Note also that the difference between

the actual expected net incomeE(W) under the static-penalty model and the expected net

incomeW̄ under the basic static is almost invisible. This is likely due to the fact that the

additional revenue generated when the traffic demand exceeds its long-term average (the

first term inE(W)) and the potential penalty incurred due to service QoS violations (the

third term inE(W)) cancel each other out on average. From Fig. 8.4 it is clear that the

lower bound depends on the choice ofδ. The smaller theδ is, the closer the approximate

revenueV is to the expected revenueE(W). To further explore the relation betweenδ and

V , in Fig. 8.5 we plotV as a function ofδ (upper plot). In the figure, we also include the

overprovisioning parameterε∗l as a function ofδ (lower plot). We see thatV is a concave

function of δ, and thus there is a uniqueδ that maximizesV . On the other hand,ε∗l is a

non-increasing function ofδ.

To highlight the relationship between bandwidth cost and overprovisioning in Fig. 8.6 we

plot the overprovisioning parameterε∗l as a function of the per-unit bandwidth costφl. We

see that as the per-unit bandwidth costφl decreases (from 2 to 1), the overprovisioning

parameterε∗l increases, i.e., it is more beneficial to overprovision more bandwidth. This is

not surprising.

157

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

Unit time (5 minutes)

Av
er

ag
e

tra
ffi

c
de

m
an

d
(M

b/
s)

Day−time traffic demand

Transition period

Figure 8.7: Traffic demands of the Auckland
data trace.

1 2 3 4
0

2

4

6

8

10

12

14

Day−time traffic demand (Mb/s)
0 0.5 1 1.5 2

0

1

2

3

4

5

6

7

8

9

10

Night−time traffic demand (Mb/s)

Figure 8.8: Histogram of the Auckland data
trace’s traffic demands.

8.4.2 Measurement-Based Traffic Demand Model

A key property of the presented approximate optimal solution to the static bandwidth pro-

visioning problem is that it only relies on the marginal distribution of the traffic demand on

each link. In this section, we will study the static bandwith provisioning problem based on

the measurements of real Internet traffic. That is, we estimate the marginal distributions of

the traffic demands on the links by the long-term measurements of the traffic data, and then

apply the estimated marginal distributions of the traffic demands to our static bandwidth

provisioning problem.

The data trace we will use was collected at the University of Auckland Internet access link

on December 1, 1999, lasted roughly for24 hours (refered to asAuckland data trace) [78].

In the Auckland data trace, there are totally32628004 packet arrivals. Figure 8.7 presents

the average traffic arrival rates (i.e. traffic demands) of the Auckland data trace, where each

point represents the average traffic demand for a5 minute time interval (which is also used

as the base unit of time, i.e.,t = 5 minutes, see Figure 8.2). Given the largely different

traffic arrival patterns during the day-time and night-time, we will accordingly provision

bandwidth differently for them, where the day-time is defined to be from10:00AM to

5:00PM and night-time from7:00PM to7:00AM. We will refer to the traffic demands dur-

ing the day-time and night-time asday-time traffic demandandnight-time traffic demand,

respectively. All other times are considered to be transition times. The bandwidth provi-

sioned for the day-time and night-time should be switched during the transition times based

on certain criteria, which is not considered in this paper.

Now let us consider the properties of the day-time traffic demands and the night-time traffic

158

Table 8.1: Provisioning for the Auckland traffic demands.

Mean STD C.O.V. ε∗l V
Day-time 2096 442 0.21 0.67 3446

Night-time 609 240 0.39 0 1672

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Overprovisioning parameter (ε)

s l

π = 1
π = 2
π = 3
Unit bandwidth price (φ)

Figure 8.9: Relationship between̂sl, ε, & φl

for Day-time traffic.

(b) Mesh-Tree(a) Tree

1 2 3

5 6 7

9

S2

S3C1 C2 S4

S1

1

2

3

4

7 8

5

11
9

19

S1

S2 S3

S4

C1 C2 C4S5 C3

6

8

4

12
10

151413 17 1816

20 21

C6C5

Figure 8.10: SON topologies.

demands. The mean traffic arrival rate over the whole day-time duration is2.1 Mb/s,

while over the night-time duration it is0.6 Mb/s. Figure 8.8 plots the histograms of the

traffic demands for the day-time (left-hand side) and night-time (right-hand side) separately,

where the bin sizes for the day-time traffic demands and the night-time traffic demands

are100 Kb/s and50 Kb/s, respectively. From the plots we see that the day-time traffic

demands are relatively symmetrically centered at its mean arrival rate, while the night-time

traffic demands are more skewed. In th following studies, we will model the day-time traffic

demands by aNormal distribution, while the night-time traffic demands by aLognormal

distribution to retain the different traffic characteristics during the day-time and night-time.

Table 8.1 presents the mean traffic demands and the standard deviations (STD) of the day-

time and night-time traffic demands, where the base unit of bandwidth (traffic demand) is

1 Kb/s.

In the following, we will conduct numerical studies to illustrate the static bandwidth pro-

visioning using the Auckland data trace. In all these studies, we again consider the simple

setting: a single route over a single link. The per-unit bandwidth per-unit time earning

er = 4, andφl = 1, πr = 2. We set the target utilization thresholdηl = 0.8.

Similar to the numerical example for theM/G/∞ traffic demand model, in Figure 8.9,

159

we showŝl as a function ofεl with three different values ofπr: πr = 1, 2, 3, for the day-

time traffic demands. The value ofδ used is140. In the figure we also include a line

corresponding toφl = 1 to illustrate howε∗l can be obtained as the solution toŝl = φl

(see (8.13)). Following a similar argument as that in Section 8.4.1, there potentially exists

two solutionsεl,1 andεl,2, 0 ≤ εl,1 ≤ εl,2 such thatφl = ŝl. Moreover, with respect to

link l, V is maximized at eitherε∗l = εl,2 or at ε∗l = 0. From Fig. 8.9 we can draw the

similar conclutions as that in theM/G/∞ traffic demand model. In particular, we see that

as the penaltyπr increases,ε∗l also increases. Hence for higher penalty it is necessary to

overprovision more bandwidth to guide against potential QoS violations. Likewise, as we

increase the per-unit bandwidth costφl (i.e., moving up the line ofφl), ε∗l decreases. In other

words, as the bandwidth cost increases, it is beneficial to reduce overprovisioned bandwidth

so as to maximize the net income. However, compared with the result in Figure 8.3, we

see that we obtain larger overprovisioning parameters here. This is caused by the high

traffic fluctuation in the Auckland data trace. Table 8.1 gives thecoefficient of variancefor

the day-time traffic demands (and the night-time traffic demands) in the column marked as

C.O.V.. This value (0.21) is much higher than that in Figure 8.3, which is0.07.

To compare the different provisioning behaviors during the day-time and night-time, we

present the overprovisioning parameters for both the day-time and night-time traffic de-

mands in Table 8.1. To obtain these results, we have searched for the bestδ’s that yeild

the maximalV ’s, respectively. In the table we also include the approximate revenueV ’s

(per-unit time) for the day-time and night-time traffic demands. From the table we see that

for the day-time traffic demands the overprovisioning parameterε∗l = 0.67, while for the

night-time traffic demandsε∗l = 0. The reason is as follows. Even though the average traffic

demands during night-time are much lower than that during day-time, we observe a much

higher traffic demand fluctuation during the night-time than that during the day-time (see

Table 8.1 for their corresponding coefficients of variance). It is too expensive to accom-

modate this high traffic demand variance during the night-time (εl,2 is dramatically large),

therefore, no overprovisioning is provided in this case. During day-time, the (per-unit time)

approximate revenue is3446, which is higher than that during the night-time (1672). This

is not unexpected.

8.4.3 Performance Evaluation

We now use two SON topologies—thetree(Fig. 8.4.2(a)) and the mesh-tree (Fig. 8.4.2(b))

topologies—to illustrate the effect of traffic load distribution among various routes of a

160

SON on static bandwidth provisioning. In the followinga → b denotes a route from

service gatewaya to service gatewayb. The path withminimum“hop-count” (i.e., service

gateways) is used as the route between two service gateways. In case there are two such

paths, only one is chosen. In the numerical studies below, we will use theM/G/∞ traffic

demand model. We seter = 10, πr = 2 for all the routes, andφl = 1 for all the links. The

value ofδ is chosen in such a way thatδr = 1
40

ρr.

In the tree topology, four routes are used:R1 = S3 → C1, R2 = S1 → C1, R3 = S4 →
C2, andR4 = S2 → C2. To investigate the effects of different traffic loads on band-

width provisioning, we consider two types of traffic load distribution among the routes: the

balancedload where the expected traffic demand for all routes is200, and theunbalanced

load where the expected traffic demands on routesR1, R2, R3, R4 are300, 100, 250, and

150, respectively. Table 8.2 presents the resulting overprovisioning parameterε∗l and provi-

sioned bandwidthcl for six representative links: link1, 4, 5, 7, 8, and9. The corresponding

average traffic loads̄ρl’s on these four links are also given in the table. From the results

we see that under the balanced load, links with a higher average traffic load have a smaller

overprovisioning parameter. This is due to statistical multiplexing gains for carrying a

higher load on a link. In the Unbalanced case, similar results can be observed. Note that

even links4 and9 have the same traffic demand load, they are overprovisioned differently.

This is caused by the fact that, there are two routes traversing link9 while there is only one

on link 4.

Table 8.2: Tree Topology.

Link ID 1 4 5 7 8 9
ρl 400 200 800 200 200 400

Balanced ε∗l 0.26 0.3 0.23 0.3 0.3 0.26
cl 630 325 1230 325 325 630
ρl 400 250 800 100 150 250

Unbalanced ε∗l 0.26 0.27 0.23 0.41 0.34 0.33
cl 630 397 1230 176 251 416

We now consider the mesh-tree topology. In this case there are10 routes:R1 = S1 → C1,

R2 = S2 → C2, R3 = S3 → C1 (1), R4 = S4 → C2 (1), R5 = S1 → C3 (3),

R6 = S2 → C4 (3), R7 = S3 → C3, R8 = S4 → C4, R9 = S5 → C5, R10 =

S5 → C6. The number in the parentheses following a route shows a link that the route

traverses in case there are multiple paths between the source and destination with the same

161

Table 8.3: Mesh-Tree Topology.

Link ID 2 6 11 18 19 21
ρl 1200 800 400 400 400 200

Balanced ε∗l 0.22 0.23 0.26 0.26 0.26 0.3
cl 1830 1230 630 630 630 325
ρl 1350 1100 500 400 400 100

Unbalanced ε∗l 0.21 0.2 0.24 0.26 0.26 0.41
cl 2042 1650 775 630 630 176

path length. Again for the balanced load case, all the routes have an average traffic demand

of 200; while for the unbalanced load case, the average demands for routesR1 to R10

are300, 250, 100, 150, 300, 250, 100, 150, 300, and100 respectively. Table 8.3 shows the

results for six representative links: link2, 6, 11, 18, 19, and21. From the table we can see

that similar observations also hold for the mesh-tree topology.

In this section, we have studied the static bandwidth provisioning mode, where during

a relatively long period, the provisioned bandwidth on a link will not be changed. The

static bandwidth provisioning mode is simple in bandwidth management, but may result

in inefficient bandwidth usage facing traffic demand fluctuations. In the next section, we

will study the dynamic bandwidth provisioning mode, where the link bandwidth could be

dynamically adjusted according to the traffic demand fluctutions in relatively shorter time

intervals.

8.5 Dynamic Bandwidth Provisioning

In this section we study the dynamic bandwidth provisioning problem. As pointed out

in Section 8.2, to account for the potential higher cost in supporting dynamic bandwidth

provisioning, it is likely that the underlying network domains will charge the SON different

prices for statically provisioned and dynamically allocated bandwidth. Hence we assume

that for each linkl, the cost for reservingcl amount of bandwidthstatically is, as before,

Φl(cl); while the cost of reserving the same amount of bandwidthdynamicallyis Φ′l(cl),

whereΦ′l(cl) ≥ Φl(cl). Given this price differential,a key question for the SON is to

determine how much bandwidth should be reserved statically on each linkl a priori to

meet certain base traffic demands, while dynamically allocating bandwidth to meet the

additional traffic demands as needed. The objective is again to maximize the overall long-

162

term expected net income of the SON.

To focus on the dynamic bandwidth problem, we assume that the underlying network do-

mains possess abundant bandwidth that the dynamic requests for additional bandwidth from

the SON are always satisfied. In other words, no request is blocked. Under this assumption,

for a given traffic demand matrix{ρr}, it is possible to compute the expected additional

bandwidth that needs to be dynamically allocated to meet the traffic demands. This can

be done, for example, using theM/G/∞ traffic demand model introduced in the previous

section. However such precise formulation is extremely complicated, and consequently the

corresponding optimization problem is unlikely to be tractable. In the following, we will

first describe an approximate model based on the marginal distributions of the traffic de-

mands on the links of the overlay network; and then present an adaptive heuristic algorithm

for dynamic bandwidth provisioning based ononlinetraffic measurements.

8.5.1 Approximate Model

Suppose for each linkl ∈ L, cl amount of bandwidth has been provisioned staticallya pri-

ori. Given a traffic demand matrix{ρr}, we approximate theexpectedadditional bandwidth

that must be dynamically reserved to meet the traffic demands by the following expression:

∆cl =

{
ρl

ηl

− cl

}+

, (8.14)

whereρl =
∑

l∈r ρr. Then∆cl > 0 if and only if ρl > ηlcl.

Using (8.14) we can write down theapproximateoverall net income the SON generates for

the given traffic demand matrix{ρr}:

W̃ ({ρr}) =
∑

r∈R

erρr −
∑

l∈L

Φl(cl)−
∑

l∈L

Φ′l(∆cl). (8.15)

Integrating on both sides of (8.15) over the (joint) distribution ofd{ρr}, we have

E(W̃) =
∑

r∈R

erρ̄r −
∑

l∈L

Φl(cl)−
∑

l∈L

∫
·
∫

Φ′l(∆cl)d{ρr}. (8.16)

The dynamic bandwidth provisioning problem can now be formulated as the following

optimization problem:

max
{cl}

E(W̃). (8.17)

163

Note that unlike the static bandwidth provisioning problem, here we do not have any ex-

plicit QoS or target utilization constraints. This is because we implicitly assume that when-

ever the target utilization threshold is about to be exceeded, additional bandwidth is dy-

namically allocated on the link to meet the service QoS. We will refer to the optimization

problem (8.17) as theapproximate modelfor dynamic bandwidth provisioning. In the fol-

lowing, we will present an (approximate) solution to the approximate model of the dynamic

bandwidth provisioning problem. For the detailed analysis, we refer interested readers to

Appendix D.2.

Assume both bandwidth cost functions are linear, i.e., for anyl ∈ L, Φl(cl) = φlcl and

Φ′l(∆cl) = φ′l∆cl, whereφl ≤ φ′l for any l. Let c′l be such thatPr{ρl > ηlc
′
l} = φl/φ

′
l.

Then the set ofc′l’s is an (approximate) solution to the dynamic bandwidth provisioning

problem, i.e.,c′l is the amount of bandwidth to be statically provisioned, while the portion

to be dynamically allocated on linkl is given by (8.14), for a given traffic demand matrix

{ρr}.

An intuitive interpretation of the above results is that under the dynamic bandwidth allo-

cation model, we need to statically reserve at mostc′l amount of bandwidth on each link

l, where the probability that the (average) aggregate load on linkl exceeds the statically

reserved link bandwidthc′l equals the ratio of the two prices on the linkl, φl/φ
′
l. In the spe-

cial case thatφl = φ′l, i.e., the unit price of dynamically allocated bandwidth is the same

as that of the statically reserved one, we havec′l = 0. Hence in this case, no static capacity

needs to be reserved.

8.5.1.1 Numerical Examples

In this section we perform numerical studies to illustrate the properties of the dynamic

bandwidth provisioning model, and compare it with the static bandwidth provisioning

model. Unless otherwise stated, the per-unit bandwidth per-unit time earninger = 4,

andφl = 1, φ′l = 1.5. The target link utilization thresholdηl is 0.8.

In the first set of studies, we examine the effects of the per-unit bandwidth priceφ′l for dy-

namically allocated bandwidth on the amount of bandwidth provisioned staticallya priori

cl and the approximate revenueE(W̃). In these studies, we use the simple network setting:

a single route over a single link. The traffic demand model isM/G/∞ and the long term

average traffic demand on the route is200. Figure 8.11 presents the bandwidth provisioned

staticallycl (upper plot) and the approximate revenueE(W̃) (lower plot) as functions ofφ′l,

164

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

50

100

150

200

250

St
at

ic
 in

iti
al

 b
an

dw
id

th
 (c

l)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
540

542

544

546

548

550

Ex
pe

ct
ed

 a
pp

ro
xi

m
at

e
re

ve
nu

e
(E

[W
])

New unit bandwidth price

Figure 8.11: Effects ofφ′l on cl andE(W̃).

200 300 400 500 600 700 800 900 1000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Expected traffic demand

Ap
pr

ox
im

at
e

re
ve

nu
e

Dynamic bandwidth provisioning
Static bandwidth provisioning

Figure 8.12: Dynamicvs. static bandwidth
provisioning.

respectively. From the figure we see that as the per-unit bandwidth price for dynamically

allocated bandwidth increases, more bandwidth needs to be provisioned staticallya priori.

However, the increase in the amount of static bandwidth is not dramatic asφ′l increases

from φ′l = 1.1 to φ′l = 2. On the other hand, as we increase the price for dynamically

allocated bandwidth, the approximate revenueE(W̃) decreases. This is partly due to the

fact that a SON needs to statically provision more bandwidtha priori on each link, besides

the fact that the SON needs to pay more for the dynamically allocated bandwidth.

In the next set of numerical studies, we compare the dynamic bandwidth provisioning

model with the static bandwidth provisioning model in terms of the approximate revenues

obtained, using thetreenetwork topology (see Figure 8.4.2(a)), with a similar setting as that

in Section 8.4.3. In particular, we use thebalancedtraffic load model and assume the traffic

demand on each route is governed by theM/G/∞model. For static bandwidth provision-

ing, πr = 2. Figure 8.12 presents the approximate revenue as a function of the (long-term)

average traffic demands for dynamic and static bandwidth provisioning, respectively. From

the figure we see that, for both dynamic and static bandwidth provisioning models, the

approximate revenue increases as the average traffic demand increases, and the dynamic

bandwidth provisioning has a higher approximate revenue than that of the static bandwidth

provisioning. Moreover, as the average traffic demand increases, the difference between

the approximate revenues of the dynamic bandwidth provisioning and the staic bandwidth

provisioning becomes larger. This is possibly due to the fact that, as the average traffic

demand on a route increases, traffic along the route becomes more bursty (recall that the

marginal distribution of traffic demand on a route is Poisson), and the dynamic bandwidth

provisioning model works better than the static bandwidth provisioning in this case.

165

8.5.2 Adaptive Online Bandwidth Provisioning Algorithm

In developing the approximate dynamic bandwidth provisioning model, we have assumed

that the (average) traffic demands are knowna priori for determining the additional band-

width that must be dynmaically allocated to meet the traffic demands (see (8.14)). In this

section, we present anadaptive onlinebandwidth provisioning model (or simply online

dynamic model) that dynamically adjust the allocated bandwidth on a link according to the

measurementof the traffic demands on the links of the network.

As before, let̄ρr denote the long-term average traffic demand on router, andρ̄l =
∑

r:l∈r ρ̄r,

the long-term average traffic demand on linkl. Based on the measurement of the traffic

demands on the links, our target in this section is to determine the amount of bandwidthcl

that should be statically provisioneda priori to meet certain base traffic demands, and the

amount of bandwidth∆cl that should be allocated dynamically to accommodate the traffic

demand dynamics in the network.

Let t denote a fixed time interval. In the online dynamic model, the average traffic demand

ρr during each such time interval is calculated at the end of the time interval. Based on the

measured average traffic demands and the contracted service QoS, the bandwidth allocated

on each link will be adjusted accordingly at the end of the time interval. Moreover, the

resulted bandwidth will be kept constant during the next measurement time interval. In

other words, the allocated bandwidth is only adjusted at the end of each measurement time

interval. To reduce the frequency of allocating additional bandwidth or de-allocating extra

bandwidth caused by short-term traffic fluctuations, bandwidth will be allocated in units

of quota, which is a chunk of bandwidth [88] and normally much larger than one unit of

bandwidth. In the following, we will denote the size of a quota byΘ (in unit of bandwidth).

Let cl denote the amount of bandwidth that has been provisioned staticallya priori. In the

online dynamic model,cl is chosen in such a manner that, if the average traffic demand on

a link l does not exceed̄ρl, the service QoS will be honored, i.e.,

cl = d ρ̄l

ηlΘ
eΘ, (8.18)

note that, the initial static bandwidth is allocated in units of quota.

Next, we discuss the allocation of additional bandwidth and de-allocation of extra band-

width on an arbitrary linkl. To reduce the possibility that the service QoS is violated, the

166

0 10 20 30 40 50 60 70 80 90
1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (unit: 5 minutes)

Ba
nd

w
id

th
 (u

ni
t:

1K
b/

s)

Average traffic demand
Approximate dynamic model
Online dynamic model

Figure 8.13: Dynamic bandwidth provisioning with approximate model and online model.

online dynamic model will allocate the additional bandwidth (a new quota) when the aver-

age traffic demand is approaching the target link utilization level threshold, instead of until

the thresold is exceeded. Letιf denote a positive number, andCl the current total band-

width on link l, i.e.,Cl = cl + ∆cl. Then an additional quota will be allocated onto linkl

if ρl > Clηl − ιf . ιf is called the forward threshold for allocating a new quota. Similarly, a

backward threshold for de-allocating an extra quota is defined as: (denoted byιb (a positive

number)): an extra quota is released from linkl only if ρl < (Cl −Θ)ηl − ιb.

Because the online dynamic model only adjusts bandwidth on the links at the end of the

each measurement interval, it is possible that the service QoS is violated during the course

of the measurement time interval. As in static bandwidth provisioning with penalty in

Section 8.4, certain penalty will apply in this case. Letπr denote the average penalty

suffered by per unit of traffic demand per unit of time (the measurement time interval)

along router when the service QoS along router is violated. Then the revenue of the

online dynamic model for a measurement time interval is,

V̄ =
∑

r∈R

erρr −
∑

l∈L

Φl(cl)−
∑

l∈L

Φ′l(∆cl)−
∑

r∈R

πrρr1{ρl/Cl>ηl:l∈r}, (8.19)

where the indicator function1{ρl/Cl>ηl:l∈r} = 1 if ρl/Cl > ηl holds for any linkl on route

r, 0 otherwise.

In the following, we perform numerical studies to illustrate the bandwidth allocation be-

havior of the online dynamic model. The studies are carried out in the simple network

setting using theday-time traffic demandsof the Auckland data trace(see Fig. 8.7). The

following parameters are used. The base unit of bandwidth for the Auckland data trace is

167

1 Kb/s. The measurement time interval (i.e., unit time) is5 minutes. The per-unit band-

width per-unit time earninger = 4, andφl = 1, φ′l = 1.5, πr = 2. The target utilization

thresholdηl = 0.8. The size of quotaΘ = 0.6σ, whereσ is the standard deviation of

the day-time traffic demands of the Auckland data trace (see Table 8.1). The forward and

backward thresholdιf = ιb = 0.3Θ.

Figure 8.13 presents the average traffic demands (per5 minutes) and the corresponding

provisioned bandwidth in the online dynamic model. For the purpose of comparison,

we also include the bandwidth provisioning behavior of the approximate dynamic model.

From the figure we see that the online dynamic model is able to adjust the link bandwidth

according to the dynamics of the traffic demands on the link and meanwhile remains insen-

sitive to small short-time fluctuations in traffic demands (for example, see the provisioned

bandwidth at time24, 25 and26). Because of the nature of the online dynamic model,

sometimes the bandwidth on a link could be less than the average traffic demand on the

link (for example, at time14), where a penalty will apply. (A penalty may apply in other

cases.) Note also that, under this parameter setting, the approximate dynamic model has

a smaller initial static bandwidth than the online dynamic model. Moreover, the approxi-

mate dynamic model is more sensitive to the fluctuations in traffic demands than the online

dynamic model.

Table 8.4: Per-unit time average revenue.
Approximate model Online model

Average revenue 5468 4152

Table 8.4 gives the mean revenues (per-unit time) of the approximate dynamic model and

the online dynamic model, averaged over the whole duration of the day-time traffic de-

mands of the Auckland data trace. From the table we see that the approximate dynamic

model has a higher per-unit time average revenue than the online dynamic model. There

are possibly two reasons. First, under this parameter setting, the amount of initial static

bandwidth is larger than the approximate dynamic model, therefore causing more cost on

the overlay. Second, the online dynamic model is measurement-based and the bandwidth

on a link is only adjusted at the end of the measurement time itnervals. Consequently, as we

discussed before, service QoS could be violated during a time interval and incurs penalty

on the overlay. However, the online dynamic model has the advantage that it does not make

any assumption about the (average) traffic demands (except the long-term average traffic

demand and its standard deviation).

168

8.6 Summary

In this chapter, we studied the bandwidth provisioning problem for the service overlay net-

works. We considered both the static and dynamic bandwidth provisioning models and our

study took into account various factors such as service QoS, traffic demand distributions,

and bandwidth costs.

The approximate optimal solution we presented to the static bandwidth provisioning prob-

lem is generic in the sense that it applies to different marginal distributions of the traffic

demands on the routes in a network, which makes the solution very attractive facing dif-

ferent traffic arrival behaviors. The static bandwidth provisioning model is simple in terms

of network resource management but may result in inefficient network resource usage if

the traffic demands are highly variable. In this kind of environments, the dynamic band-

width provisioning model outperforms the static bandwidth provisioning model, albeit with

more complex and frequent network resource managements. We investigated the effects of

various parameters like static and dynamic bandwidth costs on the revenue that a SON

can obtain, which provides useful guidelines on how a SON should be provisioned to stay

profitable.

169

Part IV

Conclusions and Future Work

170

Chapter 9

Conclusions and Future Work

9.1 Conclusions

This dissertation addressed the scalability issues in supporting QoS from two complemen-

tary aspects, namely the packet forwarding data plane and the network resource manage-

ment control plane. On the packet forwarding data plane, a virtual time framework was

proposed as a unifying packet scheduling framework to providescalablesupport for guar-

anteed services in the Internet. In this framework, Internet core routers do not need to

maintain any per-flow state and do not perform any per-flow operations. Consequently,

they are able to handle a large number of simultaneous flows. The key notion in the vir-

tual time framework is avirtual timestamp, which is initialized at network edge routers

and referred and/or updated by network core routers, depending on the service granularity

supported by the network. Several newcore statelesspacket scheduling algorithms were

designed and analyzed to illustrate how both aggregate and per-flow service guarantees can

be supported within this same framework. This is critical for the Internet to continue its

evolution. Moreover, we investigated the cost-performance trade-offs in supporting QoS in

the Internet by studying the QoS provisioning power of these packet scheduling algorithms.

Figure 9.1 summarizes the packet scheduling algorithms we have studied in this disserta-

tion and their trade-offs in supporting QoS in the Internet. Comparied to Figure 1.2 we see

that a whole scheduling spectrum, ranging from the current best-effort FIFO network to the

most advanced per-flow QoS provisioning scheme (VTRS), were studied.

On the network resource management control plane, two scalable bandwidth broker archi-

tectures were designed and investigated. The first one was a centralized bandwidth broker

171

Figure 9.1: Cost-performance trade-offs in supporting QoS in the Internet

architecture, which is built upon the core stateless packet scheduling algorithms we de-

signed. By conducting admission controls on a per-path basis instead of on a “hop-by-hop”

basis, this bandwidth broker architecture significantly reduces the complexity of the admis-

sion control algorithm; therefore, it improves the scalability of existing bandwidth broker

architectures. To further improve its scalability, a hierarchical bandwidth broker architec-

ture was designed. In this architecture, multiple edge bandwidth brokers are deployed in a

network, along with the conventional centralized bandwidth broker. Edge bandwidth bro-

kers handle the flow admission control and resource management functionalities for certain

pre-defined paths. They interact with the centralized bandwidth broker for allocating and

de-allocating trunk bandwidth along the paths. In this way, the centralized bandwidth bro-

ker only needs to handle coarser time scale trunk bandwidth requests from edge bandwidth

brokers. Consequently, its scalability is greatly improved.

Finally, to provide real end-to-end QoS support and to facilitate the creation and deploy-

ment ofvalue-added servicessuch as VoIP, Video-on-Demand, and other emerging QoS-

sensitive services over the Internet, an architecture called theservice overlay network

(SON) was proposed. Special servers, called service gateways, are deployed at certain

strategically selected locations over the Internet to aid the data forwarding and resource

management. The bandwidth provisioning problem for a service overlay network was

mathematically formulated and investigated, taking into account various factors such as

SLA, QoS, traffic demand distributions, and bandwidth costs. Analytical models and ap-

proximate solutions were developed for both static and dynamic bandwidth provisioning,

which provide useful guidelines on how a SON should be provisioned to stay profitable.

172

9.2 Future Work

In the following we briefly discuss possible future research directions that we plan to ex-

plore.

9.2.1 Packet Forwarding Data Plane

So far, we have primarily focused on providingdeterministicQoS guarantees in the virtual

time framework. The delay bounds reported in this dissertation are theworst-casedelay

bounds. On the other hand, many real-time multimedia applications may be more interested

in averagedelay bounds. Therefore, it is of great interest and importance to study and

providestochasticQoS guarantees in the Internet.

In the aggregate packet scheduling schemes we have studied, all flows traversing a network

will receive the same degree of service guarantees from the network. In reality, it may be

desirable to support multiple service classes instead of a single service class. In this way,

users can choose different service classes depending on the requirements from different

applications.

In establishing the results of the Virtual Time Reference System, we have assumed a fine-

grained time granularity. However, we may only have finite bits to encode the packet state

in reality. We will study VTRS with a coarser-grained time granularity. Specifically, as in

the case of SETF and DETF, we will extend VTRS to a slotted-time environment, which

may greatly reduce the cost of VTRS, while still being able to provide per-flow service

guarantees.

9.2.2 Network Resource Management Control Plane

In the current bandwidth broker architecture design, we focused on the bandwidth alloca-

tion and management problemwithin a single network domain. However, the bandwidth

allocation problem can be different in a multiple domain environment, where different

network domains may belong to different administrations. Consequently, an end-to-end

bandwidth negotiation scheme may be desirable, be it on a per-flow basis or on a per-

organization basis.

IP Telephony is a promising service in the future Internet. However, it also imposes certain

unique challenges on the management of network resources. For example, it may be nec-

essary to conduct dynamic QoS control and management such as admission control and/or

173

resource provisioning at the time scale of flow arrival and departure. Therefore, an efficient

and scalable bandwidth allocation and management scheme is critical to the performance of

the IP networks in support of the IP Telephony service. Some initial results concerning the

network resource management for supporting IP Telephony in the Internet were reported

in [24]. Currently, we are investigating the feasibility of probabilistic admission control

schemes to better utilize network resources.

9.2.3 Service Overlay Networks

The bandwidth provisioning problem for service overlay networks was studied in this dis-

sertation. However, many issues regarding the design and implementation of the SON

architecture remain unanswered. For example, how many service gateways are needed

to construct a SON to maximize the revenue of a SON operator, while still being able

to provide certain degrees of QoS guarantees? Where should these service gateways be

placed? Furthermore, how should user traffic be routed within a SON to optimize its re-

source usages? All of these questions are important for a SON to stay profitable. We plan

to investigate these issues in the future work.

9.2.4 Inter-Domain Internet Routing

The Border Gateway Protocol (BGP) is the currentde factoInternet inter-domain rout-

ing protocol that glues the whole Internet together [65]. Theoretically speaking, when the

network is stable, we should seldom see routing dynamics. However, significant routing

dynamics have been observed on the Internet from time to time [51, 52]. Internet routing

instability has an adverse impact on application performance. It manifests itself with in-

creased network latencies and packet losses [52, 62]. It is therefore important to understand

the underlying reasons for these routing dynamics, and then design proper apparatus to re-

duce the degree of routing dynamics. Specifically, we plan to investigate the characteristics

of routing dynamics observed at multiple vantage points, and understand the causes of and

relationships among the routing dynamics. We would also like to study the path explo-

ration behaviors associated with BGP, or more generally, path-vector routing protocols, to

enhance their stability [8, 56, 64]. Some initial results were reported in [23].

174

Bibliography

[1] D. G. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris. Resilient overlay

networks. InProc. 18th ACM SOSP, Banff, Canada, October 2001.

[2] M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg, T. Leighton, and Z. Liu.

Universal stability results for greedy contention-resolution protocols. InProceedings

of the 37th Annual Symposium on Foundations Of Computer Science, pages 380–389,

Burlington, VT, October 1996.

[3] P. Aukia, M. Kodialam, P. Koppol, T. Lakshman, H. Sarin, and B. Suter. RATES: A

server for MPLS traffic engineering.IEEE Network, pages 34–41, March/April 2000.

[4] Y. Bernet, J. Binder, S. Blake, M. Carlson, B. E. Carpenter, S. Keshav, E. Davies,

B. Ohlman, D. Verma, Z. Wang, and W. Weiss. A framework for differentiated ser-

vices. Internet Draft, February 1999. Work in Progress.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture

for differentiated services. RFC 2475, December 1998.

[6] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architecture:

An overview. RFC 1633, June 1994.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation

protocol (RSVP) – version 1 functional specification. RFC 2205, September 1997.

[8] A. Bremler-Barr, Y. Afek, and S. Schwarz. Improved bgp convergence via ghost

flushing. InProc. IEEE INFOCOM, San Francisco, CA, April 2003.

[9] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow, and A. Viswanathan. A

framework for multiprotocol label switching. Internet Draft, September 1999. Work

in Progress.

175

[10] V. Cerf and R. Kahn. A protocol for packet network interconnection.IEEE Transac-

tions on Communications Technology, COM-22(5):627–641, May 1976.

[11] A. Charny and J.-Y. Le Boudec. Delay bounds in a network with aggregate schedul-

ing. In Proceedings of QoFIS, Berlin, Germany, October 2000.

[12] Y. Chawathe, S. Fink, S. McCanne, and E. Brewer. A proxy architecture for reli-

able multicast in heterogeneous environments. InProceedings of ACM Multimedia,

Bristol, U.K., September 1998.

[13] D. Clark. Adding services discrimination to the Internet. Technical report, MIT,

August 1995.

[14] D. Clark, S. Shenker, and L. Zhang. Supporting real-time applications in an integrated

services packet network: architecture and mechanism. InProc. ACM SIGCOMM,

August 1992.

[15] K. Coffman and A. Odlyzko. Internet growth: Is there a ”Moore’s Law” for data

traffic? InHandbook of Massive Data Sets. Kluwer, 2001.

[16] Virtela Communications. http://www.virtele.com.

[17] Internap Network Services Corporation. http://www.internap.com.

[18] D. Cox and V. Isham.Point Processes. Chapman and Hall, 1980.

[19] Mark Crovella and Azer Bestavros. Self-similarity in world wide web traffic: Evi-

dence and causes. InProc. ACM SIGMETRICS, pages 160–169, Philadelphia, PA,

May 1996.

[20] R. Cruz. A calculus for network delay, Part I: Network elements in isolation.IEEE

Transactions on Information Theory, 37(1):114–131, January 1991.

[21] R. Cruz. Sced+: Efficient management of quality of service guarantees. InProc.

IEEE INFOCOM, San Francesco, CA, March 1998.

[22] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing

algorithm. InProc. ACM SIGCOMM, pages 1–12, Austin, TX, September 1989.

[23] Z. Duan, J. Chandrashekar, J. Krasky, K. Xu, and Z.-L. Zhang. Damping BGP route

flaps. Submitted.

176

[24] Z. Duan and Z.-L. Zhang. A scalable bandwidth management architecture for sup-

porting VoIP applications using bandwidth broker. In11th IEEE Workshop on Local

and Metropolitan Area Networks, Boulder, CO, March 2001.

[25] Z. Duan, Z.-L. Zhang, and Y. T. Hou. Service overlay networks: SLAs, QoS and

bandwidth provisioning.To appear inACM/IEEE Transactions on Networking.

[26] Z. Duan, Z.-L. Zhang, and Y. T. Hou. Bandwidth provisioning for service overlay

networks. InProceedings of SPIE ITCOM (Scalability and Traffic Control in IP Net-

works) 2002, Boston, MA, July 29 – August 1 2002.

[27] Z. Duan, Z.-L. Zhang, and Y. T. Hou. Service overlay networks: SLAs, QoS and

bandwidth provisioning. InProceedings of IEEE International Conference on Net-

work Protocols (ICNP), Paris, France, November 2002. Winner of Best Paper Award.

[28] D. Ferrari, A. Banerjea, and H. Zhang. Network support for multimedia: A discussion

of the tenet approach.Computer Networks and ISDN Systems, 10:1267–1280, July

1994.

[29] D. Ferrari and D. Verma. A scheme for real-time channel establishment in wide-area

networks. IEEE Journal on Selected Areas in Communications, 8:368–379, April

1990.

[30] N. Figueira and J. Pasquale. An upper bound on delay for the virtual clock service

discipline. IEEE/ACM Transactions on Networking, 3(4):399–408, August 1995.

[31] Sally Floyd and Van Jacobson. Random early detection gateways for congestion

avoidance.IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[32] Sally Floyd and Van Jacobson. Link-sharing and resource management models for

packet networks. IEEE/ACM Transactions on Networking, 3(4):365–386, August

1995.

[33] L. Georgiadis, R. Gúerin, and A. Parekh. Optimal multiplexing on a single link:

Delay and buffer requirements. InProc. IEEE INFOCOM, pages 524–532, 1994.

[34] L. Georgiadis, R. Gúerin, V. Peris, and K. N. Sivarajan. Efficient network QoS pro-

visioning based on per node traffic shaping.IEEE/ACM Transactions on Networking,

4(4):482–501, 1996.

177

[35] A. Girard.Routing and Dimentioning in Circuit-Switched Networks. Addison-Wesley,

1990.

[36] S. Jamaloddin Golestani. Congestion-free transmission of real-time traffic in packet

networks. InProc. IEEE INFOCOM, pages 527–536, San Francisco, CA, June 1990.

[37] S. Jamaloddin Golestani. A stop-and-go queueing framework for congestion man-

agement. InSigcomm ’90: Communication Architectures and Protocols, pages 8–18,

Philadelphia, PA, September 1990.

[38] L. Golubchik and J. Liu. A fast and accurate iterative solution of a multi-class

threshold-based queueing system with hysteresis. InProc. ACM SIGMETRICS, Santa

Clara, CA, June 2000.

[39] R. Gúerin, H. Ahmadi, and M. Naghshineh. Equivalent capacity and its application

to bandwidth allocation in high-speed networks.IEEE Journal on Selected Areas in

Communications, 9(7):968–981, September 1991.

[40] R. Gúerin, S. Blake, and S. Herzog. Aggregating RSVP-based QoS requests. Internet

Draft, 1997. Work in Progress.

[41] R. Gúerin and L. G̈un. A unified approach to bandwidth allocation and access control

in fast packet-switched networks. InProc. IEEE INFOCOM, volume 1, pages 1–12

(1A.1), Florence, Italy, May 1992.

[42] J. Hyman, A. Lazar, and G. Pacifici. MARS: The Magnet II real-time scheduling al-

gorithm. InSigcomm ’91 Conference: Communications Architectures and Protocols,

pages 285–293, Z̈urich, Switzerland, September 1991.

[43] J. Hyman, A. Lazar, and G. Pacifici. Real-time scheduling with quality of service

constraints. IEEE Journal on Selected Areas in Communications, 9(7):1052–1063,

September 1991.

[44] V. Jacobson, K. Nichols, and K. Poduri. An expedited forwarding PHB. RFC 2598,

June 1999.

[45] S. Jamin, P. Danzig, S. Shenker, and L. Zhang. A measurement-based call admission

control for integrated services packet networks. InProc. ACM SIGCOMM, pages

2–13, Cambridge, MA, August 1995.

178

[46] S. Jamin, S. Shenker, L. Zhang, and D. Clark. An Admission Control Algorithm for

Predictive Real-Time Service. InProceedings of the 3rd International Workshop on

Network and Operating System Support for Digital Audio and Video, pages 308–315.

IEEE Computer and Communication Societies, November 1992.

[47] C. Kalmanek, H. Kanakia, and S. Keshav. Rate controlled servers for very high-

speed networks. InProc. IEEE GLOBECOM, pages 12–20 (300.3), San Diego, CA,

December 1990.

[48] F. P. Kelly. Routing in circuit-switched networks: Optimization, shadow prices and

decentralization.Advances in Applied Probability, 20:112–144, 1988.

[49] S. Keshav. An Engineering Approach to Computer Networking. Addison-Wesley,

1997.

[50] J. Kurose. Open issues and challenges in providing quality-of-service guarantees in

high-speed networks.Computer Communication Review, 23(1), January 1993.

[51] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed internet routing conver-

gence. InSIGCOMM, pages 175–187, 2000.

[52] C. Labovitz, G. Malan, and F. Jahanian. Internet routing instability.IEEE/ACM

Transactions on Networking, 6(5):515–528, 1998.

[53] W. E. Leland, M. S. Taqqu, W. Willinger, and D. Wilson. On the self-similar nature

of ethernet traffic.IEEE/ACM Transactions on Networking, 2(1), 1994.

[54] J. Liebeherr and D. E. Wrege. A versatile packet multiplexer for quality-of-service

networks. InProc. 4th International Symposium on High Performance Distributed

Computing (HPDC-4), pages 148–155, August 1995.

[55] J. Liebeherr, D. E. Wrege, and D. Ferrari. Exact admission control for networks with a

bounded delay service.IEEE/ACM Transactions on Networking, 4(6):885–901, 1996.

[56] Z. Mao, R. Govindan, G. Varghese, and R. Katz. Route flap damping exacerbates In-

ternet routing convergence. InProc. ACM SIGCOMM, Pittsburgh, PA, August 2002.

[57] R. Nagarajan and J. Kurose. On defining, computing and guaranteeing quality-of-

service in high-speed networks. InProc. IEEE INFOCOM, volume 3, pages 2016–

2025 (8C.2), Florence, Italy, May 1992.

179

[58] K. Nichols, V. Jacobson, and L. Zhang. A two-bit differentiated services architecture

for the internet. RFC 2638, July 1999.

[59] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow

control in integrated services networks — the single node case.IEEE/ACM Transac-

tions on Networking, 1(3):344–357, 1993.

[60] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow

control in integrated services networks — the multiple node case.IEEE/ACM Trans-

actions on Networking, 2(2):137–150, 1994.

[61] M. Parulekar and A. M. Markowski. M/G/∞ input processes: A versatile class of

models for network traffic. InProc. IEEE INFOCOM, pages 419–426, Kobe, Japan,

April 1997.

[62] V. Paxson. End-to-end routing behavior in the Internet. InProc. ACM SIGCOMM,

Stanford, CA, August 1996.

[63] V. Paxson and S. Floyd. Wide area traffic: The failure of poisson modeling. InProc.

ACM SIGCOMM, pages 257–268, August 1994.

[64] D. Pei, X. Zhao, L. Wang, D. Massey, A. Mankin, S. Wu, and L. Zhang. Improving

bgp convergence through consistency assertions. InINFOCOM 2002, New York, NY,

Jun 2002.

[65] Y. Rekhter and T. Li. A border gateway protocol 4 (BGP-4). RFC 1771, March 1995.

[66] E. C. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architec-

ture. Internet Draft, August 1999. Work in Progress.

[67] S. Savage, T. Anderson, and et al. Detour: a case for informed internet routing and

transport.IEEE Micro, 19(1):50–59, January 1999.

[68] S. Shenker. Fundamental design issues for the future internet.IEEE Journal on

Selected Areas in Communications, 13(7), September 1995.

[69] S. Shenker, C. Partridge, and R. Guérin. Specification of guaranteed quality of service.

RFC 2212, September 1997.

[70] D. Stiliadis. Traffic Scheduling in Packet-Switched Networks: Analysis, Design, and

Implementation. PhD thesis, Computer Science and Engineering Department, Uni-

versity of California at Santa Cruz, June 1996.

180

[71] D. Stiliadis and A. Varma. Efficient fair queueing algorithms for packet-switched

networks.IEEE/ACM Transactions on Networking, 6(2):175–185, 1998.

[72] D. Stiliadis and A. Varma. Latency-rate servers: A general model for analysis of

traffic scheduling algorithms.IEEE/ACM Transactions on Networking, 6(5):611–624,

1998.

[73] I. Stoica and H. Zhang. Providing guaranteed services without per flow management.

In Proc. ACM SIGCOMM, Boston, MA, September 1999.

[74] I. Stoica, H. Zhang, S. Shenker, R. Yavatkar, D. Stephens, A. Malis, Y. Bernet,

Z. Wang, F. Baker, J. Wroclawski, C. Song, and R. Wilder. Per hop behaviors based

on dynamic packet states. Internet Draft, February 1999. Work in Progress.

[75] A. Terzis, J. Ogawa, S. Tsui, L. Wang, and L. Zhang. A prototype implementation of

the two-tier architecture for differentiated services. InProceedings of IEEE RTAS’99,

Vancouver, Canada, 1999.

[76] A. Terzis, L. Wang, J. Ogawa, and L. Zhang. A two-tier resource management model

for the internet. InGlobal Internet 99, December 1999.

[77] D. Towsley. Providing quality of service in broadband integrated services digital

networks. InPerformance Evaluation of Computer and Communication Systems,

pages 560–586. Springer-Verlag, 1993.

[78] Auckland Data Trace. http://pma.nlanr.net/traces/long/auck2.html.

[79] L. Wang, A. Terzis, and L. Zhang. A new proposal of RSVP refreshes. InProceedings

of IEEE ICNP, Toronto, Canada, November 1999.

[80] L. Wang, A. Terzis, and L. Zhang. RSVP refresh overhead reduction by state com-

pression. Internet Draft, June 1999. Work in Progress.

[81] H. Zhang. Service disciplines for guaranteed performance service in packet-switching

networks.Proceedings of the IEEE, October 1995.

[82] H. Zhang and D. Ferrari. Rate-controlled static-priority queueing. InIEEE INFO-

COM’93, pages 227–236, April 1993.

[83] L. Zhang. Virtual clock: A new traffic control algorithm for packet switching net-

works. InProc. ACM SIGCOMM, pages 19–29, September 1990.

181

[84] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A new resource

reservation protocol.IEEE Network, pages 8–18, September 1993.

[85] Z.-L. Zhang, Z. Duan, L. Gao, and Y. T. Hou. Decoupling QoS control from core

routers: A novel bandwidth broker architecture for scalable support of guaranteed

services. InProc. ACM SIGCOMM, Sweden, August 2000.

[86] Z.-L. Zhang, Z. Duan, and Y. T. Hou. Virtual time reference system: A unifying

scheduling framework for scalable support of guaranteed services.IEEE Journal on

Selected Areas in Communication,Special Issue on Internet QoS, December 2000.

[87] Z.-L. Zhang, Z. Duan, and Y. T. Hou. Fundamental trade-offs in aggregate packet

scheduling. InProceedings of IEEE International Conference on Network Protocols

(ICNP), Riverside, CA, November 2001.

[88] Z.-L. Zhang, Z. Duan, and Y. T. Hou. On scalable design of bandwidth brokers.IEICE

Transaction on Communications, E84-B(8), August 2001.

[89] Z.-L. Zhang, Z. Duan, and Y. T. Hou. On scalable network resource management

using bandwidth brokers. In To appear in8th IEEE/IFIP Network Operations and

Management Symposium (NOMS 2002), Florence, Italy, April 2002.

182

Part V

Appendices

183

Appendix A

Proofs Related to Chapter 3

A.1 Proofs Related to Networks of Static Earliest Time First Sched-

ulers

As we discussed in Section 3.4, the SETF(0) discipline is a special version of the SETF(Γ)

discipline. Therefore in the following we will focus on the proofs for the general SETF(Γ)

schedulers, the lemmas and the theorem for SETF(0) will be given as corollaries.

First we will prove a useful lemma which can be applied to both SETF(0) and SETF(Γ)

schedulers.

Lemma 9 Consider a packetp at an SETF schedulerSi along the path.At time ap
i , let

p∗ be the last packet in the busy period which contains packetp such that whenp∗ arrives

at the scheduler the releasing time (at the network edge) of any packetp′ in the queue

(including the one in service) satisfiesap′
1 ≥ ap∗

1 . Then for any packetp# thatstarts service

during the time interval(ap∗
i , ap

i], we have

ωp#

0 ≤ ωp
0.

Proof: If packetp is the packetp∗, the lemma holds trivially because the time interval

in consideration is empty. In the following we assume thatp is not p∗. We will prove

the lemma by contradiction. Assume that there is at least one packetp# that starts being

serviced during the time interval(ap∗
i , ap

i] such that

ωp#

0 > ωp
0.

184

Let t denote the time that the scheduler starts to service packetp#. It is easy to see that

ap∗
i < t ≤ ap

i . From the property of the SETF scheduler we know that at timet, for any

packetp′ in the queue, if there is any, we must have

ωp′
0 ≥ ωp#

0 .

Consider two cases. If no packet with a releasing time smaller thanap
1 arrives during the

time [t, ap
i], then when packetp arrives at the queue, it is the oldest packet in the queue.

Thereforep is the packetp∗, which contradicts our assumption thatp is notp∗. On the other

hand, assume at least one packet with a releasing time smaller than or equal toap
1 arrives at

the scheduler during the time interval[t, ap
i]. Let p′′ denote the first of such packets, then

ap′′
1 ≤ ap

1 ≤ ωp
0 < ωp#

0 .

Therefore, when packetp′′ arrives at the scheduler, all the packets in the scheduler have

a releasing time that is larger than that ofp′′. Thusp′′ satisfies the definition ofp∗. This

contradicts the condition that packetp′′ arrives during the interval(ap∗
i , ap

i].

This completes the proof.

Proof of Lemma 5: Consider thei schedulerSi on the path of packetp. For the case

1 ≤ i ≤ h∗, (3.17) follows naturally by noting that we can apply the same argument in

Section 3.3 for a network of FIFO schedulers. In the following, we assume thath∗ < i ≤ h.

DenoteMp
i the set of packets that are serviced between (ap

i , f p
i]. From the definition of

SETF, we know that the packets in the set should have a time stamp no greater than that of

the packetp, and should have not stayed in the network longer thanτ ∗. Formally, for any

packetp′ belonging toMp
i , we have

ωp′
0 ≤ ωp

0 andap′
1 ≥ ap

i − τ ∗. (A.1)

Then, we see that,

Q(ap
i) ≤ ∑

p′∈Mp
i

Lp′ + Lmax

≤ αCi{ωp
0 − (ap

i − τ ∗)}+ βCi + Lmax

= αCi{τ ∗ − (ap
i − ωp

0)}+ βCi + Lmax

≤ αCi{τ ∗ − (ap
i − ap

h∗+1)}+ βCi + Lmax. (A.2)

185

The last step is becauseap
h∗+1 ≥ ap

1 + Γ > ωp
0.

Note that whenΓ = 0, we haveh∗ = 0. By settingh∗ = 0 in Lemma 5, we obtain

Lemma 3.

We now prove Theorem 3, which states the main properties of the SETF(Γ) scheduler.

Proof of Theorem 3: The proof includes two parts. We first prove that for the given value

of τ ∗, (3.4) holds, i.e., no packets will experience a delay larger thanτ ∗ before reaching the

last hop. In the second part, we prove that the worst-case edge-to-edge delayD∗ is indeed

bounded.

Part 1. Let τ ∗ = βh∗+α−1(β+∆){1−(1−α)H∗−h∗−1}
(1−α)H∗−h∗−1−αh∗ . We claim that for any packetp which

traverses a path withh hops, the following relationship holds for anyi ≤ h,

ap
i − ap

1 ≤ τ ∗. (A.3)

First consideri ≤ h∗ + 1. From Lemma 2 we know that

ap
i − ap

1 ≤ (i− 1)(ατ ∗ + β) ≤ iβ + i∆{1− (1− α)H∗−h∗−1}
(1− α)H∗−h∗−1 − αh∗

≤ h∗β + h∗∆{1− (1− α)H∗−h∗−1}
(1− α)H∗−h∗−1 − αh∗

. (A.4)

From (3.21), we knowα−1(1 − α)H∗−h∗−1 > h∗. Notice thatH∗ ≥ h∗ + 1, we have

(1− α)H∗−h∗−1 ≤ 1. Therefore,α−1 > h∗. Hence

ap
i − ap

1 ≤
h∗β + h∗∆{1− (1− α)H∗−h∗−1}

(1− α)H∗−h∗−1 − αh∗
≤ τ ∗.

In the following we prove that (A.3) also holds for the case whereh∗ + 1 < i ≤ h by

contradiction. Not loss of generality, assume that for the first time in the system there is a

packetp∗ which violates the relationship at scheduleri∗ ≤ h (without loss of generality,

we assumed here that the path that packetp∗ traverses hash hops), i.e.,ap∗
i∗ − ap∗

1 > τ ∗.

Therefore (A.3) holds for all packets before the timeap∗
i∗ , in particular, we have

ap∗
i∗−1 − ap∗

1 ≤ τ ∗

186

From Lemma 6, we have

ap∗
i∗−1 − ap∗

1 ≤ h∗(ατ ∗ + β) + τ ∗{1− (1− α)i∗−h∗−2}+ α−1(β + ∆){1− (1− α)i∗−h∗−2}

Therefore, we have

ap∗
i∗ ≤ (1− α)ap∗

i∗−1 + α(τ ∗ + ap∗
h∗+1) + β + ∆,

≤ ap∗
1 + (1− α){h∗(ατ ∗ + β) + (τ ∗ + α−1(β + ∆)){1− (1− α)i∗−h∗−2}}

+α{τ ∗ + h∗(ατ ∗ + β)}+ β + ∆

After some algebra, we get,

ap
i∗ − ap

1 ≤ (1− α)
h∗β + α−1(β + ∆){1− (1− α)i∗−h∗−2}+ h∗∆{(1− α)i∗−h∗−2 − (1− α)H∗−h∗−1}

(1− α)H∗−h∗−1 − αh∗

+
αh∗β + β + ∆− αh∗∆(1− α)H∗−h∗−1

(1− α)H∗−h∗−1 − αh∗

=
h∗β + α−1(β + ∆){1− (1− α)H∗−h∗−1}+ (h∗∆− α−1(β + ∆)){(1− α)i∗−h∗−1 − (1− α)H∗−h∗−1}

(1− α)H∗−h∗−1 − αh∗

≤ h∗β + α−1(β + ∆){1− (1− α)H∗−h∗−1}
(1− α)H∗−h∗−1 − αh∗

= τ∗.

The last step comes from the fact thath∗ < α−1 as we derived earlier and the fact that

(1− α)i∗−h∗ − (1− α)H∗−h∗−1 ≥ 0. Thus we arrive at a contradiction.

Part 2. In this part we prove the worst-case edge-to-edge delay is indeed bounded. Con-

sider an arbitrary packetp which traverses a path withh hops. From Lemma 6, we have

f p
h − ap

1 ≤ h∗(ατ ∗ + β) + τ ∗{1− (1− α)h−h∗}+ α−1(β + ∆){1− (1− α)h−h∗}
<

βh∗ + α−1(β + ∆){1− (1− α)h−h∗}+ h∗∆{(1− α)h−h∗ − (1− α)H∗−h∗}
(1− α)H∗−h∗−1 − αh∗

≤ βh∗ + α−1(β + ∆){1− (1− α)H∗−h∗}
(1− α)H∗−h∗−1 − αh∗

. (A.5)

Again, by settingh∗ = 0 in the above theorem, we obtain Theorem 2.

187

A.2 Proofs Related to A Network of DETF(0,1) schedulers

Consider an arbitrary packetp that traverses a path withh hops. Recall that the packet

state of packetp is updated according to (3.25) at each scheduler on the path of the packet.

Consider an arbitrary schedulerSi on the path, we know that the virtual arrival time isωp
i−1

and real arrival time isap
i , moreover, the reality check condition (3.26) holds. DefineFi to

be the set of flows traversing the scheduler.

First we prove thatfp
i ≤ ωp

i−1 + β + ∆ for 0 < α < 1.

Lemma 10 For any network utilization level0 < α < 1, the departure time of an arbitrary

packetp at a schedulerSi is bounded by,

f p
i ≤ ωp

i−1 + β + ∆. (A.6)

Proof: Consider the scheduler busy period containing packetp. Without loss of generality,

assume that the scheduler busy period starts at time0. Let τ be the last time before the

arrival of packetp such that the schedulerstartsservicing a packet whose virtual arrival

time is larger than that of packetp (i.e., ωp
i−1). If such a packet does not exist, setτ = 0,

the beginning of the scheduler busy period. Hence0 ≤ τ ≤ ap
i ≤ ωp

i−1. Let t = ωp
i−1 − τ .

It is easy to see thatt ≥ 0 becauseωp
i−1 ≥ ap

i ≥ τ .

For each flowj ∈ Fi, let Sj denote the set of packets of flowj that are serviced afterτ

but no later than packetp (i.e., they are serviced during the time interval(τ, f p
i]). From

the definition ofτ andSj, we see that for any packetpj,l ∈ Sj, we haveapj,l

i ≥ τ and

ωpj,l

i−1 ≤ ωp
i−1 hold. Notice the reality check condition, we know thatωpj,l

i−1 ≥ apj,l

i ≥ τ .

Therefore, all the packets inSj must virtually arrive during the interval[τ, t + τ], hence

from Lemma 7

∑

j∈Fi

∑

pj,l∈Sj

Lpj,l ≤ βCi + αCit.

Note that packetp is included in the left-hand side of the above inequation. Hence packetp

must have departed from the scheduler when all the packets in
∑

j∈Fi
Sj have been serviced

by the scheduler. Furthermore, the packet which is being serviced at timeτ (if it exists) has

size of at mostLmax. Therefore, we have

f p
i ≤ τ +

Lmax

Ci

+

∑
j∈Fi

∑
pj,l

Ci

≤ τ + ∆ + β + α(ωp
i−1 − τ) ≤ (1− α)τ + αωp

i−1 + β + ∆

188

Notice thatτ ≤ ap
i ≤ ωp

i−1, we have

f p
i ≤ (1− α)ωp

i−1 + αωp
i−1 + β + ∆ ≤ ωp

i−1 + β + ∆

Proof of Theorem 4: By assigningd∗ ≥ β + ∆, we see that the reality check condition

holds at each scheduler. Moreover, From the above lemma, we have

f p
h ≤ ωp

h−1 + β + ∆ = ωp
0 + (h− 1)d∗ + β + ∆ = ap

1 + hd∗.

A.3 Proofs Related to A Network of DETF(Γ,1) Schedulers

Following a similar procedure as in Appendix A.2, we can prove the following relation

holds, for any packetp traversing a path withh hops,

f p
h ≤ ωp

0 + hd∗,

whered∗ = d(αΓ + β + ∆)/ΓeΓ. Note thatωp
0 ≤ ap

1 + Γ, then we have

f p
h ≤ ap

1 + hd∗ + Γ.

A.4 Proofs Related to A Network of DETF(Γ, h∗) Schedulers

In the following we will prove the Theorem 6. First let us recall some notation. Consider

an arbitrary packetp which traverses a path withh hops. Leth∗ denote the number of

schedulers on each segment of the path (the last segment can have less thanh∗ hops),

and assume that there areκ segments on the path, i.e.,κ = d h
h∗ e. Consider an arbitrary

segmentk on the path. Recall that the virtual arrival time of packetp at the segmentk is

ωp
k−1.Furthermore, the following reality check condition holds,

f p
(k−1)h∗ ≤ ωp

k−1,

wheref p
0 is defined asωp

0.

189

Defineτ ∗ such that the following relation holds for any segmentk and any packetp,

ap
kh∗ − ωp

k−1 ≤ τ ∗, (A.7)

i.e., the delay for any packet to reach theh∗th hop (i.e., the last hop) within any segment is

bounded byτ ∗ compared with the virtual arrival time of the packet at the segment.

Our target is first to prove thatf p
kh∗ ≤ ωp

k−1 + Γ for a givenallowablenetwork utilization

and value ofΓ. Not loss of generality, let us assume thatfp
kh∗ > ωp

k−1. Otherwise, if for

any packetp on all the segment of its path,f p
kh∗ > ωp

k−1 does not hold, then it is easy to see

thatfp
h − ωp

0 ≤ κΓ and notice thatωp
0 ≤ ap

1 + Γ, Theorem 6 holds in this case trivially.

Now let us focus on the case wherefp
kh∗ > ωp

k−1. Let schedulerSi∗ be the scheduler in

a segmentk on the path where the following condition holds,ap
i∗ ≤ ωp

k−1 ≤ f p
i∗ . That is,

starting from schedulerSi∗+1 (if it exists), the real arrival time of the packet at the scheduler

is no later than the virtual arrival time of the packet at the segment. In the following, we

will prove the theorem in two parts. First we will derive a bound onfp
i∗; then we develop a

recursive relation betweenfp
i∗ andfp

i for i∗ < i ≤ kh∗.

Lemma 11 Let schedulerSi∗ be defined as above. Then,

f p
i∗ ≤ ωp

k−1 + α(τ ∗ + Γ) + β + ∆. (A.8)

Proof: Consider the scheduler busy period containing packetp. Without loss of generality,

assume that the scheduler busy period starts at time0. Let τ be the last time before the

arrival of packetp such that the schedulerstartsservicing a packet whose virtual arrival

time is larger than that of packetp (i.e., ωp
k−1). If such a packet does not exist, setτ = 0,

the beginning of the scheduler busy period. Hence0 ≤ τ ≤ ap
i∗ ≤ ωp

k−1. Let t = ωp
k−1− τ .

It is easy to see thatt ≥ 0 becauseωp
k−1 ≥ ap

i∗ ≥ τ .

For each flowj ∈ Fi∗ (Fi∗ is defined as before: the set of flows traversing schedulerSi∗),

let Sj denote the set of packets of flowj that are serviced afterτ but no later than packet

p (i.e., they are serviced during the time interval(τ, f p
i∗]). From the definition ofτ andSj,

we see that for any packetpj,l ∈ Sj, we haveapj,l

i∗ ≥ τ andωpj,l

k−1 ≤ ωp
k−1 hold (here for all

packets we used the subscriptk for simplicity even though the current scheduler may not in

thekth segment of that flow). Notice thatapj,l

i∗ ≤ ωpj,l

k−1 + τ ∗ (A.7), we haveωpj,l

k−1 ≥ τ − τ ∗.

190

Therefore, all the packets inSj must virtually arrive during the interval[τ − τ ∗, t + τ].

Hence from Lemma 7,

∑

j∈Fi

∑

pj,l∈Sj

Lpj,l ≤ βCi∗ + αCi∗(t + τ ∗ + Γ).

Note that packetp is included in the left-hand side of the above inequation. Hence packet

p must have departed from the scheduler when all the packets in
∑

j∈Fi∗ Sj have been

serviced by the scheduler. Furthermore, the packet which is being serviced at timeτ (if it

exists) has size of at mostLmax. Therefore, we have

f p
i∗ ≤ τ +

Lmax

Ci∗
+

∑
j∈Fi∗

∑
pj,l

Ci∗

≤ τ + ∆ + β + α(ωp
k−1 − τ + τ ∗ + Γ)

≤ (1− α)τ + αωp
k−1 + α(τ ∗ + Γ) + β + ∆ (A.9)

Notice thatτ ≤ ap
i∗ ≤ ωp

k−1, we have

f p
i∗ ≤ (1− α)ωp

k−1 + αωp
k−1 + α(τ ∗ + Γ) + β + ∆ ≤ ωp

k−1 + α(τ ∗ + Γ) + β + ∆

Next, we will build a relation between the departure time of packetp from schedulerSi, f p
i

and the departure time of packetp from schedulerSi∗ , fp
i∗, for i∗ < i ≤ kh∗. First, we will

develop some helpful lemmas.

Lemma 12 Assume schedulerSi is on thekth segment of the path of a packetp, where

i∗ < i ≤ kh∗. Let Ci be the capacity of the scheduler. DefineQ(ap
i) to be the amount of

traffic serviced by the scheduler during the time interval[ap
i , f

p
i]. Then

Q(ap
i) ≤ αCi(τ

∗ + Γ) + βCi + Lmax (A.10)

Proof: At time ap
i , letp∗ be the last packet in the busy period which contains packetp such

that whenp∗ arrives at schedulerSi the virtual arrival time of any packetp′ in the queue

(including the packet in service), satisfies

ωp′
k−1 ≥ ωp∗

k−1

191

Note that we can always find such a packetp∗ in the busy period because if all other packets

do not satisfy the condition, the packet that starts the current busy period certainly does.

Following a same argument as in the proof of Lemma 9, we can show that for any packet

p# thatstarts being servicedduring the time interval(ap∗
i , ap

i], we have

ωp#

k−1 ≤ ωp
k−1.

Therefore,

Q(ap
i) ≤ ∑

j∈Fi

{ρj(ωp
k−1 − ωp∗

k−1 + Γ) + σj} − (ap
i − ap∗

i)Ci + Lmax

≤ αCi(ω
p
k−1 − ωp∗

k−1 + Γ) + βCi − (ap
i − ap∗

i)Ci + Lmax. (A.11)

The termLmax comes from the fact at most one packet is transmission at timeap∗
i which is

possilbly have a virtual arrival time that is larger thanωp
k−1.

Notice thatωp
k−1 ≤ f p

i∗ ≤ ap
i , we show below that (A.10) holds.

Q(ap
i) ≤ αCi(a

p
i − ωp∗

k−1 + Γ) + βCi − (ap
i − ap∗

i)Ci + Lmax

≤ (αCi − Ci)(a
p
i − ap∗

i) + αCi(a
p∗
i − ωp∗

k−1 + Γ) + βCi + Lmax

≤ αCi(τ
∗ + Γ) + βCi + Lmax,

where the last step is becauseα ≤ 1 andap∗
i − ωp∗

k−1 ≤ τ ∗.

Lemma 13 Consider a packetp traversing thekth segment of the path. For simplicity we

assume that there areh∗ hops on the segment. Then, fori = i∗+ 1, i∗+ 2, . . . , h∗, we have

f p
i − ωp

k−1 ≤ i{α(τ ∗ + Γ) + β + ∆}. (A.12)

Proof: From Lemma 12, it is easy to see that, form = i∗ + 1, i∗ + 2, . . . , i, we have

fm = am +
Q(am)

Cm

≤ am + α(τ ∗ + Γ) + β + ∆.

192

Recursively applying the above equation onm = i, i− 1, . . . , i∗ + 1 we have

f p
i ≤ f p

i∗ + (i− i∗){α(τ ∗ + Γ) + β + ∆}.

Notice the results in Lemma 11, we get fori∗ + 1 ≤ i ≤ h∗

f p
i − ωp

k−1 ≤ (i− i∗){α(τ ∗ + Γ) + β + ∆}+ α(τ ∗ + Γ) + β + ∆ ≤ i{α(τ ∗ + Γ) + β + ∆},

the step comes from the fact thati∗ ≥ 1.

The following theorem states the delay bound within a segment of a path compared with

the virtual arrival time to the segment of the path.

Theorem 17 Let h∗ be the length of a segment of a path. If the utilation factorα satisfies

the conditionα < 1
h∗−1

, then we have thatτ ∗ ≤ (h∗−1)(αΓ+β+∆)
1−(h∗−1)α

. Moreover, compared with

the virtual arrival time of a packet to the segment, the maximum delay within the segment

D∗ is bounded above by

D∗ ≤ h∗(αΓ + β + ∆)

1− (h∗ − 1)α

Proof: The proof includes two parts. We first prove that for the given value ofτ ∗, (A.7)

holds, i.e., no packets will experience a delay larger thanτ ∗ before reaching the last hop

compared to the virtual arrival time. In the second part, we prove that the delay of any

packet is indeed bounded compared to the virtual arrival time.

Part 1. Let τ ∗ = (h∗−1)(αΓ+β+∆)
1−(h∗−1)α

. We claim that for any packetp which traverses a segment

k with h∗ hops, the following relationship holds for anyi ≤ kh∗ (note that thekh∗th hop

is the last hop on thekth segment),

ap
i − ωp

k−1 ≤ τ ∗. (A.13)

Otherwise, assume that for the first time in the system there is a packetp∗ which violates

the relationship at scheduleri# ≤ kh∗ (without loss of generality, we assumed here that

the segment that packetp∗ traverses is thekth segment), i.e.,ap∗
i# − ωp∗

k−1 > τ ∗. Therefore

(A.13) holds for all packets before the timeap∗
i# , in particular, we have

ap∗
i#−1 − ωp∗

k−1 ≤ τ ∗

193

From Lemma 13, we have

ap∗
i#−1 − ωp∗

k−1 ≤ (i# − 2){α(τ ∗ + Γ) + β + ∆}.

Therefore,

ap
i# = f p∗

i#−1 ≤ ap∗
i#−1 + α(τ ∗ + Γ) + β + ∆

≤ ωp∗
k−1 + (i# − 2){α(τ ∗ + Γ) + β + ∆}+ {α(τ ∗ + Γ) + β + ∆}

≤ ωp∗
k−1 + (i# − 1){α(τ ∗ + Γ) + β + ∆} (A.14)

After some algebra, we have

ap∗
i# − ωp∗

k−1 ≤
(h∗ − 1)(αΓ + β + ∆)

1− (h∗ − 1)α
= τ ∗.

Thus we arrive at a contradition.

Part 2. In this part we prove that the maximum delayD∗ within any segment com-

pared with the virtual arrival time to the entry of the segment is bounded above by,D∗ ≤
h∗(αΓ+β+∆)
1−(h∗−1)α

.

Consider an arbitrary packetp which traverses the segment of the path. From Lemma 13,

we have

f p
kh∗ − ωp

k−1 ≤ h∗{α(τ ∗ + Γ) + β + ∆} ≤ h∗(αΓ + β + ∆)

1− (h∗ − 1)α
.

Proof of Theorem 6: By assigningΓ ≥ h∗(αΓ+β+∆)
1−(h∗−1)α

, we see the reality check condi-

tion holds at the entry of each segment. Consider an arbitrary packetp and assume the it

traverses hash hops, letκ = d h
h∗ e. Then

f p
h ≤ ωp

κ−1 + Γ ≤ ωp
0 + κΓ.

Notice thatωp
0 ≤ ap

1 + Γ, we complete the proof.

194

Appendix B

Proofs Related to Chapter 4

B.1 Proof of Theorem 7

In this appendix, we will prove Theorem 7 in Section 4.3. This theorem states an important

recursive relation between∆j,k
i and ∆j,k−1

i . The proof of the theorem is based on two

preliminary lemmas.

Lemma 14 below relates the cumulative queueing delay experienced bypj,k up to serveri

(i.e.,∆j,k
i), to either its queueing delay up to serveri− 1 (i.e.,∆j,k

i−1), or the queueing delay

experienced by the previous packetpj,k−1 up to serveri (i.e.,∆j,k−1
i).

Lemma 14 For i ≥ 1 andk ≥ 2,

∆j,k
i = max{∆j,k

i−1, ∆
j,k−1
i + i

Lj,k−1 − Lj,k

rj
+ aj,k−1

1 − aj,k
1 +

Lj,k

rj
}. (B.1)

In the above, we have defined∆j,k
0 = 0 for all k’s.

Proof: First note that asf j,1
i = aj,1

i + Lj,1

rj = f j,1
i−1 + Lj,1

rj , ∆j,1
i = 0 for all i, which is also

intuitively obvious.

For anyk ≥ 2, we show (B.1) holds by induction oni.

Basis (i = 1). Note that∆j,k
0 = 0.

∆j,k
1 = f j,k

1 − (aj,k
1 +

Lj,k

rj
) = max{aj,k

1 , f j,k−1
1 }+

Lj,k

rj
− (aj,k

1 +
Lj,k

rj
)

195

= max{aj,k
1 , aj,k−1

1 +
Lj,k−1

rj
+ ∆j,k−1

1 }+
Lj,k

rj
− (aj,k

1 +
Lj,k

rj
)

= max{0, ∆j,k−1
1 +

Lj,k−1 − Lj,k

rj
+ aj,k−1

1 − aj,k
1 +

Lj,k

rj
}.

Inductive Step. Now suppose (B.1) holds true up to serveri for k ≥ 2. We show that it is

also true at serveri + 1 for k ≥ 2.

∆j,k
i+1 = f j,k

i+1−[aj,k
1 +(i+1)

Lj,k

rj
] = max{aj,k

i+1, f
j,k−1
i+1 }+Lj,k

rj
−[aj,k

1 +(i+1)
Lj,k

rj
].(B.2)

Now we consider two cases according to the relationship between the arrival time of packet

pj,k and the finish time ofpj,k−1 at the serveri + 1.

CASE 1: aj,k
i+1 ≤ f j,k−1

i+1 . Then by definition,

f j,k−1
i+1 = ∆j,k−1

i+1 + aj,k−1
1 + (i + 1)

Lj,k−1

rj
.

Therefore, from (B.2), we have

∆j,k
i+1 = ∆j,k−1

i+1 + (i + 1)
Lj,k−1 − Lj,k

rj
+ aj,k−1

1 − aj,k
1 +

Lj,k

rj
.

Note that, in this case, we have

∆j,k−1
i+1 + (i + 1)

Lj,k−1 − Lj,k

rj
+ aj,k−1

1 − aj,k
1 +

Lj,k

rj

= f j,k−1
i+1 − [aj,k−1

1 + (i + 1)
Lj,k−1

rj
] + (i + 1)

Lj,k−1 − Lj,k

rj
+ aj,k−1

1 − aj,k
1 +

Lj,k

rj

= f j,k−1
i+1 − (aj,k

1 + i
Lj,k

rj
)

≥ aj,k
i+1 − (aj,k

1 + i
Lj,k

rj
)

= f j,k
i − (aj,k

1 + i
Lj,k

rj
)

= ∆j,k
i

Hence (B.1) holds.

196

CASE 2: aj,k
i+1 > f j,k−1

i+1 . Then since

aj,k
i+1 = f j,k

i = ∆j,k
i + aj,k

1 + i
Lj,k

rj
,

we have

∆j,k
i+1 = ∆j,k

i .

Furthermore,

∆j,k−1
i+1 + (i + 1)

Lj,k−1 − Lj,k

rj
+ aj,k−1

1 − aj,k
1 +

Lj,k

rj

= f j,k−1
i+1 − [aj,k−1

1 + (i + 1)
Lj,k−1

rj
] + (i + 1)

Lj,k−1 − Lj,k

rj
+ aj,k−1

1 − aj,k
1 +

Lj,k

rj

= f j,k−1
i+1 − (aj,k

1 + i
Lj,k

rj
)

< aj,k
i+1 − (aj,k

1 + i
Lj,k

rj
)

= f j,k
i − (aj,k

1 + i
Lj,k

rj
)

= ∆j,k
i

Hence (B.1) also holds in this case. This completes the proof of Lemma 14.

From the above proof, we observe that fori ≥ 2 andk ≥ 2, if aj,k
i > f j,k−1

i , we have

∆j,k
i = ∆j,k

i−1, (B.3)

otherwise,

∆j,k
i = ∆j,k−1

i + i
Lj,k−1 − Lj,k

rj
+ aj,k−1

1 − aj,k
1 +

Lj,k

rj
. (B.4)

Note also that∆j,k
i+1 − ∆j,k

i represents the queueing delay experienced by packetpj,k at

serveri + 1. The following lemma shows that as a packet goes through the servers in the

ideal reference system, the queueing delay it experiences at each individual server cannot

decrease.

197

Lemma 15 For i ≥ 1 andk ≥ 2,

∆j,k
i+1 −∆j,k

i ≥ ∆j,k
i −∆j,k

i−1. (B.5)

(Note that∆j,k
0 = 0.)

Proof: Proof by induction onk.

Basis(k = 1). Since∆j,1
i = 0, the inequality (B.5) holds trivially.

Inductive Step. Now suppose (B.5) holds fork − 1, k ≥ 2. We show it also holds fork.

∆j,k
i+1 −∆j,k

i = f j,k
i+1 − [aj,k

1 + (i + 1)
Lj,k

rj
]− [f j,k

i − (aj,k
1 + i

Lj,k

rj
)]

= f j,k
i+1 − f j,k

i − Lj,k

rj

= (max{aj,k
i+1, f

j,k−1
i+1 }+

Lj,k

rj
)− (max{aj,k

i , f j,k−1
i }+

Lj,k

rj
)− Lj,k

rj

= max{aj,k
i+1, f

j,k−1
i+1 } −max{aj,k

i , f j,k−1
i } − Lj,k

rj
.

We consider two cases.

CASE 1: aj,k
i > f j,k−1

i . Under this condition, we have

∆j,k
i+1 −∆j,k

i = max{aj,k
i+1, f

j,k−1
i+1 } − aj,k

i − Lj,k

rj

≥ aj,k
i+1 − aj,k

i − Lj,k

rj
.

Note that fori > 1,

aj,k
i = f j,k

i−1 = ∆j,k
i−1 + aj,k

1 + (i− 1)
Lj,k

rj
(B.6)

where as∆j,k
0 = 0, the last equality above also holds fori = 1.

On the other hand,

aj,k
i+1 = f j,k

i = ∆j,k
i + aj,k

1 + i
Lj,k

rj
(B.7)

198

From (B.6) and (B.7), we have

∆j,k
i+1 −∆j,k

i ≥ ∆j,k
i −∆j,k

i−1.

CASE 2: aj,k
i ≤ f j,k−1

i . Under this condition, we have

∆j,k
i+1 −∆j,k

i = max{aj,k
i+1, f

j,k−1
i+1 } − f j,k−1

i − Lj,k

rj

≥ f j,k−1
i+1 − f j,k−1

i − Lj,k

rj
.

Sincef j,k−1
i+1 = ∆j,k−1

i+1 + aj,k−1
1 + (i + 1)Lj,k−1

rj andf j,k−1
i = ∆j,k−1

i + aj,k−1
1 + iLj,k−1

rj , we
have

∆j,k
i+1 −∆j,k

i ≥ ∆j,k−1
i+1 −∆j,k−1

i +
Lj,k−1 − Lj,k

rj

≥ ∆j,k−1
i −∆j,k−1

i−1 +
Lj,k−1 − Lj,k

rj
(from inductive hypothesis)

= ∆j,k
i − (i

Lj,k−1 − Lj,k

rj
+ aj,k−1

1 − aj,k
1 +

Lj,k

rj
)−∆j,k−1

i−1 +
Lj,k−1 − Lj,k

rj
(from (B.4))

= ∆j,k
i − (∆j,k−1

i−1 + (i− 1)
Lj,k−1 − Lj,k

rj
+ aj,k−1

1 − aj,k
1 +

Lj,k

rj
)

≥ ∆j,k
i −∆j,k

i−1 (from Lemma 14)

A direct consequence of Lemma 15 is that if for somei, 1 ≤ i ≤ h, ∆j,k
i+1 = ∆j,k

i , then

∆j,k
i+1 = ∆j,k

i = ∆j,k
i−1 = · · · = ∆j,k

1 = ∆j,k
0 = 0. In other words, for any packetpj,k,

either∆j,k
i = 0 for i = 1, 2, . . . , h (i.e., no queueing delay is experienced by the packet);

or there existsi∗, 1 ≤ i∗ ≤ h, such that∆j,k
i = 0 for i = 1, . . . , i∗ − 1 and∆j,k

i > 0

for i = i∗, i∗ + 1, . . . , h (i.e., the packet starts experiencing queueing delay at serveri∗ and

onwards). Intuitively, the latter case happens because the packets preceding packetpj,k have

eventually accumulated enough delay at serveri∗ to affect packetpj,k (see Figure 4.4(b)).

Applying the above fact to Lemma 14, we see that Theorem 7 holds.

Another consequence of Lemma 15 is the following corollary.

Corollary 18 For anyp ≤ h andk = 1, 2, . . ., we have

∆j,k
p

p
≤ ∆j,k

h

h
. (B.8)

199

Proof: Note that fork = 1, since∆j,1
p = ∆j,1

h = 0, (B.8) holds trivially. Fork ≥ 2, let

δj,k
p = ∆j,k

p /p. Then∆j,k
p = pδj,k

p . From Lemma 15, it is easy to see that∆j,k
p −∆j,k

p−1 ≥ δj,k
p .

Furthermore, for anyi = p + 1, . . . , h, we have∆k
i −∆k

i−1 ≥ ∆j,k
p −∆j,k

p−1 ≥ δj,k
p . Hence

∆j,k
h =

h∑

i=p+1

(∆k
i −∆k

i−1) + ∆j,k
p ≥ (h− p)δj,k

p + pδj,k
p = hδj,k

p .

Therefore (B.8) also holds for anyk ≥ 2.

We now apply Theorem 7 to derive the following important corollary.

Corollary 19 For anyk ≥ 1, andi = 1, 2, . . . , h,

∆j,k
i + i

Lj,k

rj
≤ i

Lj,max

rj
. (B.9)

whereLj,max is the maximum packet size of flowj.

Proof: Since∆j,1
i = 0, the inequality (B.9) holds trivially. Suppose (B.9) holds for

1, 2, ..., k − 1, we show that it also holds fork. Note that if∆j,k
i = 0, then (B.9) holds

trivially. Now consider the case∆j,k
i > 0. From Theorem 7, we have

∆j,k
i + i

Lj,k

rj
= ∆j,k−1

i + i
Lj,k−1 − Lk

rj
+ aj,k−1

1 − ak
1 +

Lj,k

rj
+ i

Lj,k

rj

= ∆j,k−1
i + i

Lj,k−1

rj
+ aj,k−1

1 − ak
1 +

Lj,k

rj
. (B.10)

From (4.3) and the inductive hypothesis, we see that (B.9) also holds fork.

B.2 Virtual Shaping Lemma and Its Applications

An important consequence of the virtual spacing property of packet virtual time stamps

is the followingVirtual Shaping Lemma. Intuitively, it states that according to the virtual

time, the amount of flowj traffic arriving at serverj is “constrained” by its reserved rate

rj. This lemma is critical in designing delay-based core stateless scheduling algorithms that

200

can provide delay guaranteeswithout explicit rate control or reshaping within the network

core.

Lemma 16 (Virtual Shaping Lemma) Consider an arbitrary time interval[τ, t]. Let T̃ j

denote the set of the packets of flowj which virtually arrives during[τ, t], i.e.,k ∈ T̃ j if

and only ifτ ≤ ω̃j,k ≤ t. Let Ãj(τ, t) =
∑

k∈T̃ j Lk be the corresponding amount of traffic

of flowj arriving virtually between the time interval[τ, t]. Then

Ãj(τ, t) =
∑

k∈T̃ j

Lj,k ≤ rj(t− τ) + Lj,max

Proof: Let k0 be the smallest indexk of the packetspj,k in Ãj andk1 be the largest index

k of the packetspj,k in Ãj. Fromk = k1 down tok0, recursively applying the fact that

ω̃j,k ≥ ω̃j,k−1 + Lj,k

rj , we have

t ≥ ω̃j,k1 ≥ ω̃j,k1−1 +
Lj,k1

rj
≥ ω̃j,k0 +

∑k1
k=k0+1 Lj,k

rj
≥ τ +

∑k1
k=k0+1 Lj,k

rj
.

Hence,

Ãj(τ, t) =
∑

k∈T̃ j

Lj,k =
k1∑

k=k0+1

Lj,k + Lj,k0 ≤ rj(t− τ) + Lj,k0 ≤ rj(t− τ) + Lj,max.

Using the Virtual Shaping Lemma, we now prove that the VT-EDF scheduling algorithm

we designed in Section 4.5 has the minimum error termΨV T-EDF = L∗,max/C (see Theo-

rem 11).

Proof of Theorem 11: Fix an arbitrary packetpj,k from a flow j. We show that (4.34)

holds.

Consider the system busy period containing packetpj,k. Without loss of generality, assume

that the beginning of the system busy period starts at time0. Let τ be the last time before

the arrival of packetpj,k such that the schedulerstartsservicing a packet whose virtual

finish time is larger than that ofpj,k (i.e., ν̃j,k). If such a packet does not exist, setτ = 0,

the beginning of the busy period. Hence0 ≤ τ ≤ âj,k ≤ ω̃j,k.

201

Let t = ω̃j,k + dj − τ . Sinceω̃j,k ≥ âj,k ≥ τ anddj ≥ d1 ≥ 0, we have that

t = ω̃j,k + dj − τ ≥ d1 ≥ 0. (B.11)

For each flowm, m = 1, 2 . . . , N , let Sm denote the set of packets of flowm that are

serviced afterτ and but no later than packetpj,k (i.e., they are serviced during the time

interval(τ, f̂ j,k]). From the definition ofτ andSm, we see that for anypm,l ∈ Sm, âm,l ≥ τ

andν̃m,l ≤ ν̃j,k hold. Sinceω̃m,l ≥ âm,l, ν̃m,l = ω̃m,l + dm andν̃j,k = ω̃j,k + dj = t + τ ,

we have

τ ≤ ω̃m,l ≤ t + τ − dm. (B.12)

From (B.12), it is clear that ifdm > t = ω̃j,k + dj − τ , thenSm = ∅. Therefore for anym

such thatSm 6= ∅, we must havedm ≤ t. Applying the Virtual Shaping Lemma to flowm

over the time interval[τ, t− dm + τ], we have

∑

l∈Sm

Lm,l ≤ Lm,max + rm(t− dm).

Summing over allm and using the schedulability condition (4.33), we have

N∑

m=1

(
∑

l∈Sm

Lm,l)1{Sm 6=∅} ≤
N∑

m=1

[Lm,max + rm(t− dm)]1{t≥dm} ≤ Ct

Note that packetpj,k ∈ Sj. Hence packetpj,k must have departed the scheduler when all

the packets in∪N
m=1S

m have been serviced by the server. Furthermore, the packet which is

being serviced at timeτ (if it exists) has a size of at mostL∗,max. Therefore, we have

f̂ j,k ≤ τ +
L∗,max

C
+

∑N
m=1(

∑
l∈Sm Lm,l)1{Sm 6=∅}

C

≤ τ +
L∗,max

C
+ t = ω̃j,k + dj +

L∗,max

C
= ν̃j,k +

L∗,max

C
. (B.13)

For a rate-based schedulerS, an alternative form of the Virtual Shaping Lemma can be

established. Let̃ωj,k be the virtual time stamp associated withpj,k at the entry point ofS.

202

Define thevirtual eligibility time ẽj,k of packetpj,k to beẽj,k = ω̃j,k + δj,k. Then the virtual

finish time of packetpj,k is equal to

ν̃j,k = ω̃j,k + d̃j,k = ẽj,k +
Lj,k

rj
. (B.14)

Using a similar proof as in the proof of (4.15) in Theorem 8, we can show that

ẽj,k ≥ ν̃j,k−1. (B.15)

The intuitive meaning of̃ej,k can be interpreted as follows. Imagine that there were a

virtual rate controllerattached to the rate-based schedulerS. Packetpj,k arriving at the

virtual time ω̃j,k would be held at the virtual rate controller forδj,k amount of time and

released to the serverS at the virtual eligible timẽej,k = ω̃j,k + δj,k. The packet were then

to finish its service at the schedulerS by the virtual finish timẽνj,k. From (B.15), we see

that a packet were never released to be serviced at the schedulerS before its previous packet

had finished its service. Using this observation, we establish the following alternative form

of the Virtual Shaping Lemma — theVirtual Rate Control Lemma.

Lemma 17 (Virtual Rate Control Lemma) Consider an arbitrary time interval[τ, t]. We

say that packetpj,k of flow j is virtually eligible for service during[τ, t] if ẽj,k ≥ τ and

ν̃j,k = ẽj,k + Lj,k/rj ≤ t. Let S̃j denote the set of the packets of flowj which are virtually

eligible for service in[τ, t]. DefineW̃ j(τ, t) =
∑

k∈S̃j Lk. We refer toW̃ j(τ, t) as the

virtual eligible workof flowj over[τ, t). Then

W̃ j(τ, t) =
∑

k∈S̃j

Lj,k ≤ rj(t− τ). (B.16)

Proof: Let k0 be the smallest indexk of the packetspk in S̃j andk1 be the largest index

k of the packetspj,k in S̃j. Fromk = k1 down tok0, recursively applying the fact that

ẽj,k ≥ ν̃j,k−1 = ẽj,k−1 + Lj,k−1/rj, we have

t ≥ ν̃j,k1 = ẽj,k1 +
Lj,k1

rj
≥ ẽj,k0 +

∑k1
k=k0

Lj,k

rj
≥ τ +

∑
k∈S̃j Lj,k

rj
.

Hence (B.16) follows.

203

The Virtual Rate Control Lemma states that the amount of virtual eligible work of a flow

over any time interval is always limited by its reserved rate. This lemma enables us to de-

sign rate-based core stateless scheduling algorithms that can support rate guaranteeswith-

out using explicit rate control within the network core. One such an example is theC6SVC

scheduling algorithm we designed in Section 4.5. We now prove that it has the minimum

error termΨC 6SV C = L∗,max/C (see Theorem 9).

Proof of Theorem 9: Fix an arbitrary packetpj,k from any flowj. We show that (4.31)

holds.

Consider the system busy period containing packetpk
j . Without loss of generality, we

assume that the beginning of the system busy period starts at time 0. Letτ be the last time

before the arrival of packetpj,k such that the schedulerstarts servicing a packet whose

virtual finish time is larger than that ofpj,k. (In other words, no packet queued at timeτ

has a virtual finish time smaller thañνj,k.) If such a packet does not exist, setτ = 0, the

beginning of the busy period. Hence0 ≤ τ ≤ âj,k.

For each flowm, m = 1, 2 . . . , N , let Sm denote the set of packets of flowm that are

serviced by the scheduler afterτ but no later thanf̂ j,k, i.e., they are serviced during the

time interval(τ, f̂ j,k]. From the definition ofτ , we have that for anypm,l ∈ Sm, âm,l ≥ τ

and ν̃m,l ≤ ν̃j,k. Now applying the Virtual Rate Control Lemma to flowm over the time

interval[τ, ν̃j,k], we have

∑

l∈Sm

Lm,l ≤ W̃ j(τ, ν̃j,k) ≤ rm(ν̃j,k − τ).

Summing over allm and using the schedulability condition, we have

N∑

m=1

∑

l∈Sm

Lm,l ≤ (
N∑

m=1

rm)(ν̃j,k − τ) ≤ C(ν̃j,k − τ).

Note that packetpj,k ∈ Sj. Hence packetpj,k must have departed the scheduler when all

the packets in∪N
m=1S

m have been serviced by the server. Furthermore, the packet which is

being serviced at timeτ (if it exists) has a size of at mostL∗,max. Therefore,

f̂ j,k ≤ τ +
L∗,max

C
+

∑N
m=1

∑
l∈Sm Lm,l

C
≤ ν̃j,k +

L∗,max

C
.

204

Theorem 10 in Section 4.5 can also be proved using the Virtual Rate Control Lemma.

Proof of Theorem 10: We prove that a slottedC 6SVC scheduler has an error termΨslotted−C6SV C =

L∗,max/C + ι. To proceed, consider an arbitrary packetpj,k from a flowj.

Consider the system busy period containing packetpj,k. Suppose thatτp ≤ ν̃j,k < τp+1.

Without loss of generality, we assume that the system busy period starts at time0. Let τ

be the last time before the arrival of packetpj,k such that the scheduler starts servicing a

packet from a queueτp′ such asτp′ > τp. If such a packet does not exist, setτ = 0, the

beginning of the busy period. Hence0 ≤ τ ≤ âj,k. For each flowm, m = 1, 2 . . . , N , let

Sm denote the set of packets of flowm that are serviced afterτ and no later than packetpj,k

(i.e., they are serviced during the time interval(τ, f̂ j,k]). From the definition ofτ , we see

that for anypm,l ∈ Sm, ω̃m,l ≥ âm,l ≥ τ andν̃m,l < τp+1 = τp + ι. Applying the Virtual

Rate Control Lemma to flowm over the time interval[τ, τp + ι], we have

∑

l∈Sm

Lm,l ≤ W̃m(τ, τp + ι) ≤ rm(τp + ι− τ).

Summing over allm and using the schedulability condition, we have

N∑

m=1

∑

l∈Sm

Lm,l ≤ (
N∑

m=1

rm)(τp + ι− τ) ≤ C(τp + ι− τ).

Note that packetpj,k ∈ Sj. Hence packetpj,k must depart the scheduler after all the

packets in∪N
m=1S

m have been serviced by the server. Furthermore, the packet which is

being serviced at timeτ (if it exists) has a size of at mostL∗,max. Therefore,

f̂ j,k ≤ τ +
L∗,max

C
+

∑N
m=1

∑
l∈Sm Lm,l

C
≤ τp + ι +

L∗,max

C
≤ ν̃j,k + ι +

L∗,max

C
.

B.3 An Alternative Definition of Latency-Rate Servers

In this appendix, we show that the alternative definition of latency-rate servers is indeed

equivalent to the one given in [70, 72].

205

Proof of Lemma 8: Consider theqth burst period of flowj. Let pj,1, pj,2, . . . , pj,m denote

the first, the second, ..., and the last packet of flowj arriving during this burst period. Let

âj,1, âj,2, . . . , âj,m and f̂ j,1, f̂ j,2, . . . , f̂ j,m denote the actual arrival and departure times of

these packets. By the definition of latency-rate server, we have that for anyt, âj,1 ≤ t ≤
f̂ j,m,

W j,q(âj,1, t) ≥ rj(t− âj,1 −Θj). (B.17)

Fork = 1, 2, . . . , m, let νj,k be given in (4.37). We show that (B.17) is equivalent to

f̂ j,k ≤ νj,k + Θj − Lj,k

rj
. (B.18)

We first show that (B.17) implies (B.18). For anyk = 1, 2 . . . , m, let t = f̂ j,k − ε, where

0 < ε < f̂ j,k − f̂ j,k−1. Since by timet, the scheduler has not finished servicing packetpj,k

yet, we have

W j,q(âj,1, t) = W j,q(âj,1, f̂ j,k−1) =
k−1∑

l=1

Lj,l.

From (B.17), we have

k−1∑

l=1

Lj,l ≥ rj(t− âj,1 −Θj). (B.19)

On the other hand,νj,k−1 − âj,1 =
∑j,k−1

l=1
Lj,l

rj . Therefore

t ≤ νj,k−1 + Θj ≤ νj,k − Lj,k

rj
+ Θj.

Letting ε → 0 yields (B.18).

We now show that (B.18) implies (B.17). For anyt, f̂ j,k−1 ≤ t < f̂ j,k, we have

W j,q(âj,1, t) ≥ W j,q(âj,1, f̂ j,k)− Lj,k

=
k∑

l=1

Lj,l − Lj,k

206

= rj(νj,k − âj,1)− Lj,k

≥ rj(f̂ j,k +
Lj,k

rj
−Θj − âj,1)− Lj,k

= rj(f̂ j,k − âj,1 −Θj) ≥ rj(t− âj,1 −Θj).

This completes the proof of Lemma 8.

207

Appendix C

Proofs Related to Chapter 6

C.1 Proofs of Theorem 14 and 15

We first establish Theorem 14.

Proof Theorem 14: Consider an arbitrary timet, wheret ≥ t∗. Denote the queue size at

the edge conditioner att asQ(t). Clearly if at some point during the time interval(t∗, t] the

queue becomes empty, then the queueing delay of any packets of the current macroflow is

bounded bydα′
edge. This is because the lingering effect of the old queue at timet∗, Q(t∗),

vanishes whenever the queue becomes empty aftert∗.

Now suppose that during the time interval(t∗, t] the queue never becomes empty. Then the

queue size at the timet satisfies

Q(t) ≤ Q(t∗) + Aα′(t∗, t)− rnew(t− t∗), (C.1)

wherernew is the reserved bandwidth for the new macroflow at timet∗, which includes the

contingency bandwidth,∆rν . Rewrite the above equation as follows,

Q(t) ≤ Q(t∗) + Aα′(t∗, t)− rnew(t− t∗)

= Q(t∗) + Aα(t∗, t) + Aν(t∗, t)− (rα(t− t∗) + rν(t− t∗) + ∆rν(t− t∗))

= Q(t∗) + Aα(t∗, t)− rα(t− t∗) + Aν(t∗, t)− (rν(t− t∗) + ∆rν(t− t∗))

≤ Q(t∗) + Aα(t∗, t)− rα(t− t∗) + P ν(t− t∗)− (rν(t− t∗) + ∆rν(t− t∗))(C.2)

= Q(t∗) + Aα(t∗, t)− rα(t− t∗) + (P ν − rν −∆rν)(t− t∗) (C.3)

208

In (C.2), we used the fact thatAα(t∗, t) ≤ Lν,max + P ν(t − t∗). For ease of exposition,

we omitted the termLν,max in the subsequent derivation. The effect of this term can be

taken into account by accommodating it into the end-to-end formula (i.e., usingD′ =

Dα,req − Lν,max instead ofDα,req in the right hand side of (6.24)).

From (C.3), we see that ifP ν − rν − ∆rν ≤ 0, Q(t) is bounded by the maximum queue

size in the old system. In other words, the edge queueing delay is bounded bydold
edge.

Note that the rate to clear the old queue is at least∆rν . Hence by timet∗+ Q(t∗)
∆rν , the linger-

ing effect of the old queue vanishes. After that time, the edge queueing delay is bounded

by that in the new system, namely,dα′
edge. This completes the proof of Theorem 14.

Now we consider Theorem 15. Note that by having a contigency bandwidth∆rν ≥ rν ,

the new system is serviced with a rate at least equal to the service rate in the old system.

Therefore, the queueing delay is bounded by the maximum queueing delay in the old sys-

tem before the lingering effect of the old queue vanishes. As∆rν ≥ rν , it is easy to see that

the lingering effect of the old queue will vanish aftert∗ + Q(t∗)
∆rν . Theorem 15 then follows

easily.

C.2 Proof of Theorem 16

Suppose that at timeτ ∗ the reserved rate of the macroflowα is adjusted at the edge shaper

from r to r′. Let pk∗ be the last packet that leaves the edge conditioner before the rate

change atτ ∗, andpk∗+1 be the first packet that leaves the edge conditioner after the rate

change atτ ∗.

To establish the virtual spacing and reality check properties for the macroflow after the rate

change atτ ∗, we first prove they hold for packetpk∗+1. That is, the following two equations

hold for i = 1, 2, . . . , h, whereh is the length of pathP:

ω̃k∗+1
i − ω̃k∗

i ≥ Lk∗+1/r′, (C.4)

and

âk∗+1
i ≤ ω̃k∗+1

i . (C.5)

209

From the definitions of̃ωk∗+1
i , andω̃k∗

i , we have

ω̃k∗+1
i = âk∗+1

1 + i(δk∗+1 +
Lk∗+1

r′
) + Di−1

tot

and

ω̃k∗
i = âk∗

1 + i(δk∗ +
Lk∗

r
) + Di−1

tot ,

whereDi−1
tot =

∑i−1
j=1(Ψj + πj).

Therefore, to establish (C.4) we only need to show

âk∗+1
1 + i(δk∗+1 +

Lk∗+1

r′
) ≥ âk∗

1 + i(δk∗ +
Lk∗

r
) +

Lk∗+1

r′
.

Or, equivalently,

δk∗+1 ≥ δk∗ +
Lk∗

r
− Lk∗+1

r′
+

âk∗
1 − âk∗+1

1 + Lk∗+1

r′

i

On the other hand, we have

δk∗+1 =
∆k∗+1

h
≥ ∆k∗

h
+

Lk∗

r
− Lk∗+1

r′
+

âk∗
1 − âk∗+1

1 + Lk∗+1

r′

h
.

Sincei ≤ h, we see that (C.4) holds.

Now we show that (C.5) also holds. Wheni = 1, (C.5) follows trivially from the definition.

For i ≥ 2, we have

âk∗+1
i = f̂k∗+1

i−1 + πi−1 ≤ ν̃k∗+1
i−1 + Ψi−1 + πi−1 = ω̃k∗+1

i . (C.6)

For packetpk, k = k∗ + 2, k∗ + 3, . . ., the proof is similar to that of Theorem 2 in [86] and

we omit it here.

Now we prove the upper bound (6.23) on the delay a packet experiences inside a network

core after timeτ ∗. Note that if a packet does not catch up with any packet that is injected

into the network core beforeτ ∗, then the delay it experiences is bounded byhLP,max

r′ +DPtot.

Otherwise, it is bounded byhLP,max

r
+DPtot. Combining these two cases, we obtain the delay

bound (6.23).

210

Appendix D

Proofs Related to Chapter 8

D.1 E(W) of the static bandwidth provisioning with penalty

From (8.4) and (8.5), it is easy to see that

E[W] =
∑

r∈R

erρ̄r −
∑

l∈L

Φl(cl)−
∑

r′∈R

∫
·
∫

{ρr}
πr′ρr′Br′({ρr})d{ρr}. (D.1)

Moreover,

∑

r′∈R

∫
·
∫

{ρr}
πr′ρr′Br′({ρr})d{ρr} ≤

∑

r′∈R

∫
·
∫ {ρ̂r}

{0}
πr′ρr′Br′({ρr})d{ρr}

+
∑

r′∈R

∑

r′′∈R,r′′ 6=r′

∫ ∞
ρ̂r′′

(
∫
·
∫ {∞}
{0}R−r′′

)πr′ρr′Br′({ρr})d{ρr}

+
∑

r′∈R

∫ ∞
ρ̂r′

(
∫
·
∫ {∞}
{0}R−r′

)πr′ρr′Br′({ρr})d{ρr}. (D.2)

As Br′({ρr}) ≤ Br′({ρ̂r}) whenρr ≤ ρ̂r, ∀r,

∫
·
∫ {ρ̂r}

{0}
πr′ρr′Br′({ρr})d{ρr} ≤

∫
·
∫ {ρ̂r}

{0}
πr′ρr′Br′({ρ̂r})d{ρr} ≤ πr′Br′({ρ̂r})ρ̄r′ .(D.3)

NoticeBr′({ρr}) ≤ 1 and the definition ofδ, we have (noter′′ 6= r′)

∫ ∞
ρ̂r′′

(
∫
·
∫ {∞}
{0}R−r′′

)πr′ρr′Br′({ρr})d{ρr} ≤
∫ ∞

ρ̂r′′
(
∫ ∞
0

πr′ρr′dρr′)dρr′′ ≤ πr′δ
ρ̄r′

ρ̂r′′
. (D.4)

211

Similarly,

∫ ∞
ρ̂r′

(
∫
·
∫ {∞}
{0}R−r′

)πr′ρr′Br′({ρr})d{ρr} ≤
∫ ∞

ρ̂r′
πr′ρr′dρr′ ≤ πr′δ. (D.5)

Substitute (D.3), (D.4), and (D.5) into (D.2), and then recursively into (D.1), we have

E(W) ≥
∑

r∈R

erρ̄r −
∑

l∈L

Φ(cl)−
∑

r∈R

πrρ̄rBr({ρ̂r})−
∑

r∈R

πrδ(1 +
∑

r′∈R,r′ 6=r

ρ̄r

ρ̂r′
). (D.6)

D.2 Approximate Model of the Dynamic bandwidth Provisioning

The exact solution to the approximate model (8.17) is still difficult to solve. As in the case

of the static bandwidth provisioning problem, we will derive a lower bound onE[W̃], and

solve the dynamic bandwidth provisioning problem with respect to the lower bound.

For simplicity of exposition, we consider the special case where the bandwidth cost func-

tions are linear, i.e., for anyl ∈ L, Φl(cl) = φlcl andΦ′l(∆cl) = φ′l∆cl, whereφl ≤ φ′l for

any l. The analysis of this subsection can be extended to the more general bandwidth cost

functions.

Observe that

∫
·
∫

Φ′l(∆cl)d{ρr} = φ′l
∫
·
∫

∆cld{ρr} = φ′l
∫
·
∫

{ρl≥ηlcl}
(
ρl

ηl
− cl)d{ρr}

= φ′l
∫
·
∫

{ρl≥ηlcl}
ρl

ηl
d{ρr} − φ′lclPr{ρl ≥ ηlcl}. (D.7)

Since

∫
·
∫

{ρl≥ηlcl}
ρl

ηl
d{ρr} =

∫
·
∫

{ρl≥ηlcl}

∑
l∈r ρr

ηl
d{ρr} ≤

∫
·
∫ ∑

l∈r ρr

ηl
d{ρr} =

∑
l∈r ρ̄r

ηl
,(D.8)

we have

E[W̃] ≥
∑
r

erρ̄r −
∑

l

φlcl −
∑

l

φ′l

∑
l∈r ρ̄r

ηl
+

∑

l

φ′lclPr{ρl ≥ ηlcl}. (D.9)

Denote the right-hand side of (D.9) bỹU . Given this lower bound̃U on E[W̃], we can

use the solution to the following optimization problem as an approximation to the original

212

optimization problem (8.17):

max
{cl}

Ũ . (D.10)

The necessary condition on the optimal solution{c∗l } to (D.10) is that the gradient of̃U

with respect to{cl} vanishes at{c∗l }, i.e.,∇Ũ = 0. Note that for anyl ∈ L,

∂Ũ

∂cl

= −φl + φ′l
∂

∂cl

{clPr{ρl ≥ ηlcl}}

= −φl + φ′l

{
Pr{ρl ≥ ηlcl}+ cl

∂

∂cl

{Pr{ρl ≥ ηlcl}}
}

= −φl + φ′l {Pr{ρl ≥ ηlcl} − ηlcld{ρl = ηlcl}} (D.11)

where the last inequality follows from the fact that for a cumulative distribution function

F (x) with the probability density functionf(x), i.e.,F (x) =
∫ x
−∞ f(u)du, dF (x)

dx
= f(x).

Hence we have the following necessary condition on the optimal solution{c∗l }

φl = φ′l(Pr{ρl ≥ ηlc
∗
l } − ηlc

∗
l d{ρl = ηlc

∗
l }), (D.12)

for everyl ∈ L. The equations (D.12) may be difficult to solve in practice. In the following

we derive an upper bound onc∗l , which has a nice intuitive interpretation and leads to a

simple guideline for choosing the value for the statically reserved bandwidth on each link.

Let c′l be such thatPr{ρl > ηlc
′
l} = φl/φ

′
l. Then

Pr{ρl ≥ ηlc
∗
l } ≥ Pr{ρl ≥ ηlc

∗
l }−ηlc

∗
l d{ρl = ηlc

∗
l } = φl/φ

′
l = Pr{ρl > ηlc

′
l}.(D.13)

As Pr{ρl > ηlcl} is a decreasing function ofcl, we have

c∗l ≤ c′l. (D.14)

213

