UNIVERSITY OF MINNESOTA

This is to certify that | have examined this bound copy of a doctoral thesis by

Zhenhai Duan

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final
examining committee have been made.

Zhi-Li Zhang and David Hung-Chang Du
Name of Faculty Advisers

Signature of Faculty Advisers

Date

GRADUATE SCHOOL

On Scalable Support of Quality of Services in the Internet

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL
OF THE UNIVERSITY OF MINNESOTA
BY

Zhenhai Duan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Zhi-Li Zhang and David Hung-Chang Du
Faculty Advisers

June 2003

(© Zhenhai Duan June 2003

This work was supported in part by the National Science Foundation under the grants ANI-
0073819, ITR-0085824, and CAREER Award NCR-9734428. Any opinions, findings, and
conclusions or recommendations expressed in this dissertation are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

To My Parents

Abstract

The Internet currently supports a best-effort connectivity service. There has been an in-
creasing demand for the Internet to support a certain degree of quality of service (QoS)
to meet various service requirements from different networking applications and to better
utilize the networking resources. However, supporting QoS in the Internet has also raised
great concerns about the scalability of any QoS solution; therefore, the QoS deployment on
the Internet has been hindered.

This dissertation addresses the scalability issues in supporting QoS from two complemen-
tary aspects, namely the packet forwarding data plane and the network resource manage-
ment control plane. On the packet forwarding data plane, a virtual time framework is
proposed as a unifying packet scheduling framework to proseaéablesupport for guar-
anteed services in the Internet. In this framework, Internet core routers do not need to
maintain any per-flow state and do not perform any per-flow operations. Consequently,
they are able to handle a large number of simultaneous flows. The key notion in the vir-
tual time framework is asirtual timestamp which is initialized at network edge routers

and referred and/or updated by network core routers, depending on the service granularity
supported by the network. Several neare statelespacket scheduling algorithms are de-
signed and analyzed to illustrate how both aggregate and per-flow service guarantees can
be supported within this same framework. This is critical for the Internet to continue its
evolution. Moreover, we investigate the cost-performance trade-offs in supporting QoS in
the Internet by studying the QoS provisioning power of these packet scheduling algorithms.

On the network resource management control plane, two scalable bandwidth broker ar-
chitectures are designed and investigated. The first one is a centralized bandwidth broker
architecture, which is built upon the core stateless packet scheduling algorithms we de-
signed. By conducting admission controls on a per-path basis instead of on a “hop-by-hop”
basis, this bandwidth broker architecture significantly reduces the complexity of the admis-
sion control algorithm; therefore, it improves the scalability of existing bandwidth broker
architectures. To further improve its scalability, a hierarchical bandwidth broker architec-
ture is designed. In this architecture, multiple edge bandwidth brokers are deployed in a
network, along with the conventional centralized bandwidth broker. Edge bandwidth bro-
kers handle the flow admission control and resource management functionalities for certain
pre-defined paths. They interact with the centralized bandwidth broker for allocating and
de-allocating trunk bandwidth along the paths. In this way, the centralized bandwidth bro-
ker only needs to handle coarser time scale trunk bandwidth requests from edge bandwidth

brokers. Consequently, its scalability is greatly improved.

Finally, to provide real end-to-end QoS support and to facilitate the creation and deploy-
ment ofvalue-added servicesuch as VoIP, Video-on-Demand, and other emerging QoS-
sensitive services over the Internet, an architecture calledséhéce overlay network
(SON) is proposed. Special servers, called service gateways, are deployed at certain strate-
gically selected locations over the Internet to aid the data forwarding and resource manage-
ment. The bandwidth provisioning problem for a service overlay network is mathematically
formulated and investigated, taking into account various factors such as SLA, QoS, traffic
demand distributions, and bandwidth costs. Analytical models and approximate solutions
are developed for both static and dynamic bandwidth provisioning, which provide useful
guidelines on how a SON should be provisioned to stay profitable.

Acknowledgments

| am very grateful to Professor Zhi-Li Zhang, who is my academic advisor. He has given
me tremendous help during my graduate years at the University of Minnesota. | benefited
greatly from the countless discussions with him about my research. Moreover, he is also a
role model for how to be a critical thinker and an active researcher. | would like to thank
him for his guidance, support, and encouragement.

| am also grateful to Professor David Hung-Chang Du, who is my academic co-advisor.
His sagacious perception and critical insights in research have pushed me to think deeper
and refine my dissertation work. | also want to thank Professor Andrew Odlyzko for taking
his precious time to read through this dissertation and provide valuable feedback. | would
like to thank Professor Yongdae Kim for serving on my final doctoral oral examination
committee. | would also like to take this opportunity to thank Professor Michael Taaffe
and Professor Ravi Janardan for serving on the committee for my preliminary doctoral oral
examination.

Dr. Mooi Choo Chuah provided me with an internship opportunity at Bell-Labs during
the Summer of 1998; Dr. Yiwei Thomas Hou provided me with internship opportunities at
Fujitsu Labs of America during the Summer of 2000 and the Spring and Summer of 2001. |
would like to thank them for providing me with these valuable opportunities that broadened
my vision of research, and that will certainly continue to benefit me later in my research
career.

The other members of the network group at the University of Minnesota have made my
graduate life more joyous and easier. | treasure the joyful time we spent at the group
get-together parties, lunches, and the other activities, and the “stressful” time we spent
on discussing research projects. | want to especially thank James Beyer, Jaideep Chan-
drashekar, Baek-Young Choi, Changho Choi, Yingfei Dong, Dingshan He, Jeffrey Krasky,
Ewa Kusmierek, Sanghwan Lee, Hyeran Lim, Yingping Lu, Wei-hsiu Ma (he was also my
host when | first arrived in the USA), Srihari Nelakuditi, Kuai Xu, and Xu Zhang. James
was the person that | ran to whenever | had some English grammar or general English
writing problems. Over the years, he has also proofread many of my papers. | am deeply
grateful to him.

Many friends at the University of Minnesota have helped me over the years. Without their
generous help and care, my graduate life would not have been so colorful and easy. | want to
take this opportunity to especially thank the following friends: Xiuzhen Cheng, Hua Dong,

iv

Peiquan Li, Xiaojia Mary Li, Zining Li, Jian Liu, Kate Martin, Lu Ruan, Shuangyi Tang,
Feng Wang, Hongyi Wang, and Xiaoyu Wu. Many other friends across the USA, Canada,
and China have helped me and my parents, and encouraged me during my graduate years;
| would especially like to thank Dongbo Bu, Chunmeng Cao, Lih-Yiu Chiou, Ji Fang,
Ping Liu, Dewei Ma, Hong Wang, Rongxiang Wang, Wenging Yuan, Jun Zhang, and Xiao
Zhong.

| am deeply grateful to my parents, brother, and sisters for their unconditional love, long-
standing support, and meticulous care. They have sacrificed greatly to support me in the
pursuit of my dream. Without their love, support, and self-sacrifice, | would not have been
able to reach this stage of my career.

Contents

Chapter 1 Overview 1
1.1 Introduction and Motivation 1
1.2 Contributions 4
1.2.1 Scalable Packet Forwarding Date Plane 4
1.2.2 Scalable Network Resource Management Control Plane 4
1.2.3 Service Overlay Networks 5
1.3 Organization. e e 5
| Scalable Packet Forwarding Data Plane 7
Chapter 2 Background and Overview 8
2.1 Background 8
2.2 \Virtual Time Framework 10
221 PacketState 11
2.2.2 Edge Router Mechanism 11
2.2.3 Core Router Mechanism 11
13

Chapter 3 Supporting Aggregate Guaranteed Delay Services

Vi

3.1 Introduction e 13

3.2 Network Model and Assumptions 14
3.3 Network of FIFO Schedulers 17
3.4 Network of Static Earliest Time First Schedulers 20

3.4.1 SETF with Finest Time Granularity: SETFO) 22

3.4.1.1 Network Utilization and Edge-to-Edge Delay Bounds . . 22

3.4.1.2 Time Stamp Encoding and Performance Trade-offs . .. 24
3.4.2 SETF with Coarser Time Granularity: SETF(. 25
3.4.2.1 Time Stamp Encoding and Performance Trade-offs . . . 28
3.5 Network of Dynamic Earliest Time First Schedulers 31
3.5.1 Performance Bounds for a Network of DETF Schedulers 32
3.5.2 PacketState Encoding L. 35
3.5.3 Performance Trade-offs and Provisioning Power 37
3.6 Summary e e e e e 40
Chapter 4 Supporting Per-Flow Guaranteed Services 41
4.1 IntroducCtion 41
4.2 Virtual Time Reference System: Basic Architecture 43
4.3 Anldeal Per-flow Virtual Time Reference System 47
4.3.1 End-to-end Delay of the Ideal Per-flow System 48
4.3.2 Packet Virtual Time Stamps and Ideal Per-flow System 52
4.4 Virtual Time Reference System and Packet Scheduling 56
4.4.1 Scheduling Blackbox: Per-Hop Behavior 57
4.4.2 Virtual Time Reference System and End-to-End Delay Bounds . . . 58

Vii

4.5 Core Stateless Scheduling Algorithms: Examples

45.1 Rate-Based Core Stateless Scheduling Algorithms

4.5.1.1 Core Stateless Virtual Clock Scheduling Algorithm

4.5.1.2 Core-Jitter Virtual Clock Scheduling Algorithm . . .
4.5.1.3 Approximation to Core Stateless Virtual Clock . . .
4.5.2 Delay-Based Core Stateless Scheduling Algorithms
4.5.2.1 Virtual Time Earliest Deadline First Algorithm
4.5.2.2 Calendar Queue Approximationto VT-EDF
4.5.3 Virtual Time Rate Control and Delay-Based Schedulers
4.6 Static Scheduling Algorithms with Resource Pre-configuration
46.1 FIFO e
4.6.2 Static WFQ with Pre-Configured Rates
4.6.3 Static Priority with Pre-Configured Rates
4.7 Latency-Rate Servers and the Virtual Time Reference System
4.8 DISCUSSIONS o i
4.8.1 Implementationissues
4.8.2 QoS Provisioning and Admission Control

4.9 SUMMAIY o e e e e e

Il Scalable Network Resource Management Control Plane
Chapter 5 Background and Overview

Chapter 6 A Centralized Bandwidth Broker Architecture

viii

79

82

6.1 Introduction 82

6.2 Bandwidth Broker Architecture Overview 84
6.3 Admission Control for Per-Flow Guaranteed Services 89
6.3.1 Path with Only Rate-based Schedulers 89
6.3.2 Path with Mixed Rate- and Delay-based Schedulers 90
6.4 Admission Control with Dynamic Flow Aggregation 96
6.4.1 Impact of Dynamic Flow Aggregation on End-to-End Delay 97
6.4.2 End-to-End Delay Bounds under Dynamic Flow Aggregation . . . 100
6.4.2.1 Contingency Bandwidth and Edge Delay Bound 101
6.4.2.2 Extensionto VTRS and Core Delay Bound 103
6.4.3 Admission Control with Dynamic Flow Aggregation 104
6.5 Simulation Investigation L L o o 106
6.6 Summary e e e 110
Chapter 7 A Hierarchical Bandwidth Broker Architecture 112
7.1 Introduction 112
7.2 Bandwidth Broker Architecture: Basic Model and Scaling Issues 113
7.2.1 The Basic Bandwidth Broker Model 114
7.2.2 Scalinglssues. e 116
7.3 Single Bandwidth BrokerDesign 118
7.3.1 TheBasicPoQScheme. 118
7.3.2 Complexity and Performance 122
7.3.3 Simulation Investigation 123
7.4 Multiple Bandwidth BrokerDesign. 128

iX

7.4.1 The MBB Architecture and the Lossy-Path PoQ scheme 129

7.4.2 Simulation Investigation 131
7.5 Improvements on the Performance of the PoQ Scheme 132
7.5.1 PoQwithHysteresis 132
7.5.2 PoQ with Variable QuotaSize 137
7.5.3 PoQ with Differentiated Flow Treatments 139
7.6 SUMMArY e e e e 140
[l Service Overlay Networks 142
Chapter 8 Bandwidth Provisioning for Service Overlay Networks 143
8.1 Introduction 143
8.2 Assumptions and Bandwidth Provisioning Problems 146
8.21 SONandServiceQoS 146
8.2.2 Bandwidth ProvisioningModes, 147
8.2.3 Traffic Demand, Service Revenue and Bandwidth Cost 148
8.3 Basic Static Bandwidth ProvisioningModel 149
8.4 Static Bandwidth Provisioning with Penalty 150
8.41 M/G/oco Traffic DemandModel 154
8.4.1.1 NumericalExamples 156
8.4.2 Measurement-Based Traffic Demand Model 158
8.4.3 Performance Evaluation 160
8.5 Dynamic Bandwidth Provisioning 162
8.5.1 Approximate Model o 163

8.5.1.1 Numerical Examples 164

8.5.2 Adaptive Online Bandwidth Provisioning Algorithm 166
8.6 Summary 169
IV Conclusions and Future Work 170
Chapter 9 Conclusions and Future Work 171
9.1 Conclusions 171
9.2 FutureWork e 173
9.2.1 Packet ForwardingDataPlane 173
9.2.2 Network Resource Management Control Plane 173
9.2.3 Service Overlay Networks 174
9.2.4 Inter-DomainInternetRouting 174
V Appendices 183
Appendix A Proofs Related to Chapter 3 184
A.1 Proofs Related to Networks of Static Earliest Time First Schedulers 184
A.2 Proofs Related to A Network of DETF(0,1) schedulers 188
A.3 Proofs Related to A Network of DETF(1) Schedulers 189
A.4 Proofs Related to A Network of DETF(A*) Schedulers 189
Appendix B Proofs Related to Chapter 4 195
B.1 Proofof Theorem?7 e 195
200

B.2 Virtual Shaping Lemma and Its Applications

Xi

B.3 An Alternative Definition of Latency-Rate Servers. 205

Appendix C Proofs Related to Chapter 6 208
C.1 Proofsof Theorem14and15 208
C.2 Proofof Theorem16 i 209

Appendix D Proofs Related to Chapter 8 211
D.1 E(W) of the static bandwidth provisioning with penalty 211
D.2 Approximate Model of the Dynamic bandwidth Provisioning 212

Xii

List of Figures

1.1 ThelP hour-glassmodel. 2
1.2 Cost-performance trade-offs in supportingQoS. 2
2.1 lllustration of Virtual Time Framework. 11
3.1 Thenetworkmodel. 15
3.2 Packet’s arrival time at and departure time from each scheduler. 15
3.3 Time slots and packettime stamps. 22
3.4 lllustration of the different behaviors of FIFO and SETF(0).. 22
3.5 Performance comparison: SETF(O)vs. FIFO. 24
3.6 No. of bits needed for encoding for SETF(0). 24
3.7 Performance comparison: SETFvs. FIFO. 29
3.8 No. of bits needed for encoding for SETWl(. 29
3.9 No. of bits for encoding, network diameter, and maximum allowable net-

work utilization. L 30
3.10 Updating packet time stamps inside the networkcore. 30
3.11 Edge-to-edge delay bound comparisBri 8). 37

3.12 Provisioning power of FIFO, SETF(, DETF(, 1), and DETF(, 2) net-

WOTKS (H* = 8). . . . o o o e e e e 37

3.13 Design and performance trade-offs for DEITA() networks * =8). . . 39

3.14 Design and performance trade-offs for DEITA() networks * = 12). . . 39

4.1 Edge conditioning in the virtual time reference system. 44
4.2 lllustration of the virtual time reference system. 46
4.3 Anideal perflowsystem. 48
4.4 Delay experienced by packets at a server in the ideal per-flow system. . . . 52
4.5 Aflowtraversesanetworkcore. 57
4.6 Virtual time reference system: per-hop behavior and operations. 61

6.1 lllustration of a bandwidth broker (BB) and its operation in a VTRS net-
workdomain. L 86

6.2 The behavior of feasible ran@&;,, and delay constraint rangey;, at the
mth iteration in the search of feasible rate-delay parameterpaid”) for
anewflowv. 94

6.3 Admission test for a new flowon a path with mixed rate- and delay-based
schedulers. 95

6.4 Class-based guaranteed services: dynamic flow aggregation along a path. . 96

6.5 An example illustrating the edge delay bound violation when a new mi-
croflowjoins. 98

6.6 An example illustrating the edge delay bound violation when a constituent

microflow leaves. 99
6.7 The network topology used in the simulations. 106
6.8 Meanreserved bandwidth. 109
6.9 Flowblockingrates.. 109
7.1 lllustration of a bandwidth broker. 114

Xiv

7.2 Notationused inthealgorithm. 118

7.3 Pathlevel admissioncontrol. L. 119
7.4 Link level bandwidth/quota allocation. 121

7.5 Scheme for handling flow departure. 121
7.6 Topology used inthe simulations. 123

7.7 Proportion of flows accepted in critical mode
(C=5400). . . . 125

7.8 Expected link level QoS update/accepted flow (C=5400). 125
7.9 Expected cost of link QoS state updates as the network capacity increases. . 127

7.10 Proportion of flows accepted in critical mode as the number of paths in-
creases (C=5400,a=0.95). 0. 128

7.11 Multiple bandwidth brokers on the control plane for a network domain. . . 130

7.12 Flow blocking rates of the non-lossy-path
and lossy-path models (C=5400). 130

7.13 Quotas allocated to a path is proportional to the traffic load distributed on
the path (C=5400,a=0.95)., 130

7.14 Quota state transition rate (C =3600,a=0.9,quota=30). 132

7.15 Effects of hysteresis on flow blocking rates
(C=3600, hysteresis=0.05)., 134

7.16 Flow blocking rates with different hysteresis thresholds (C = 3600, a =
0.95,quota=60). 134

7.17 Effects of variable quota size on flow blocking rates (C = 3606,0.9). . 138

7.18 Flow blocking rate with different flow treatment (C=3000). 138
8.1 Anillustration of a service overlay network. 145
8.2 Trafficdemands. 145

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

9.1

Relationship betweef, e, & ¢;. oL oo 156

ComparisonoV andE(W). oo v 156
Impactof onV ande*. 157
Impact of unit bandwidth priceati. 157
Traffic demands of the Auckland datatrace. 158
Histogram of the Auckland data trace’s trafficdemands. 158
Relationship betweeq, ¢, & ¢, for Day-time traffic 159
SONtopologies. 159
Effects ofp, onc,andE(W). o oo it 165
Dynamiovs. static bandwidth provisioning. 165

Dynamic bandwidth provisioning with approximate model and online model.167

Cost-performance trade-offs in supporting QoS in the Internet 172

XVi

List of Tables

4.1

4.2

6.1

6.2

7.1

7.2

7.3

7.4

8.1

8.2

8.3

8.4

Notationused inVTRS. 49
Error terms of latency-rat€R) servers. 74
Traffic profiles used in the simulations 106
Comparison of IntServ/GS, per-flow BB/VTRS and aggregate BB/VTRS
schemes. e 108
Call admission and quota allocations (C=5400). 123
Effects of hysteresis on quota allocations and deallocations (C = 3600, hys-
teresis=0.05) 135
Effects of different hystereses on quota allocations and deallocations (C =
3600,a=0.95,quota=60) 136
Effects of the variable quota size scheme on quota allocations and de-
allocations (C=3600,=0.9)., 138
Provisioning for the Auckland trafficdemands. 159
Tree Topology. e 161
Mesh-Tree Topology. e 162
Per-unittime average revenue. e 168

XVii

Chapter 1

Overview

1.1 Introduction and Motivation

The Internet has been enjoying great success in the last ten years or so. In many aspects it
grows at a rate of approximately 100 percent each year, for example, the number of hosts
connected to the Internet and the volume of traffic carried by the Internet [15]. The un-
precedented success of the Internet is largely due to its simple, “hour-glass” IP network
protocol architecture (see Figure 1.1). In this architecture, the minimalist IP network pro-
tocol operates over a multitude of data link layer technologies and relegates sophisticated
control to higher layer protocols operating at end systems [10].

Such athin-waistIP network architecture enables Internet routers tsthéeless Routers

only maintain certain highly aggregate routing information. They do not maintain any other
forwarding state information. In particular, they do not maintain any per-flow state and do
not perform any per-flow operations. The stateless property of the Internet architecture
has some important implications for its performance. For example, the current Internet
architecture is bottscalable and robust Because routers do not need to maintain any
per-flow state and do not perform any per-flow operations, the operational complexity of
Internet routers does not increase linearly with the number of flows present at the routers.
Consequently, Internet routers are able to handle a large number of simultaneous flows. In
this sense, we say the Internet architecture is scalable. Secondly, because routers do not
maintain any per-flow state, after a link or router failure, packets of the flows being affected
by the failure can bautomaticallyrouted around the failure point by an upstream router

(if an alternative route exists). Therefore, end hosts are not even aware of such failures,

1

]
many applications, = IntServ
transport layer £
IP network layer 5 _
many link and physical DiffServ
layer technologies Cot

Figure 1.1: The IP hour-glass model. Figure 1.2: Cost-performance trade-offs in
supporting QoS.

and no connection re-establishments are needed. In this sense, we say the current Internet
architecture is robust.

On the other hand, the stateless Internet architecture also has some shortcomings. In par-
ticular, it cannot provide user traffic with any service guarantees in terms of delay or band-
width. Note that, because routers do not maintain any per-flow state, they cannot differ-
entiate packets from different flows and provide performance-demanding applications with
more resources or better treatment. Indeed, the current Internet can only prdade a

effort connectivity service. It does not make any promise regarding the successful delivery
of a packet, nor does it guarantee how long it takes for a packet to reach the destination. The
best-effort service model is perhaps an adequate service model for the traditional Internet
applications such as file transfers and E-mail. These applications are highly adaptive, they
do not require stringent performance guarantees from the Internet.

However, as the Internet has transformed into a commercial information infrastructure,
there has been a driving force to expand the current Internet service model to support more
powerful services besides the base-line best-effort service [13, 14, 68, 77]. First of all, many
real-time multimedia applications and mission-critical applications have emerged over the
Internet, such as video streaming, Internet telephony, and online financial transactions,
just to name a few. Different from the traditional Internet applications, these applications
require a much more reliable and predictable Internet performance guarantee. Secondly,
Internet service providers (ISPs) would like to have more control over how their network
resources are used, for example, who can use how much bandwidth at what time. As we
discussed above, all flows are treated in the same way in the current Internet architecture;
flow differentiations are not supported. Moreover, to sustain a healthy long-term develop-
ment, it is also very important for an ISP to explore new technologies to postpone and even
reduce their network resource expansions, while still being able to provide a certain degree
of performance guarantees.

To address these issues, the problem of providing Quality of Services (QoS) in the Internet
has been the focus of both computer networking research and industrial communities for
the last decade or so. Numerous QoS mechanisms have been carried out (see, e.g., [14,
22,28, 29, 31, 32, 36, 37, 39, 41, 42, 43, 46, 47, 50, 57, 59, 60, 81, 83] and the references
therein). Depending on the amount of control state maintained at Internet routers, we can
classify QoS mechanisms into two categoristateful and statelessStateful solutions

need to maintain fine-grainguer-flow state at each Internet routand perform certain
per-flow operations. In contrast, stateless solutions preserve the stateless property of the
current Internet architecture. Only coarse-grained aggregate state is maintained at Internet
routers. The Integrated Service model (IntServ) [6] is a representative of a stateful QoS
solution, while the Differentiated Service (DiffServ) model [4] is an example of a stateless
QoS solution.

Stateful solutions such as IntServ provide very powerful and flexible QoS guarantees. In
particular, per-flow rate and delay service guarantees can be supported in the IntServ frame-
work. Compared with the stateful solutions, stateless solutions such as DiffServ can only
provide coarser-grained aggregate service guarante€urrently, it is not clear if such
aggregate service guarantees are sufficient for supporting performance-demanding appli-
cations such as video streaming over the Internet. On the other hand, IntServ is a very
costly solution. The operational complexity of routers in the IntServ framework increases
linearly with the number of simultaneous flows at the routers. In contrast, DiffServ is
much simpler and more scalable, given that no per-flow state is maintained by Internet core
routers.

In a nutshell, stateful solutions such as IntServ can provide powerful and flexible QoS
guarantees, but they are complex and costly. On the other hand, stateless solutions such
as DiffServ are simpler and more scalable, but they can only provide limited aggregate
performance guarantees. Figure 1.2 illustrates the broad trade-offs of these two approaches.
More importantly, IntServ and DiffServ are all but two-point solutions. There is a plenty

of design space that we have not explored, and many important questions in supporting
QoS in the Internet remain unanswered. For example, what are the fundamental trade-offs
in supporting QoS in the Internet in terms of performance and cost? Can we have a QoS
solution that is as scalable as DiffServ, but is still able to provide performance guarantees
as powerful and flexible as IntServ? Moreover, can we support both aggregate and per-flow
service guarantees in the same framework? This is important for the Internet to continue
its evolution.

1.2 Contributions

To address the above mentioned questions, and more importantly towards providing a com-
pletescalable QoS solutignn this dissertation we propose and investigatertual time

service mode(VTSM). VTSM addresses the QoS provisioning problem from two com-
plementary aspects, namely the packet forwarding data plane and the network resource
management control plane. On the packet forwarding data plane, a virtual time frame-
work is studied. The virtual time framework is core stateless. Internet core routers do
not maintain any per-flow state and do not perform any per-flow operations. Moreover,
both aggregate and per-flow service guarantees can be supported within this framework.
On the resource management control plane, we design and investigate scalable bandwidth
broker architectures to facilitate network resource management and admission control op-
erations. To deliver real end-to-end QoS to end users, and to facilitate the deployment of
new (QoS-sensitive) services over the Interneseevice overlay networkrchitecture is

also proposed and studied. Research results obtained in this dissertation work have been or
will be partially reported in [24, 25, 26, 27, 85, 86, 87, 88, 89].

1.2.1 Scalable Packet Forwarding Date Plane

We propose and develop a virtual time framework (VTF) as a unifying packet scheduling
framework to providescalablesupport for guaranteed services. VTF is core stateless. Like
DiffServ, Internet core routers do not need to maintain any per-flow state in this framework.
However, different from DiffServ, both aggregate and per-flow service guarantees can be
supported within this same framework. The key notion in VTF is the virtual timestamp,
which is initialized at network edge routers and referred and/or updated by core routers,
depending on the type of services supported by the network. We design and analyze several
newcore statelespacket scheduling mechanisms to illustrate how both aggregate and per-
flow service guarantees can be supported within this framework. Moreover, we investigate
the cost-performance trade-offs in supporting QoS in the Internet by studying the QoS
provisioning power of these packet scheduling algorithms.

1.2.2 Scalable Network Resource Management Control Plane

To facilitate network resource management and flow admission control functions, two scal-
able bandwidth broker architectures are designed and investigated. The first one is a central-
ized bandwidth broker architecture, which is built upon the core stateless packet scheduling
algorithms we designed. By conducting admission controls on a per-path basis instead of

4

on a “hop-by-hop” basis, this bandwidth broker architecture significantly reduces the com-
plexity of the admission control algorithm; therefore, it improves the scalability of existing
bandwidth broker architectures. To further improve its scalability, a hierarchical bandwidth
broker architecture is designed. In this architecture, multiple edge bandwidth brokers are
deployed in a network, along with the conventional centralized bandwidth broker. Edge
bandwidth brokers handle the flow admission control and resource management function-
alities for certain pre-defined paths. They interact with the centralized bandwidth broker
for allocating and de-allocating trunk bandwidth along the paths. In this way, the central-
ized bandwidth broker only needs to handle coarser time scale trunk bandwidth requests
from edge bandwidth brokers. Consequently, its scalability is greatly improved.

1.2.3 Service Overlay Networks

To provide real end-to-end QoS support, and to facilitate the creation and deployment of
value-added servicesuch as VoIP, Video-on-Demand, and other emerging QoS-sensitive
services over the Internet, we propose an architecture callesetlrece overlay network
(SON). Special servers, called service gateways, are deployed at certain strategically se-
lected locations over the Internet to aid the data forwarding and resource management. As
a first step in designing a SON, we study the bandwidth provisioning problem for a ser-
vice overlay network. We mathematically formulate the bandwidth provisioning problem,
taking into account various factors such as SLA, service QoS, traffic demand distributions,
and bandwidth costs. Analytical models and approximate solutions are developed for both
static and dynamic bandwidth provisioning, which provide useful guidelines on how a SON
should be provisioned to stay profitable.

1.3 Organization

The dissertation is structured into three parts. In this first part, we study the scalable
packet forwarding data plane mechanisms. Specifically, in Chapter 3 we present aggre-
gate packet forwarding schemes. Three different aggregate packet scheduling algorithms,
namely FIFO, Static Earliest Time First (SETF), and Dynamic Earliest Time First (DETF),
are studied. In Chapter 4, we investigate a virtual time reference system (VTRS) to illus-
trate how per-flow service guarantees can be supported in the Internet without maintaining
per-flow state at network core routers. Several specific packet scheduling algorithms are
also studied in this chapter to analyze the capability of VTRS to support per-flow service
guarantees. In the second part of this dissertation, we present two scalable bandwidth bro-

5

ker architectures to facilitate network resource management and flow admission control
operations. We will first study a centralized bandwidth broker architecture in Chapter 6
and then a hierarchical bandwidth-broker architecture in Chapter 7. In the third part of this
dissertation, a service overlay network architecture is presented. We discuss its architec-
ture and study the bandwidth provisioning problem for such a service overlay network in
Chapter 8. In Chapter 9 we conclude this dissertation and discuss possible future research
directions.

Part |

Scalable Packet Forwarding Data Plane

Chapter 2

Background and Overview

2.1 Background

The problem of Quality of Service (QoS) provisioning in packet-switched networks has
been the focus of networking and telecommunication research communities for the last
decade or so. Many new packet scheduling algorithms (see, e.g., [22, 59, 71, 83]) such
as Virtual Clock (VC) and Weighted Fair Queueing (WFQ) have been proposed for the
support ofQoS guaranteesFor example, it has been shown [30, 60] that in a network
where WFQ schedulers (or VC schedulers) are employed at every router, end-to-end delay
and bandwidth guarantees can be supported for each user traffic flow. Using these results
as a reference model, the IETF has definggiaranteed servicg9] under its Integrated
Services or IntServ architecture [6, 14], where end-to-end delay and bandwidth guarantees
are provided for users on per-flow (either individual or aggregate) basis. To support

the IETF IntServ architecture, a signaling protocol, RSVP, for setting up end-to-end QoS
reservation along a flow’s path has also been proposed and standardized [7, 84].

Performing per-flow management inside the network, however, raises the important issue
of scalability. Due to the complexities of per-flow operations both in the data plane and
QoS control plane, the IntServ architectanay notscale well with the size of the Internet

and the number of applications. As an alternative to per-flow based QoS provisioning, a
different paradigm — the Differentiated Services or DiffServ — was later proposed and de-
fined by the IETF [4, 5]. Under this paradigm, services are defined and implemented within
individual administrative domains. To provide scalable QoS support, fine-grain user QoS
control information is only maintained at the edge routers (i.e., ingress and egress routers)

8

of an administrative domain. The user traffic is appropriatagditioned(i.e., shaped)
before injected into the network core. At core routers, no per-flow QoS state is maintained.
User packets are processed based on a number of pre-sp€eifiebp Behavior¢PHBS)
encoded by bit patterns carried inside a packet header that convey to core routers the desired
levels of QoS support. (We will refer to these bit patterns, or the PHBs they embody, as the
packet statg End-to-enduser-to-useQoS support is provided through intra-domain QoS
provisioning and inter-domain service agreement. Tloesgdrol planefunctions can be
performed, for example, by employingpandwidth brokearchitecture [58]. The DiffServ
paradigm greatly simplifies the data plane of the network core of a domain, thereby mak-
ing it more scalable. On the other hand, the DiffServ architecture, as it is currently defined,
aims to provide onlgoarse-grainQoS support to users. It remains to be seen whether such
a service model would be sufficient to meet the potentially diverse user QoS requirements
in the future.

Indeed, the exact QoS provisioning power that can be provided by DiffServ is still under
great debate. For example, in the DiffServ framework [5], it is proposed that the simple
FIFO packet scheduling be used to support the&xipédited forwardingper-hop behavior
(PHB) [44]. Namely, at each router, EF packets from all users are queued at a single FIFO
buffer and serviced in the order of their arrival times at the queue. In [44], it is claimed
that EF can be “used to build a low loss, low latency, low jitter, assured bandwidth, end-
to-end service.” However, in a work by Charny and Le Boudec [11], it is shown that in
order to provide guaranteed delay service using FIFO, the overtallork utilization level
must be limited to a small fraction of its link capacities. More specifically, in a network
of FIFO schedulers, theorst-casalelay at each router is bounded only when the network
utilization level is limited to a factor smaller than(H* — 1), whereH*, referred to as the
network diameteris the number of hops in the longest path of the network. Furthermore,
given the network utilization level < 1/(H* —1), the worst-case delay boundisersely
proportionalto 1 — a(H* — 1). Hence as the network utilization lewelgets closer to the
utilization boundl/(H* — 1), the worst-case delay bound approaches rapidly to infinity.

The elegant result of Charny and Le Boudec raises several interesting and important ques-
tions regarding theesignandprovisioning powepf aggregate packet scheduling, or more
generallythe fundamental cost-performance trade-offs in supporting QoS in the Internet.

For ease of explosition, in the following we will refer to the schemes that require per-flow
state and perform per-flow operations at each Internet routestateful QoS solutions;
whereas schemes that do not perform per-flow operations such as DiffSgatedss€o0S

9

solutions. From the above discussions, we see that stateful QoS solutions such as IntServ
can provide powerful and flexible per-flow service guarantees, but they are complex and
costly. On the other hand, stateless QoS solutions such as DiffServ are much more scalable,
but they can only provide coarse-grained aggregate QoS support.

In an important piece of work, Stoica and Zhang, using the DiffServ paradigm and the
novel notion ofdynamic packet stateleveloped several techniques to support end-to-end
per-flowbandwidth and delay guaranteeghout per-flow QoS managemgf8]. In the

data plane, they designed a new (non-work-conserving) scheduling algorithm,Catked
Jitter Virtual Clockor CJVC, to provide end-to-end per-flow delay guaranteiéisout per-

flow scheduling states at core routef(Such scheduling algorithms are referred tcae
statelessin contrast to the conventionstiatefulscheduling algorithms such as VC or WFQ,
where certain scheduling states must be maintained for each flow.) In the control plane,
an aggregate reservation estimatiaigorithm is designed which eliminates the need of
maintainingper-flow QoS reservation statdsistead, amggregateQoS reservation state is
maintained at each core router. A hop-by-hop signaling protocol, however, is still needed to
set up QoS reservation for each flow along its path within a domain. The work by Stoica and
Zhang is the first to demonstrate how per-flow service gurantees can be supported without
requiring Internet core routers to maintain per-flow state and perform per-flow operations.
However, in their work, only one single non-work-conserving packet scheduling is studied.
It is not clear if the basic technique can be used in a more general, working-conserving
packet scheduling environment. More importantly, the question regarding the fundamental
cost-performance trade-offs in supporting QoS in the Internet still remain unanswered.

2.2 Virtual Time Framework

In this part of the dissertation, we propose and develop a virtual time framework (VTF) as a
unifying packet scheduling framework to provide scalable support for guaranteed services.
Similar to the DiffServ architecture, in VTF, we distinguish network edge routers from
core routers. All per-flow state is maintained at network edge routers, core routers do
not maintain any per-flow state and do not perform any per-flow operation. That is, the
virtual time framework is core stateless. As illustrated in Figure 2.1, VTF has three key
components: packet state, edge router mechanism, and core router mechanism. In the
following we briefly discuss each of them one by one.

10

Per-flow state
1.packet states inserted at edge

3.Packet states cleared

1] (A [1]
A= e e 1 6d

Core routers
Edge routers

2.Packets scheduled based
on packet states

Figure 2.1: lllustration of Virtual Time Framework.

2.2.1 Packet State

When a packet is released into a network at an edge router, certain control state is inserted
into the packet header by the edge router. The key packet stateirtual timestamp

which is initialized as the packet releasing time at the network edge router. Depending
on the type of services supported by the network, some additional control state may be
carried in the packet header, such as the reservation rate of the flow that the packet belongs
to. As we will see shortly, core routers rely on the virtual timestamps to schedule packets.
Moreover, virtual timestamps may be updated within a network, again, depending on the
service supported by the network.

2.2.2 Edge Router Mechanism

Edge routers maintain per-flow state. As we discussed above, they also insert certain packet
state into the header of a packet when the packet is released into the network. Another
important role of an edge router is to shape the traffic of a flow released into the network,
to ensure that the amount of traffic of the flow released into the network satisfies certain
condition.

2.2.3 Core Router Mechanism

Core routers rely on the virtual timestamp (and other control state) carried in packet headers
to schedule packets. Depending the specific packet scheduling algorithm implemented in

11

the network (and therefore the service supported by the network), core routers may update
the virtual timestamps carried in the packets.

In the next two chapters, we will present several specific implementations within this frame-
work to illustrate its components and properties in detail. More specifically, in Chapter 3,
we study twonew classes of aggregate packet scheduling algorithmsstttes earliest

time first(SETF) anddynamic earliest time firdDETF) algorithms. In the class of SETF
packet scheduling algorithms, packets are stamped widnity time at the network edge

and they are scheduled in the order of their time stamps (i.e., their network entry times)
inside the network core; the class of DETF packet scheduling algorithms work in a similar
fashion, albeit with an important difference—the packet time stampgatatedat certain
routers (hence the teragynamig. In Chapter 4, we design a nowdltual time reference
systenmas a general architecture to suppeet-flowservice guarantees. By studying these
packet scheduling algorithms, we illustrate the fundamental trade-offs in supporting QoS in
the Internet. Moreover, we demonstrate that both aggregate and per-flow service guarantees
can be supported in the same framework.

12

Chapter 3

Supporting Aggregate Guaranteed
Delay Services

3.1 Introduction

In this chapter, we illustrate how aggregate service guarantees can be supported in the
virtual time framework. More importantly, we attempt to address the fundamental trade-
offs in the design of aggregate packet scheduling algorithms and their provisioning power in
support of (worst-cas@uaranteed delagervice. In particular, we study the relationships
between thevorst-case edge-to-edge del@e., the maximum delay experienced by any
packet across a network domain), thaximum allowable network utilization levaahd the
“sophistication/complexity’of aggregate packet scheduling employed by a network.

Besides the conventional “TOS” or “DS” bits, we assume #utitional control informa-

tion may be carried in the packet header for scheduling purpose. By encoding tertan
information in the packet header, we design tvesvclasses of aggregate packet scheduling
algorithms: thestatic earliest time firs(cSETF) anddynamic earliest time firqDETF) al-
gorithms. In the class of SETF packet scheduling algorithms, packets are stamped with its
entry time at the network edgend they are scheduled in the order of their time stamps (i.e.,
their network entry times) inside the network core; the class of DETF packet scheduling
algorithms work in a similar fashion, albeit with an important difference—the packet time
stamps areipdatedat certain routers (hence the tedynamig. In both classes, thgranu-

larity of timing information encoded in the packet state—as is determined uthnéer of

bits used for packet state encoding—is a critical factor that affects the provisioning power

13

of aggregate packet scheduling.

The objective of our study is to use these two new classes (SETF and DETF) of aggre-
gate packet scheduling algorithms, in addition to the simple FIFO discipline, to illustrate
the fundamental trade-offs in aggregate packet schedulinggow)with additional con-

trol information encoded in the packet state, and with added “sophistication/complexity”

in aggregate packet scheduling, the worst-case edge-to-edge delay bound and the maxi-
mum allowable network utilization bound can be imprgwat 2)how these performance
bounds are affected by the number of bits available for packet state encotinmgugh
analysis and numerical examples, we show that when packet time stamps are encoded with
thefinesttime granularity, both the SETF and DETF packet scheduling algorithms can at-
tain an arbitrary network utilization level (i.en, can be arbitrarily close to 1). In other
words, the maximum allowable network utilization boundndependent othe network
diameterH™*. This is in contrast to the case of FIFO, where the maximum utilization level

is bounded byl /(H* — 1). Furthermore, using the more complex DETF, the worst-case
edge-to-edge delay boundlisear in H*, whereas using the simpler SETF, the worst-case
edge-to-edge delay boundiwersely proportional tg1 — «)”". When packet time stamps

are encoded using coarser granularity (i.e., the number of bits for packet state encoding is
limited), the network utilization level is constrained by the time granularity. In addition,
the worst-case edge-to-edge delay bound is increased. With the same number of bits, the
more complex DETF packet scheduling algorithms have far superior performance over the
simpler SETF algorithms.

The remainder of this chapter is organized as follows. In Section 3.2 we present the basic
model and assumptions for our analysis. In Section 3.3, we re-establish the result in [11]
using our approach. The two new classes of aggregate packet scheduling, SETF and DETF,
are analyzed and the trade-offs discussed in Section 3.4 and Section 3.5, respectively. We
summerize this chapter in Section 3.6.

3.2 Network Model and Assumptions

Consider a single network domain, as shown in Figure 3.1, where all traffic entering the
network is shaped at the edge traffic conditioner before releasing into the network. No
traffic shaping or re-shaping is performed inside the network core. We assume that all
routers employ the same aggregate packet scheduling algorithm (e.g., FIFO) that performs
packet scheduling using only certain bits (imecket statgcarried in the packet header.

14

S
sl e
00O O—Cr —@ 2B @) A

Network coreo\

Figure 3.1: The network modelFigure 3.2: Packet’s arrival time at and departure time
from each scheduler.

No otherschedulingnformation is used or stored at core routers. We refer to the schedul-
ing mechanism employed at an outgoing link of a roues ascheduler Let C be the
capacity of the corresponding outgoing link of a schedleiVe will also refer toC' as

the capacity of the schedulér. We denote the MTU (maximum transmission unit) of

the link by L™, then L™**/C' is the transmission time of an MTU-sized packet. De-
fine A = maxgss{L™*/C}, i.e., A is the maximum transmission time of any packet in
the network. We also assume that the path of any user flow is pre-determined, and fixed
throughout its duration. Leti* be the maximum number of hops in the paths that any user
flow may traverse in the network. We referi as thenetwork diameter

Consider an arbitrary flow traversing the network. The traffic of the flow is shaped at the
network edge in such a manner that it conforms tol&n bucket regulated arrival curve
(07,p7) [20]: Let A’(t,¢ + 7) denote the amount of the floytraffic released into the
network during a time intervdl, ¢ + 7], wheret > 0, 7 > 0; thenA (t,t +7) < o7 + piT.

We control the overall network utilization levby imposing a utilization factos. on each
link as follows. Consider an arbitrary schedufewith capacityC'. Let 7 denote the set of
user flows traversing. Then the following condition holds:

Z P < aC. (3.2)

JEF
Clearly,0 < o < 1. We will also refer to the utilization factar as thenetwork utilization
levelof a network domain. In addition to the link utilization facterwe will also impose an
overall bound3 > 0 (in units of time) on the “burstiness” of flows traversing any scheduler
S: Y jero? < BC. As we will see later, thiburstiness factop plays a less critical role in
our analysis than the network utilization level

For simplicity, we assume that output-queueing is used.

15

From the above edge shaping and network utilization constraints, we can obtain an impor-
tant bound on the amount of traffic going through a given schedudeiis injected at the
network edge during any time interv&onsider an arbitrary schedulgmwith capacityC'

For any time intervalr,], let A¢(r, t) denote the amount of traffic injected into the net-
work during the time intervalr, t| that will traverseS (at perhaps some later time). Here

we useA to emphasize thaks(r, ¢) is notthe traffic traversings during the time interval

[7,t], butinjected into the network at the network edge during|. Using the facts that
Al(t,t+71) <ol +pirforallflows,y ;.- p < aCandy ;. -0/ < 3C, itis easy to show

that

As(r,t) < aC(t — 1) + AC. (3.2)

We refer to this bound as thexlge traffic provisioning conditiofor schedulerS. As we
will see later, the edge traffic provisioning condition is critical to our analysis of aggregate
packet scheduling algorithms.

Now consider a packei (of any flow) that traverses a path with < H* hops. For

1 = 1,2,...,h, denote the scheduler at thin hop on the path of packetas.sS; (see
Figure 3.2). Letd! and f? represent, respectively, the time that packetrrives at and
depart$ from scheduless;. For ease of exposition, throughout this chapter we assume that
the propagation delay from one scheduler to another scheduler is zero. &enee ;.

Note thata! is the time packep is released into the network (after going through the edge
traffic conditioner), and? is the time packep leaves the network. Henc§ — a} is the
cumulative delay that packetexperiences along its path, and is referred to asetige-
to-edgedelay experienced by packet (Note that the delay experienced by a packet at
the edge traffic conditioner is excluded from the edge-to-edge delay.) Defite be the
worst-case edge-to-edge delay experienced by any packet in the network, i.e.,

D* = max{fF — dl}, (3.3)

all p's
where in the above definitiolis the number of hops on the path of packet

The key questions that we will address in the remainder of the chapter are: 1) given an
aggregate packet scheduling algorithm, under what network utilization devkles an

2Throughout the chapter we adopt the following convention: a packet is considered to have arrived at a
scheduleonly when its last bit has been received, and it to have departed from the schedylehen its
last bit has been serviced.

16

upper bound orD* exist? 2) how does this bound depend on the network utilization level
« and the network diametéf*? and 3) how these relationships are affected by the number
of bits available for packet state encoding as well as the added “sophistication/complexity”
in aggregate packet scheduling?

3.3 Network of FIFO Schedulers

In this section we re-establish the result of Charny and Le Boudec [11] for a network of
FIFO schedulersising a different approachUnlike [11] which uses an argument based

on the worst-case per-hop delay analysis, in our approach we attempt to obtain a recursive
relation fora!’s (or equivalently,f?’s) for any packep. From this recursive relation we

then derive an upper bound on the worst-case edge-to-edgeldel®s we will see later,

this argument is quite general and powerful, and forms the basis of all the analyses in this
chapter.

A key step in our analysis is to obtain an upper bound on the amount of traffic that is
serviced by a scheduler between the arrival and departure of any peaikiste scheduler.
This bound will allow us to establish a recursive relation betwegn anda?. For this
purpose, we introduce an important notatieh, which isthe maximum time it takes for
any packet to reach its last hopormally,

" = grl}%;s({az —af}. (3.4)

Now consider a FIFO schedul8rof capacityC. Leta, denote the time a packgtarrives
at S, and f£ the time packep departs fromS. DefineQ(a%) to bethe amount of traffic
serviced by the schedulérbetweeria?, f£]. Note that since is a FIFO schedulef)(a%)
is exactly the amount of traffic queued &tat the arrival time of packet (with packetp
itself included). We have the following bound @{a%):

Lemma 1 For a FIFO schedulelS of capacityC', we have

Q(d%) < aC7* + BC. (3.5)

Proof: Let p* be thelast packet before packet (itself inclusive) that when packet'
arrives at schedules any packep’ in the queue (including the one in service) satisfies the

17

following condition:
a > ab”. (3.6)

In other words, when packet arrives at schedule, it is the “oldest” packet in the queue:
namely,all other packets currently in the queue entered the network no early than packet
p*. We note that such a packet always exists—if no other packets satisfy (3.6), the packet
that starts the current busy period certainly does.algédenote the time packet arrived

at schedule5. By the definition ofp*, any packet that was either queued at schedtiler

at timea? or arrived at schedule$ betweend?, anda’ must have entered the network
during the time intervale? , a%]. From (3.2), the amount of traffic carried by these packets

is bounded above byC/(a% — a%") 4+ SC. Furthermore, since schedulgiis always busy
during[d% , a%], we have

Q(d}) < aC(ds—a}')+ BC — (af — di)C
= aC(ak —a% +a% —db) + BC — (% — d%)C
= aC(d% —d)+ BC + (a —1)(a? — a%)C
< aCT7" + 3C,
the last step is becaus¥ — o} < 7* (3.4) ando < 1. .

There is an intuitive explanation of the result in Lemma 1. Note that a FIFO scheduler
services packets in the order of their arrival times at the scheduler, regardless of when they
are released into the network. In particular, packets entering the network later thanpacket
can potentially be serviced earlier than pagkelntuitively, packets that are queued at the
time packep arrives at schedule¥ must have entered the network betweéeh— 7, a’y]

and arrived at schedulérbefore packep. By the edge traffic provisioning condition (3.2),

the amount of traffic carried by these packets is bounded®@y* + SC. This intuitive
argument is made rigorous in the proof of Lemma 1.

We now use Lemma 1 to derive a recursive relationd6s. Consider a packet which
traverses a path with hops. The capacity of thi#h scheduler on the path is denoted by
C;. Then by the definition of)(a!), we have

aipy = fi = af + Q@) /Ci < af + at™ + 3. (3.7)
18

Recursively applying (3.7) and using the relatifh= a’, ,, we have the following lemma.

Lemma 2 Consider a packeiwhich traverses a path withhops. Then, foi = 1,2, ..., h,
we have,

P —adl <i(art™ +p5). (3.8)

Using Lemma 2, we can establish the following main results for a network of FIFO sched-
ulers.

Theorem 1 Given a network of FIFO schedulers with a network diaméfér if the net-

work utilization levelx satisfies the condition < ﬁ thent* < % Further-

more, the worst-case edge-to-edge ddl#yis bounded above by

H*p

D* < .
“1—-(H*— 1)«

(3.9)

Proof: The proof includes two parts. We first prove that for the given value*p{3.4)
holds, i.e., no packets will experience a delay larger tifabefore reaching the last hop.
In the second part, we prove that the maximum edge-to-edge @¢lag/indeed bounded.

Partl. Let* = % We claim that for any packetwhich traverses a path with

hops, the following relationship holds for anyx £,
al —al <717, (3.10)

Otherwise, assume thédr the first time in the system (the network domaracketp*
violates the relationship at serv8x wherei* < h (without loss of generality, we assumed
here that the path that packettraverses hak hops), i.e.a”. —a? > 7*. Therefore (3.10)
holds for all packets before the timéf, in particular, we have,

P p* *
ai*il - al S T .

From Lemma 2, we have,

19

Based on the result in Lemma 1 and the above equation, we get,
Iy <l +art+ 5 <dl +i(art +). (3.11)

After some algebra, we have,

g < <.
feor =@ ST). ST

Notice thatf% |, = a”., we arrive at a contradition.

Part 2. In this part we prove that the worst-case edge-to-edge delay is bounded above by

H*3
Dr < 1-(H*-1)a*

Consider an arbitrary packetwhich traverses a path with hops. From Lemma 2, we
have,

1 . H*3

7 —al <h(at*+B) < 1—(H —Da — 1— (H — 1)a’

Theorem 1 illustrates the provisioning power of a network of FIFO schedulers for support
of guaranteed delay service: in order to proviqa@vableworst-case edge-to-edge delay
bound, the maximum network utilization level must be limited belgwH* —1). (We will

refer to this bound as theaximum allowable network utilization bound~or example,

with H* = 3 (a “small” network), the maximum network utilization must be kept below
50% of all link capacities; withH* = 11 (a relatively “large” network), the maximum
network utilization must be kept belon% of all link capacities. Furthermore, as the
network utilization level gets closer 19 (H*—1), the worst-case edge-to-edge delay bound
approaches infinity.

3.4 Network of Static Earliest Time First Schedulers

In this section we will design and analyze a new class of aggregate packet scheduling
algorithms—the class ddtatic earliest time firs{SETF) algorithms. Using this class of
aggregate packet scheduling algorithms, we will demonstrate how by adding some “sophis-
tication/complexity” in aggregate packet scheduling—in particular, by encoding additional

20

control information in the packet header, we can improve the maximum allowable utiliza-
tion bound, and reduce the provable worst-case edge-to-edge delay bound. Furthermore,
we will discuss the performance trade-offs of SETF packet algorithms when a limited num-
ber of bits is used for packet state encoding.

The additional control information used by the class of SETF scheduleriati) time
stampcarried in the packet header of a packet tlegbrds the time the packet is released

into the networKafter going through the edge traffic conditioner) at the network edge. Here
we assume that all edge devices that time-stamp the packetsgisieahclock (in other

words, the clocks at the edge devices are synchronized). We denote the time stamp of a
packetp by wh. An SETF scheduler inside the network core schedules packets in the order
of their time stamps,?. Note that in the case of SET#Re time stamp of a packet is never
modified by any SETF scheduler, thus the tstatic.

Depending on the time granularity used to represent the packet time stamps, we can de-
sign a class of SETF schedulers with different performance/complexity trade-offs. We
use SETH() to denote the SETF packet scheduling algorithm where packet time stamps
are represented with time granularity In particular, SETF(0) denotes the SETF packet
scheduling algorithm where packet time stamps are represented wiinesd#ime gran-

ularity, namely, packets are time-stamped with pinecisetime they are released into the
network. Formally, for any packet, we havew! = d). For a more general SETF
scheduling algorithm wherg > 0, we divide the time into slots df time units each (see
Figure 3.3):¢, = [(n — 1)I',nl'),n = 1,2,.... Packets released into the network are
time-stamped with the corresponding time slot numhein other words, packets that are
released into the network within the same time slot (say, the time,stet[(n — 1)I", nI"))

carry the same time stamp value, i©}, = n. Therefore, packets released into the net-
work during the same time slot at the network edgeiadéstinguishableby an SETFI)
scheduler inside the network core, and are serviced by the scheduler in a FIFO manner.
We will show later that using coarser time granularity (i.e., lafgecan potentially re-

duce the number of bits needed to encode the packet time stamps, but at the expenses of
degrading the performance bounds. In the following we will analyze SETF(O0) first, since
its analysis is easier to present and follow. The general SEfMA(l be studied afterwards

in Section 3.4.2.

21

All these packets carry the same
packet time stamp FIFO: Traffic released within thisrange at the network edge could

affect the scheduling time of packet p at thei-th server.

. ANEIR N

|~ —| Time

=>
a 11) a F Time

~-

SETF(0): Only traffic released within this range at the network edge could
affect the scheduling time of packet p at thei-th server.

Figure 3.3: Time slots and packetigure 3.4: lllustration of the different behaviors of
time stamps. FIFO and SETF(0).

3.4.1 SETF with Finest Time Granularity: SETF(0)

In this section we first establish performance bodrfds SETF(0) and then discuss the
packet state encoding issue.

3.4.1.1 Network Utilization and Edge-to-Edge Delay Bounds

We follow the same approach to establish performance bounds for a network of SETF(0)
schedulers, as is employed for a network of FIFO schedulers in Section 3.3.

Consider an arbitrary SETF(0) scheduteof capacityC. As in Section 3.3, let's and f
denote, respectively, the time packedrrives at and departs frofy andQ(a%) denote the
amount of traffic serviced by the schedulebetween[d’, f£]. Note that unlike a FIFO
scheduler()(a%) may benotequal to the amount of traffic queuedsat the arrival time

of packetp. This is because a packgtin the queue of schedulér at the time of packet

p arrival may have a time stamrzg' > wh. In addition, a packet’ arriving atS later than
packetp (but beforeff) may have a time stampgl < w¥, thus beginning service before
packetp. Nonetheless, we can apply a similar argument as used in Lemma 1 to establish
the following bound or)(a%). To focus on the main message, the proof of the following
lemma, and the proofs of all other lemmas and theorems thereafter, are delegated into the
appendixes.

Lemma 3 For an SETF(0) schedule$ of capacityC, we have

Q(ag) < aC{r" — (a5 — @)} + C + L™ (3.12)

3A simplified version of SETF(0), under the nameloihgest-in-SysteifLIS), is studied under a different
but simpler network model in [2]. Our proof, inspired by [2], is more general than that in [2]. We also
establish tighter performance bounds than [2].

22

Comparing Lemma 3 with Lemma 1, we see that the upper boudg] @) for an SETF(0)
scheduler is reduced byC'(a% — o) amount from that for an FIFO scheduler. This is not
surprising, since any packet that is released into the networkdfter.], (the time packet

p enters the network) will not take any service away from paglatan SETF(0) scheduler
(see Figure 3.4).

Now consider a packettraversing a path with hops, where the capacity of thid sched-
uler on the path i€’;. From Lemma 3, the following recursive relations follow easily: for
i=1,...,h,

Q(a7)
&

aiy = ff =ai + <(1—a)d +a(m +d)+ 8+ A.
Solving the above recursive equations, we have

Lemma 4 Consider a packetwhich traverses a path withhops. Thenfoir =1,2,...,h,
we have,

ff—d<r{1-(1—-a)}+a ' (B+A){1-(1-a)} (3.13)

Using Lemma 4, we can establish the following main results for a network of SETF(0)
schedulers.

Theorem 2 Consider a network of SETF(0) schedulers with a network diantéterFor
0 < a < 1,we haver* < a’l(ﬁ+ﬁl{i;l§ljf‘)H —}. Moreover, the worst-case edge-to-edge
delay D* is bounded above by,

e BN (10T}
- (1 —a)f—1

(3.14)

Comparing with a network of FIFO schedulers, we see that in a network of SETF(0) sched-
ulers, the network utilization level can be kept as high (i.e., as close to 1) as wantie:

FIFO, there is no limit on the maximum allowable network utilization levidbwever,

since the worst-case edge-to-edge delay bound is inversely proportiofiak-tar) 1,

it increases exponentially as — 1. Figure 3.5 compares the worst-case edge-to-edge
bounds for a FIFO network and an SETF(0) network (with = 8) as a function of the
network utilization levelo. In this example we assume that the capacity of all links is

23

2000
1800 - 90| =

1600 -

®
S
T

1400

b
N
°
3
- N
=] o
T T

@
S
T

N
S
T

Edge-to-edge delay bounds (ms)
5
38
3
Bits needed for packet state encoding

@
S
T

N
S
T

! L L L L L L 10 L L L L L L L L
o 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05 o 0.1 0.2 03 0.4 05 0.6 07 0.8 0.9 1
Network utilization Network utilization

Figure 3.5: Performance comparisofifigure 3.6: No. of bits needed for encoding
SETF(0) vs. FIFO. for SETF(0).

10 Gb/s, and all packets have the same size- 1000 bytes. We set theetwork burstiness
factor 5 in a similar manner as in [11]: we assume that the token bucket size of each flow
is bounded in such a way that < 3,p’, wheres3, (measured in units of time) is a constant

for all flows. For a given network utilization level, we then sefi = af,. In all the
numerical studies presented in this chapter, we ch@gse 25 ms. From Figure 3.5, it is

clear that for a given network utilization level, the worst-case edge-to-edge delay bound for
an SETF(0) network is much better than that for a FIFO netfvork

3.4.1.2 Time Stamp Encoding and Performance Trade-offs

In this section we discuss the implication of the worst-case edge-to-edge delay bound on
the number of bits needed to encode the time stamp information. Supposé*tisathe
maximum link capacity of the network. Then it is sufficient to have a time granularity of

. = 1/C* to mark the precise time each bit of data enters the nefwdrkother words,

4When the network utilization is extremely low (bel@# in this example), the worst-case edge-to-edge
delay bound of a FIFO network is tighter than that of an SETF(0) network with the same configuration. This
is because that, under such an extremely low network utilization, theAeim(3.14) becomes a dominant
factor in the worst-case edge-to-edge delay bound of an SETF(0) network but has no effect on that of a FIFO
network. This can be shown more formally as follows: wheis small, we can approximate the bound of
D* of an SETF(0) network as,

a'(B+AN{1-(1-a)} (B+A)H"

D* < R
- (1—a)f -1 1—(H*—1)a’

which is greater than the worst-case edge-to-edge delay bound of a FIFO network with the same configura-
tion. However, this phenomineon should not have significant importance because our interest is on higher

network utilizations.
SAlthough theoretically speaking the finest time granulality: 0, it is obvious that in practice= 1/C*
is sufficient, as no two bits can arrive at any link withianits of time.

24

v = 1/C* is the finest time granularity needed to represent packet time stamps. In the
remainder of this chapter we will assume that the clock granularity of the edge devices that
place time stamps on packets entering the network is atdgaest, the clocks tick (at least)
every . units of time. We now investigate the problem of how many bits are needed to
encode the packet time stamps.

Suppose thatn bits are sufficient to encode the packet time stamps precisely. Then the
time-stamp bit string wraps around evel¥. units of time. Given that the worst-case
edge-to-edge delay of a packet in the network is bounded above*pye must have

2D* < 2™, s0 as to enable any SETF(0) scheduler to correctly distinguish and compare
the time stamps of two different pack&t&rom Theorem 2, we have

A1 -(1-a)

H*}
(1= o)1), P+ 1 (3.15)

m > log,{~

Figure 3.6 shows the number of bits needed for packet time stamp encoding for two SETF(0)
networks withH* = 8 and H* = 12, respectively. The other parameters used in this ex-
ample are the same as in Figure 3.5. In particllér— 10G b/s, and thus = 1/C* =
10~"ms. As expected, the number of bits needed for packet time stamp encoding increases
as the network utilization level increases; it also increases as the network diameter scales
up. From this figure we also see that even for a relative low network utilization level, the
number of bits required for packet time stamp encoding is relatively large. For example,
with H* = 8, 26 bits are needed far = 0.1. Consequently, to achieve a meaningful net-
work utilization level, an SETF(0) network requires a large number of bits for packet time
stamp encoding, thus incurring significant control overhead. In the following section, we
will show how this problem can be potentially addressed by using coarser time granularity
for packet time stamp encoding.

3.4.2 SETF with Coarser Time Granularity: SETF(I")

In this section we analyze the SETRK(packet scheduling algorithm with coarser time
granularity, i.e.,I' > 0, and illustrate how the time granularity affects the performance

®Here we assume that no extra clock or other timing device/mechanism is used to assist an SETF(0)
scheduler to distinguish the packet time stamps. In other words, an SETF(0) scheduler must use the bit
strings encoded in the packet header to determine whether the time stamp of one packet is smaller than that
of another packet. This can be achieved, for example, by usirgltipwp sequence numbégchnique [49].
Note that if we assume that each SETF(0) scheduler has a clock that is synchronized with the edge time
stamping devices, and thus can use this clock to identify the time slot the current time corresponds to, then it
is sufficient to have™ . > D*, i.e., one less bit is needed in this case.

25

trade-offs of an SETF network. In particular, we demonstrate that using a coarser time
granularity can potentially reduce the number of bits needed to encode the packet time
stamps, albeit at the expenses of sacrificing the maximum allowable network utilization.

Consider a network of SETF] schedulers. Recall that under SETF(the time is divided

into time slots and packets released into the network during the same time slot carry the
same time stamp value (i.e., the time slot number). Clearly the coarser the time granularity
I' is, more packets will be time-stamped with the same time slot number. In particular,
if T is larger than the worst-case edge-to-edge delay of the network, then a network of
SETF(") schedulers degenerates to a network of FIFO schedulers. In the following we
will employ the same approach as before to derive performance bounds for a network of
SETF(") schedulers.

We first introduce a new notation,*: for a givenI’, defineh* + 1 to bethe minimum
number of hops that any packet can reach withianits of time after it is released into the
network Mathematically/* is the smallest such that the following relation holds for all
packets:

min{aj. ; —af} > T. (3.16)

all p's

Note that if* = 0, we must havé’ = 0. This gives us SETF(0). On the other hand; if

is large enough such that = H* — 1, SETF(") becomes FIFO. Hence, without loss of
generality, in the rest of this section we assume thath* < H* — 1. Given this definition

of h*, we have the following bound of(d%), where the notations used in the lemma are
defined as before:

Lemma 5 Consider an SETHY{) schedulerS with capacityC. Supposé is theith hop on
the path of a packet. Then

Q) < aCr* + BC if1<i<h, (3.17)
and
Q%) < aC{r" — (d§ —ap. 1)} + C + L™ ifh* <i<h (3.18)

where recall that}. ,, is the time packet reaches its§* + 1)th hop on its path.

26

The results in Lemma 5 are intuitively clear: similar to SETF(0), (3.18) holds because by
the definition ofh*, a packet entering the network in the time interfl , ,, a's] must have

a time stamp that is larger than that of packetOn the other hand, far < h*, packets
entering the network after; but beforea’, may have the same time stamp as pagket

i.e., they may carry the same time slot number. Hence the same bound as the FIFO bound
appliesin (3.17).

Using Lemma 5, we can derive the following recursive relationsi ferl, . . ., h*,
ab = fl=ad +ar"+ .
and fori = h* + 1, ..., h (for simplicity, defineda}, , ; = f}),
al = fl=0-a)a) +a(t" +ah.q) + 5+ A.
Solving these recursive equations, we have
Lemma 6 Consider a packetwhich traverses a path withhops. Thenfoir =1,2,..., A%,
P —ad <i(at™ +p); (3.19)
andfori =h*+1,...,h,
fF=d) <h*am*+B)+m{l-1—a) " }+a (B+A){1—-(1—a)""}.(3.20)

Applying Lemma 6, we obtain the following performance bounds for a network of SBTF(
schedulers.

Theorem 3 Consider a network of SETFJ schedulers with a network diamet&r . If the
network utilization levet satisfies the following condition,

(1—a) ="t > an*, (3.21)

then
e o BRHaT (B A1 - (1 - o)
- (1 —a)f=h"=1 — qp* '

27

(3.22)

Furthermore, the worst-case edge-to-edge delay is bounded above by,

Bh* +a (B+ A){1 - (1—a)T "}

D* <
- (1 —a)f"=h"=1 — oh*

(3.23)

Note first that in Theorem 3, settinfg = 0 yields the results for a network of SETF(0)
schedulers, whereas settihty = H* — 1 yields the results for a network of FIFO sched-
ulers (with a difference o{ﬁ caused by the extra care taken by the analysis of an
SETF network to accout for the non-preemptive property of an SETF scheduler). Hence
Theorem 2 and Theorem 1 can be considered as two special cases of Theorem 3. In general,
Theorem 3 states that with a coarser time granularity O (which determineg*), we can

no longer set the network utilization level at any arbitrary level, as in the case of SETF(0),
while still having afinite worst-case edge-to-edge delay bound. In other words, for a given

' > 0, there is a limit on the maximum allowable network utilization level as imposed by
the condition (3.21). This limit on the maximum allowable network utilization level is the
performance penalty we pay for using coarser time granularity to represent the packet time
stamp information.

3.4.2.1 Time Stamp Encoding and Performance Trade-offs

In this section we show that using coarser time granularity can potentially reduce the num-
ber of bits needed for packet time stamp encoding. We also illustrate through numerical
examples how time granularity affects the performance trade-offs of SBTie(works.

We first consider the problem of packet time stamp encoding. Using the same argument as
in Section 3.4.1.2, for a given time granulardt@nd network utilization levet, the number
of bits m needed for packet time stamp encoding must satisfy the following condition:

B +a ' (B+A){1 - (1-a)T "}
(1 = @)ff*=h"=1 — ap*)T

m > logy{ }+ 1 (3.24)

From (3.24), we see that for a fixed network utilization lexelargerI’ mayreduce the
number of bits needed for packet time stamp encoditgyvever as we increasg, h* may

also be increased. Consequently, the right hand side of (3.24) may increase. Hence the rela-
tionship betweem: andI" is not strictly monotoneFurthermore, a largdr in general also

yields a smaller maximum allowable network utilization level bound. From Theorem 3,
(3.24) and the definition ok* (3.16), it is not too hard to see that given a network with

28

N
Iy

2000

1800 | ---- SETF()(h'=4)
- - - SETF() (h'=2) ¥
SETF(IN) (h =1) * i 1
- % - SETF(0) % , I

N
N
T

1600

e
N
S
3
N
o
T
|

1200

,4
®
T

b

)
T
|
|
|
3
|

Edge-to-edge delay bounds (ms)
5
g
S
x
Bits needed for packet state encoding
|
I

b
IS
T
|
|
|
|

k%
o
|
I

L L L L L L L 101 L L L L
o 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05 o 0.05 0.1 0.15 0.2 0.25
Network utilization Network utilization

Figure 3.7: Performance comparison: SETHgure 3.8: No. of bits needed for encoding
vs. FIFO. for SETF().

diameterH*, we can essentially divide the time granularitynto #* granularity levels

each granularity level corresponds to one valug’of 0, 1,..., H* — 1. Thefinestgran-
ularity level corresponds tb* = 0, and thecoarsesgranularity level toh* = H* — 1. For

this reason, in the following numerical studies, we will Usgo indicate the time granu-
larity used in an SETHY{) network. These numerical studies demonstrate the performance
trade-offs involved in the design of SETH(networks using coarser time granularity, i.e.,
when the number of bits for packet time stamp encoding is limited. In all these studies,
except for the network diametéf* all other system parameters (link capacity, packet size,
() are the same as used in Figure 3.5.

Figure 3.7 shows the effect of time granularity on the worst-case edge-to-edge delay bound
for an SETFI) network with H* = 8. For comparison, we also include the results for the
corresponding FIFO network. From the figure it is clear that coarser time granularity (i.e.,
largerh*) yields poorer worst-case edge-to-edge delay bound. As the time granularity gets
coarser (i.e.h* increases), the worst-case edge-to-edge delay bound quickly approaches to
that of the FIFO network.

Next we illustrate how the network utilization level of an SETFfetwork affects the
number of bits needed for packet time stamp encoding. Figure 3.8 shows the number of
bits needed for packet time stamp encoding as a function of the network utilization level
under various time granularities (as indicatediby. In this example, the network diameter

H* = 8. From this figure we see that for low network utilization levels, using coarser time
granularity reduces the number of bits needed for packet time stamp encoding. However,
as coarser time granularity also imposes a tight bound on the maximum allowable network
utilization, this reduction in the number of bits needed for packet time stamp encoding

29

o
Y
N

T T
- - H =8,D =100
— H =8,D =500
x~ H =12,D =100
—— H =12, D" =500

o

N
T
!
I

I,

o
[
3

o
[
1)

o
o
IS

Edge Traffic Conditioner

im allowable network utilization

0.12f
5

Maxim

0afr

0.06 L L L L L L L L Theeld T
10 12 14 16 18 20 22 24 26 28 30 Packet time Stal"ﬂps are updated every h* hOpS

Bits available for encoding packet ime stamps

Figure 3.9: No. of bits for encoding, network Figure 3.10: Updating packet time stamps in-
diameter, and maximum allowable networkside the network core.
utilization.

may not be feasiblevhen the network utilization level is increased (this is why the curve
for a given time granularity/(*) stops at certain network utilization level). To put it in
another way, to achieve a higher network utilization level, SE)B¢thedulers witHiner
time granularity (thus smallgr*) must be used, thus requiring more bits for packet time
stamp encoding.

In the last set of numerical studies, we demonstrate how the number of bits available for
packet time stamp encoding affects the maximum allowable network utilization so as to
support a given target worst-case edge-to-edge delay bound for SETF networks. The results
are shown in Figure 3.9, where networks with a combination of the network diameters
H* = 8 and H* = 12 and delay bound®* = 100 ms and D* = 500 ms are used. As

we can see from the figure that for a given number of bits for packet time stamp encoding,
as the network diameter increases, the maximum allowable network utilization decreases.
Note also that when the number of bits for packet time stamp encoding is small (e.g., less
than 15 for a network with parametefs* = 8 and D* = 100 ms), the packet time stamp

does no enhance the performance of a SETF() network, and the SETF(~2*) network
behaves essentially as a FIFO network with a maximum network utilization level around
0.11. Beyond this threshold, as the number of bits used increases, the maximum allowable
network utilization also increases. However, as the figure shows, further increasing the
number of bits beyond a certain value (e.g., 26 for a network with paraméters 8 and

D* = 100 ms) for encoding will not improve the maximum allowable network utilization.

30

3.5 Network of Dynamic Earliest Time First Schedulers

So far we have seen that by including additional control information in the packet header
and adding sophistication/complexity at network schedulers, the class of SETF packet
scheduling algorithms improve upon the maximum allowable network utilization and worst-
case edge-to-edge delay bounds of the simple FIFO packet scheduling algorithm. This per-
formance improvement comes essentially from the ability of an SETF scheduler to limit the
effect of “newer” packets on “older” packets. However, the provisioning power of SETF
packet scheduling algorithms is still rather limited. Given the finest time granularity to
encode the packet time stamps, although we can achieve arbitrary network utilization in
a network of SETF(0) schedulers, the worst-case edge-to-edge delay bound is inversely
proportional to(1 — o). Hence the bound grows exponentially, as the network diam-
eter H* increases. In addition, with coarser time granularities, the performance of SETF
networks deteriorates further. In this section we devise another class of aggregate packet
scheduling algorithms—the class of DETF algorithms—which with further “sophistica-
tion/complexity” added at the schedulers, achieve far superior performance.

In the general definition of a DETF packet scheduling algorithm, we use two parameters:
the time granularity” and the(packet) time stamp increment hop coaht Note that unlike
SETF wheré* is determined by, hereh* is independent of . Hence we denote a DETF
scheduler by DETH{, ~*). In the following, we will present the definition of DETH(#*)

first, i.e., DETF with the finest time granularity. The general definition of DETF{) will

be given afterwards.

As in the case of SETF(0), the time stamp of a packet in a network of DERF(sched-

ulers is represented precisely. In particular, it is initialized at the network edge with the
time the packet is released into the network. Unlike SETF(0), however, the time stamp of
the packet will be updated evefy hops (see Figure 3.10). Formally, suppose pagket
traverses a path df hops. Letw) denote the time stamp of packess it is released into

the network, i.ewf = af. Lets = [£]. Fork = 1,2,...,x — 1, the time stamp of packet

p is updatedafter it has traversed theh*th hop on its path (or as it enters thigh* + 1)th

hop on its path). Let? denote the packet time stamp of packetfter itskth update. The
packet time stamp?, is updated using the followingpdate rule

wpi=wp_ +d, k=1,...,k—1, (3.25)

where the parametet* > 0 is referred as th@packet) time stamp increment/e impose

31

the following condition orl* that relates the packet time stampto the actual time packet
p departs the:h*th hop:

fork=1,...,k—1, fL.<wb andf} <wP:=wl ,+d" (3.26)

This condition ond* is referred to as theeality checkcondition. Intuitively, we can think

of the path of packet being partitioned inta: segmentsf h* hops each (except for the last
segment, which may be shorter thahhops). The reality check condition (3.26) ensures
that the packet time stamp carried by packedfter it has traversed segments is not
smaller that the actual time it takes to traverse those segments. In the next section we will
see that the reality check condition (3.26) and the packet time stamp update rule (3.25) are
essential in establishing the performance bounds for a network of DETF schedulers.

We now present the definition for the general DEITH(*) packet scheduling algorithm
with a (coarser) time granularity > 0. As in the case of SETF{, in a network of
DETF(, h*) schedulers, the time is divided into time slotdadinits: [(n — 1)T", nI"),n =
1,2,..., and all packet time stamps are represented using the time slots. In particular, if
packetp is released into the network in the time dlot — 1)I", nI), thenw{ = nI". We also
require thathe packet time stamp incremetitbe a multiple ofi’. Hence the packet time
stampwy}, is always a multiple of”. In practice, we can encodg as the corresponding
time slot number (as in the case of SET}(

3.5.1 Performance Bounds for a Network of DETF Schedulers

In this section we establish performance bounds for a network of DETF schedulers. In par-
ticular, we will show that by usingynamicpacket time stamps, we can obtain significantly
better performance bounds for a network of DETF schedulers than those for a network of
SETF schedulers.

Consider a network of DETEF(~2*) schedulers, wherg > 0 and1 < h* < H*. We first
establish an important lemma which bouride amount of traffic carried by packets at a
DETF(", h*) scheduler whose time stamp values fall within a given time inteG@hsider

a DETF(’, h*) schedulerS. Given a time intervalr, t], let M be the set of packets that
traverseS at some time whose time stamp values fall withint]. Namely,p € M if
and only if for somek = 1,2,...,k,, S is on thekth segment of packet's path, and

T < wp_, <t Foranyp € M, we say that packet virtually arrives atS during [r, t].

32

Let Ag(7,t) denote the total amount of traffic virtually arriving $itduring[7, ¢], i.e., total
amount of traffic carried by packets.im. Then we have the following bound oty (7, ¢).

Lemma 7 Consider an arbitrary schedulef with capacityC' in a network of DETH(, h*)
schedulers. For any time intervét, t], let A(, t) be defined as above. Then

A(r,t) < pC+aC(t —7+1). (3.27)

Proof: For simplicity, we first prove a bound a#’(r,t), the amount of traffic virtually
arriving atS during [, t] from a flow j. Consider an arbitrary packgtof flow ; which
virtually arrives atS (on thekth segment) duringr, ¢}, i.e.,7 < w}_, < t. From (3.25), it
is easy to see that,

wp_y =wh + (k—1)d".
Becaser < w!_; <t, we have,
T—(k=1)d" <wh <t—(k—1)d".
Therefore,

Brt) < o9 4 Lo (B D —F<T — (k—1)d")

0 <ol 4 p/(t—7+T1).(3.28)

From (3.28) and the edge traffic provisioning condition (3.2), the lemma follows eas-
in.]

Note that ifl" = 0, the bound onfl(T, t) is exactly the same as the edge traffic provision-
ing condition (3.2). Intuitively, (3.27) means that using the (dynamic) packet time stamp
with the finest time granularity, the amount of traffictually arriving at.S during [,]

is bounded in a manner as if the traffic were re-shapefl asing (3.2). In the general
case where a coarser time granulafity- 0 is used, an extraCT amount of traffic may
(virtually) arrive atS, as opposed to (3.2) at the network edge. This is not surprising, since
with a coarser time granularity, a scheduteinside the network core cannot distinguish a
packet from those other packets that travefssd have the same time stamp value.

33

From Lemma 7, we can derive a recursive relationdfs using a similar argument as

used before. Based on this recursive relation, we can establish performance bounds for a
network of DETF(', »*) schedulers. The general results are somewhat “messy” to state.
For brevity, in the following we present results for three specialrbptesentativeases.

As we will see later, the first two theorems are sufficient to demonstrate the provisioning
power of a network of DETF schedulers. The third theorem is included here for comparison
purpose.

Theorem 4 (A Network of DETF(0,1) Schedulers)Consider a network of DETF(0,1) sched-
ulers with a network diametd *. Letd* = 3+ A, then the reality condition (3.26) holds.
Furthermore, for any) < a < 1, the worst-case edge-to-edge delayis bounded above
by D* < H*d* = H*(f + A).

Theorem 5 (A Network of DETF(I", 1) Schedulers) Consider a network of DETI(1)
schedulers with a network diametér*, whereI' > 0. Letd* = [(al' + 5 + A)/T'T,
then the reality condition (3.26) holds. Furthermore, for dny: o < 1, the worst-case
edge-to-edge delap* is bounded above bp* < H*d* +T.

Theorem 6 (A Network of DETF(I', h*) Schedulers withd* = I') Consider a network of
DETF(", h*) schedulers with a network diametér*, wherel’ > 0 (andh* > 1). We set

da* =T, i.e., the packet time stamp is advanced exactly one time slot every time it is up-
dated.Letx* = [%1. Suppose the network utilization leveband the time granularity’
satisfy the following condition:

0<

h*(al' + 5+ A) .
e <d"=T. (3.29)

Then the worst-case edge-to-edge delyis bounded above bp* < (k* + 1)T".

Note that a DETF(0,1) scheduler is a special case of the Virtual-Time Earliest-Deadline-
First (VT-EDF) packet scheduling algorithm proposed in [86] undewntttaal time refer-
ence systerframework, where the delay parameter for all flows is sef*toln general,
regarding the per-hop scheduling behavior, DETF is close to a special case of SCED+ by
Cruz [21]. However, SCED+ only considers discrete time and does not study the effect of
number of bits available for packet state encoding on the performance of a network.

34

From Theorem 4 and Theorem 5, we see that with= 1, the worst-case edge-to-edge
delay bound is linear in the network diamefét. Furthermore, with the finest time gran-
ularity, the worst-case edge-to-edge delay bouriddependent of the network utilization
levela. This is because thger-hop delays bounded byl* = 5 + A. With a coarser time
granularityl’ > 0, per-hop delays bounded byl* = [(al’ + 3 + A)/T'|T", where the net-
work utilization level determines the “additional delay/I{) that a packet may experience
at each hop.

From Theorem 6, we see that in a network of DEITF(*) whered* = I" andh* > 1, the
maximum allowable network utilization is boundél@d see why this is the case, first note
that we must have < 1/(h*—1), otherwise the left hand side of (3.29) becomes infinitely.
For a givenl’ > 0, the condition (3.29) imposes the following tighter boundhon

lokgeArt o1 1
2h* — 1 oh* —1 b —1

(3.30)

For a givena that satisfies (3.30), comparing the worst-case edge-to-edge delay bound in
Theorem 6 to that of a network of FIFO schedulers with a network diaméteve see that
updating packet time stamps every hops effectively reduces a network of diamet&r

into a number of smaller networks with diametgr In particular, settingl* = I" allows

us to consider these smaller networks as networks of FIFO schedulers with didrneter
By appropriately taking into account the effect of dynamic time stamps with coarser time
granularity (the extral'+ A factor), Theorem 6 can essentially be obtained from the bound
for a network of FIFO schedulers.

3.5.2 Packet State Encoding

In this section we first consider the problem of packet state encoding for a network of DETF
schedulers, namely, the number of bits that is needed to encodiyriaenicpacket time
stampandpossibly other control information for th@oper operatiorof a DETF network.

First consider a network of DETF(0,1) schedulers with a network dianiéterAs in the

case of SETF(0), we useto denote the finest time granularity necessary to represent the
packet time stamps, i.e.= 1/C*, whereC* is the maximum link capacity of the network.
From Theorem 4, we see that the number of hitthat is needed to encode the (dynamic)
packet time stamps precisely must satisfy the following condition:

2" > H*(B+ A), orm > logy H* + log,[(B + A) /i) + 1. (3.31)
35

Now consider a network of DETF(1) with a coarser time granularity > 0. From
Theorem 5, for a given network utilization lewe] we see that the number of bitsthat is
needed to encode the (dynamic) packet time stamps must satisfy the following condition:

al'+ 5+ A
r

al'+ 5+ A

2m711-\ > H*
> H*[T

1T +T, orm > log, { H*[1+1}+1.(3.32)

Hence for a given network utilization level, coarser time granularity (i.e., largé) in

general leads to fewer bits needed to encode the dynamic packet time stamps. However,
due to the ceiling operation in (3.32), at ledst,{ H* + 1} + 1 bits are needed. This
effectivelyplaces a bound on the range of time granularities that should be usefl, €e.,
0,(6+ A)/(1 — «)]. Any coarser time granularity > (5 + A)/(1 — «) will not reduce

the minimum number of bitdpg,{ H* + 1} + 1, needed for packet time stamp encoding.

In the general case wheté > 1, in order to ensure a DETF(h*) scheduler to work
properly, not only do we need to encode the packet time stamps, we alssoraedaddi-

tional control informationto be carried in the packet header of each packet: in order for a
scheduler to know whether the packet time stamp of a packet must be updated, we include
a hop-count counteas part of the packet state carried in the packet header to record the
number of hops a packet has traversed. This hop-count counter is incremented every time a
packet traverses a scheduler, and it is reset when it reath@&$ius the hop-count counter

can be encoded usingg, »* number of bits. Therefore for a network of DETF(.*)
whered* is set tol’, from Theorem 6 the total number of bits needed for packet state
encoding is given by

m > log,{k* + 1} + 1 + log, h*, (3.33)

provided that the network utilization leveland the time granularity are chosen in such

a manner that (3.29) holds. Note that from (3.33) we have log,{x*h* + h*} + 1 >
log,{H* + h*} 4+ 1. Therefore, the number of bits needed for encoding the packet states
is increased a&* increases. Moreover, via (3.28) also affects the maximum allowable
network utilization bound. In particular, from (3.30) a largérleads to a smaller bound

on the maximum allowable network utilization. For these reasons it is sufficient to only
consider networks of DETF(1) schedulers

’In practice, it is possible to implement the hop-count counter using, say, the TTL field in the IP header,
thus avoiding the extrédog, h* bits. For example, we have implemented two versions of DETF packet
scheduling algorithms in FreeBSD: one using IP-IP tunneling technique, where the TTL field in the en-

36

1 1 —+— FIFO . | 1
! i ——— SETF() (h'=2)
‘ ! i - - - SETF(0)

!) ---- DETF(,2)

o
®

—e— DETF(,1)

z 700 ‘ h ; —~— DETF(0.1) —+— FIFO

—+— SETF(I'),m=20
—e— DETF(r,2),m=4
—»— DETF(r,1),m=6
DETF(I",1),m=7

o

>
T
|
x
|

o

IS
N
~
N
~
N
~
N
N
N
N

Edge-to-edge delay bounds (ms)
a
I}
3
Maximum allowable network utilization

N
o
s

T

o

N

0 ' L L L L L L L L o & L & L & L & L &
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1 50 100 150 200 250 300 350 400 450 500 550

Network utilization Edge-to-edge delay bounds (ms)

Figure 3.11: Edge-to-edge delay bourfeigure 3.12: Provisioning power of FIFO,
comparison f{I* = 8). SETF(), DETF(, 1), and DETFT, 2) net-
works (H* = 8).

3.5.3 Performance Trade-offs and Provisioning Power

In this section we use numerical examples to demonstrate the performance trade-offs in
the design of DETF networks. By comparing the performance of FIFO, SETF and DETF
networks, we also illustrate the provisioning power of the aggregate packet scheduling
algorithms in support of guaranteed delay service. Lastly, we briefly touch on the issue of
complexity/cost in implementing the aggregate packet scheduling algorithms.

The network setting for all the studies is the same as before. Namely, all links have a
capacity of10 Gb/s, all packets have a size @f = 1000 B, and3 = a3, wherea is

the network utilization level and, = 25ms. The network diametel* and the network
utilization levela will be varied in different studies.

In the first set of numerical examples, we illustrate the relationship between the network
utilization level o and the worst-case edge-to-edge delay bound for networks employing
various aggregate packet scheduling algorithms. The results are shown in Figure 3.11,
where H* = 8 is used for all the networks. For the SETF(etwork, we choosé&' =

2A = 0.8us (i.e., h* = 2). Whereas in the DETH(2) network, the time granularity

is chosen in such a way that (3.29) in Theorem 6 holds. For the DET}(etwork, we

setl’ = 5ms. From the figure we see that the DETF(0,1) network has the best worst-case
edge-to-edge delay bound. Despite a relatively coarser time granularity, the delay bound

capsulating IP header is used to record the hop count a packet has traversed within a given network domain
and serves as the hop-count counter; another using MPLS, where the TTL field in the MPLS label is used
for the same purpose. In both cases, we only need additional bits to encode the packet time stamps. In such
situations, a network of DETF(2*) schedulers withi* = T" > 0 andh* > 1 requires onlylog, x* + 1
additional number of bits.

37

for the DETF(', 1) network is fairly close to that of the DETF(0,1) network. In addition,
when the network utilization level is larger than 0.2, the DHTR{} network also has a
better delay bound than the rest of the networks. From Theorem 5, it is clear that the
worst-case edge-to-edge delay bound for a DETEY network decreases (and approaches

to that of a DETH(, 1) network), when finer time granularity (small€) is used. The
delay bound of the DETH{, 2) network is worse than that of the SETF(0) network (with
the finest time granularity), but is considerably better than those of the $EaRd FIFO
networks. From this example, we see that the DETF networks in general have far better
delay performance than those of SETF and FIFO networks.

In the next set of numerical examples, we compare the provisioning power of the various
aggregate packet scheduling algorithms. In particular, we consider the foll@ring
sioningproblem: given a network employing a certain aggregate packet scheduling algo-
rithm, what is the maximum allowable network utilization level we can attain in order to
meet atargetworst-case edge-to-edge delay bound? In this study, we allow networks em-
ploying different aggregate packet scheduling algorithms to use different number bits for
packet state encoding. More specifically, the FIFO network needs no additional bits. The
SETF() network (wherel" is chosen such that* = 1) uses20 additional bits for time
stamp encoding. The number of additional bits used by the DE P (hetwork is 3. For

the DETF(’, 1) networks, we consider two cases: one useslditional bits, while the
other used bits. All the networks used in these studies have the same diarfiéter 8.

Figure 3.12 shows the maximum allowable network utilization level as a function of the
target worst-case edge-to-edge delay bound for the various networks. The results clearly
demonstrate the performance advantage of the DETF networks. In particular, with a few
number of bits needed for packet state encoding, the DETIfietworks can attain much
higher network utilization level, while supporting the same worst-case edge-to-edge delay
bound.

In the last set of numerical examples, we focus on the DETH(networks only. In this
study, we investigate the design and performance trade-offs in employing DEM)F(et-

works to support guaranteed delay service. In particular, we consider the following prob-
lem: given dixednumber of bits for packet state encoding, what is the maximum allowable
network utilization level that we can attain to support a target worst-case edge-to-edge de-
lay bound? Note that for a network of diametét, at leastog,{ H*+1}+1 bits are needed

for packet state encoding. More bits available will allow us to choose finer time granularity
for time stamp encoding, thus yielding a better delay bound as well as a higher maximum

38

0.8

—+— D=500 ms

—*— D=200 ms
0.6 — D =100 ms

Maximum allowable network utilization
Maximum allowable network utilization

0.2 . Dj=500 ms * 0.2 -
—*— D,=200 ms /
—+— D=100ms /

.
4 5 6 7 8 9 10 11 12 4 5 6 7 8 9 10 11 12
Bits available for encoding packet time stamps Bits available for encoding packet time stamps

Figure 3.13: Design and performance tradeigure 3.14: Design and performance trade-
offs for DETF(", 1) networks {* = 8). offs for DETF(’, 1) networks {H* = 12).

network utilization level. In Figure 3.13 we show, for a network of diaméfér= 8, how

the number of bits available for packet state encoding affects the maximum network utiliza-
tion level so as to support a given target worst-case edge-to-edge delay bound. The same
results for a network of diametéf* = 12 are shown in Figure 3.14. From these results we
see that with relatively a few number of bits, a DETF network can achieve fairly decent or
good network utilization while meeting the target worst-case edge-to-edge delay bound. In
particular, with the target worst-case edge-to-edge delay barfitds.s and 500 ms, we

can achieve more tha% (and up tol00%) network utilization level using only 6 to 7 ad-
ditional bits. Comparing Figure 3.13 and Figure 3.14, it is clear that a network with larger
diameter requires more bits than a network with smaller diameter to achieve the same max-
imum allowable network utilization. However, the minimum number of bits required for
packet state encoding grows only logarithmically with the network diaméterFurther-

more, today’s networks tend to be more “dense”, i.e., with relative shhallHence with
relatively small number of additional bits (e.g., 8 or 16 bits) for time stamp encoding, we
can design DETH{, 1) networks to attain fairly high network utilization while supporting
reasonably good edge-to-edge delay bounds.

We conclude this section by briefly touching on the issue of cost/complexity in implement-
ing the aggregate packet scheduling algorithms. Besides the fact that additional bits are
needed for packet state encoding, both the SETF and DETF packet scheduling algorithms
require comparing packet time stamps and sorting packets accordingly. With the finest time
granularity, this sorting operation can be expensive. However, with only a few bits used for
packet time stamp encoding, sorting can be avoided by implementing a “calendar queue”
(or rotating priority queue [54]) with a number of FIFO queues. This particularly favors the

39

DETF(, 1) packet scheduling algorithms, since the number of bits needed for time stamp
encoding can be kept small. However, compared to SETF, DETIfpacket scheduling
algorithms require updating packet time stamps at every router, and‘thmast be con-
figured at each router. Lastly, in terms of finding additional bits for packet state encoding,
we can re-use certain bits in the IP header [73]. This is the case in our prototype imple-
mentation using the IP-IP tunneling technique, where we re-use the IP identification field
(16 bits) in the encapsulating IP header to encode the packet time stamp.

3.6 Summary

In this chapter we investigated the fundamental trade-offs in aggregate packet scheduling
for support of (worst-case) guaranteed delay service. Based on a novel analytic approach
that focuses on network-wide performance issues, we studied the relationships between the
worst-case edge-to-edge delay, the maximum allowable network utilization level and the
“sophistication/complexity” of aggregate packet scheduling employed by a network. We
designed two new classes of aggregate packet scheduling algorithms—the static earliest
time first (SETF) and dynamic earliest time first (DETF) algorithms—~both of which em-
ploy additional timing information carried in the packet header for packet scheduling, but
differ in their manipulation of the packet time stamps. Using the SETF and DETF as well
as the simple FIFO packet scheduling algorithms, we demonstrated that with additional
control information carried in the packet header and added “sophistication/complexity” at
network schedulers, both the maximum allowable network utilization level and the worst-
case edge-to-edge delay bound can be significantly improved. We further investigated the
impact of the number of bits available for packet state encoding on the performance trade-
offs as well as the provisioning power of these aggregate packet scheduling algorithms. In
particular, we showed that with relatively small number of bits for packet state encoding,
the DETF packet scheduling algorithms can attain fairly good performance bounds. These
results illustrate the fundamental trade-offs in the design of aggregate packet scheduling
algorithms, and shed light on the provisioning power of aggregate packet scheduling in
support of guaranteed delay service.

40

Chapter 4

Supporting Per-Flow Guaranteed
Services

4.1 Introduction

In this chapter we propose and develop a nawdlal time reference systeas aunifying
scheduling framework to provide scalable support for guaranteed services. In the same way
that the WFQ reference system relates to the IntServ architecture, the proposed virtual time
reference system is designed asoaceptuaframework upon which guaranteed services

can be implemented in a scalable manner using the DiffServ paradigm. More specifically,
this virtual time reference system provides a unifying framework to characterize, in terms
of their abilities to provide delay and bandwidth guarantees, botpehéop behaviorsf

core routers and thend-to-end propertiesf their concatenation. The key construct in the
proposed virtual time reference system is the notiopaafket virtual time stampsvhich,

as part of the packet state, are referenced and updated as packets traverse each core router.
A crucial property of packet virtual time stamps is that they can be computed using solely
the packet state carried by packets (plus a couple of fixed parameters associated with core
routers). In this sense, the virtual time reference systeoorns statelessas no per-flow

state is needed at core routers for computing packet virtual time stamps.

In this chapter, we lay the theoretical foundation for the definition and construction of
packet virtual time stamps. We describe how per-hop behavior of a core router (or rather
its scheduling mechanism) can be characterized via packet virtual time stamps, and based
on this characterization, establish end-to-end per-flow delay bounds. Consequently, we

41

demonstrate that in terms of support for guaranteed services, the proposed virtual time
reference system has the same expressive power as the IntServ model. Furthermore, we
show that the notion of packet virtual time stamps leads to the desigewe€ore state-

less scheduling algorithms, especially work-conserving ones. In addition, our framework
does not excludéne use of existing scheduling algorithms suchstaefulfair queueing
algorithms to support guaranteed services.

The objectives of the proposed virtual time reference system are two-fold. First, as a ref-
erence system, it must notandateany specific scheduling algorithms to be employed in

a network in order to provide guaranteed services. In other words, it must allow for di-
verse scheduling algorithms as long as they are capable of providing QoS guarantees. In
fact, we will show that our virtual time reference system can accommodateb@istate-
lessscheduling algorithms such as CJVC atdtefulscheduling algorithms. Second, the
virtual time reference system provides a QoS abstraction for scheduling mechanisms that
decoupleshe data plane from the QoS control plane. This abstraction facilitates the design
of a bandwidth broker architecture (either centralized or distributed), where QoS states are
maintainedonly at bandwidth brokersyhile still being capable of providing QoS guaran-

tees with similar granularity and flexibility of the IntServ guaranteed serwile believe

that these two objectives are important in implementing guaranteed services in practice. For
example, the ability to employ diverse scheduling algorithms not only encourages choice
and competition among equipment vendors and Internet service providers (ISPs), but also,
perhaps more importantly, allows a network and its services to evolve. Similarly, by main-
taining QoS reservation states only in bandwidth brokers, core routers are relieved of QoS
control functions such as admission control, making them potentially more efficient. Fur-
thermore, a QoS control plane which is decoupled from the data plane allows an ISP to
deploy sophisticated provisioning and admission control algorithms to optimize network
utilization without incurring software/hardware upgrades at core routers. This chapter will
focus mostly on the theoretical underpinning of the proposed virtual time reference system.
We will briefly address the issues regarding its implementation. The problem of designing
a bandwidth broker architecture based on the virtual time reference system to support QoS
provisioning and admission control will be briefly discussed.

The rest of this chapter is organized as follows. In the next section we will briefly out-
line the basic architecture of the virtual time reference system. In Section 4.3 we define a
virtual time reference system in the context of an ideal per-flow system. This virtual time
reference system is extended in Section 4.4 to account for the effect of packet schedul-

42

ing. Furthermore, end-to-end per-flow delay bounds are also derived using the virtual time
reference system. In Section 4.5, we design new core stateless scheduling algorithms us-
ing packet virtual time stamps. We then show that existing scheduling algorithms can be
accommodated in our framework—simple static scheduling algorithms with resource pre-
configuration in Section 4.6 and the generic latency-rate server scheduling framework in
Section 4.7. In Section 4.8 we briefly discuss various issues regarding implementation and
admission control. This chapter is concluded in Section 4.9.

4.2 Virtual Time Reference System: Basic Architecture

In this section we outline the basic architecture of the proposed unifying scheduling framework—
thevirtual time reference systenConceptually, the virtual time reference system consists

of three logical components (see Figure 4.1 and Figure pa&ket statearried by pack-

ets,edge traffic conditioningt the network edge, amqér-hop virtual time reference/update
mechanisnat core routers. The virtual time reference system is defined and implemented
within asingleadministrative domain. In other words, packet state inserted by one admin-
istrative domain will not be carried over to another administrative domain.

The packet state carried by a packet contains three types of information: 1) QoS reservation
information of the flow the packet belongs to (e.g., the reserved rate or delay parameter
of the flow); 2) a virtual time stamp of the packet; and 3) a virtual time adjustment term.
The packet state is initialized and inserted into a packet at the network edge after it has
gone through the traffic conditioner. Tiper-hopbehavior of each core router is defined
with respect to the packet state carried by packets traversing it. As we will seethater,
virtual time stamps associated with the packets of a flow form the “thread” which “weaves”
together the per-hop behaviors of core routers along the flow’s path to support the QoS
guarantee of the flow.

Edge traffic conditioning plays a key role in the virtual time reference systeineasures

that traffic of a flow will never be injected into the network core at a rate exceeding its re-
served rateThis traffic conditioning is done by using a traffic shaper (or more specifically,

a rate spacer, see Figure 4.1(b)), which enforces appropriate spacing between the packets
of a flow based on its reserved rate. This is illustrated in the diagram on the right hand side
of Figure 4.1(b). Formally, for a flow with a reserved rate’, the inter-arrival time of two

IHere a flow can be either an individual user flow, or an aggregate traffic flow of multiple user flows,
defined in whatever appropriate fashion.

43

Voo Core router .

Packet state

Network core O

AN

(a) A conceptual network model

Edge conditioner

A
Arrival times of g
nregulated traffic |1~ -

|
|
’

1‘/\ Traffic after
~ edgeconditioner

r] time
(b) Edge conditioner and its effect

Figure 4.1: Edge conditioning in the virtual time reference system.

44

consecutive packets of the flow is such that

Lj,k+1
—_— (4.1)

ajvk“"l _ a]vk > -
rJ

wherea’* denotes the arrival time of thgh packety’* of flow j at the network core, and
L7* the size of packet’*.

In the conceptualframework of the virtual time reference system, each core router is
equipped with a per-hop virtual time reference/update mechanism to maintain the continual
progression of theirtual time embodied by the packet virtual time stamps. As a packet
traverses each core router along the path of its flow, a virtual time stamp is “attached” to the
packet. This virtual time stamp represents the arrival time of the packet at the coramouter
the virtual time and thus it is also referred to as tigual arrival time of the packet at the

core router. The virtual time stamps associated with packets of a flow satisfy an important
property, which we refer to as thértual spacing property Let @* be the virtual time
stamp associated with ttigh packetp’*, of flow j. Then

0 o [Jk+1
T

for all &.

Comparing (4.2) with (4.1), we see thatth respect to the virtual timethe inter-arrival

time spacing is preserved at a core router. Or to put it anotherthvayyirtual rate” (as
defined with respect to the virtual time) of packets of a flow arriving at a core router does
not exceed the reserved rate of the fl@iearly this statement in general does not hold with
respect to theeal arrival times of the packets at a core router (see Figure 4.2(b)). Another
key property of packet virtual time stamps is tla&ta core router the virtual arrival time

of a packet always lags behind its real arrival timEhis property (referred to as tineality

check conditiohis important in deriving end-to-end delay bound experienced by packets
of a flow across the network core. The per-hop virtual time reference/update mechanism at
a core router is designed in such a manner so as to ensure that these properties of the packet
virtual time stamps are satisfied at the entry point and/or exit point of the core router (see
the illustration in Figure 4.2).

The virtual time reference system provides a unifying framework to formalize the per-
hop behavior of a core router and to quantify its ability to provide delay guarantees. This

45

VTRU: Virtual Time Reference/ Update Component

l l l

Real Time

(a) Virtual time reference/update mechanism

Y
Real l§rri\1al imes of J* 1
packetsin flow] — <1 .

4 !

-
- |

-d__—_Virtual arrival ti
T Of packas inflow]

r] time
(b) Virtual traffic shaping

Figure 4.2: lllustration of the virtual time reference system.

46

formalism is independent of the scheduling mechanism employed by the core rbatgrs,
stateful or statelessHere we briefly describe how this mechanism works (see Section 4.4
for more details). Conceptually, for each packet traversing a core rout@tual finish

time is computed and assigned to it. This virtual finish time is derived from its virtual
time stamp and other packet state information. Intuitively, it represents the time the packet
finishes its service in aideal per-flow reference systemhere the flow to which the packet
belongs to is the only flow serviced by the systéihe per-hop behavior of a core router is
defined in terms of an upper bound on the difference between the actual departure time and
virtual finish time of a packet traversing the core rout&his upper bound is referred to as

the error term of the core router. Therefore, the scheduling mechanism of the core router
can be abstracted intosgheduling blackbogharacterized by an error term. This simple
abstraction enables us to dererd-to-end delay boundsr flows traversing an arbitrary
concatenation of such scheduling blackboxes, similar to what the notion of latency-rate
servers [72] does for various fair queue algorithms.

In summary, while based on the DiffServ paradigm, the virtual time reference system ren-
ders the same expressive power and generality, in terms of the ability to provide guaranteed
services, as the IntServ Model. Furthermore, the virtual time reference system provides
a unifying scheduling framework upon which a scalable QoS provisioning and admission
control framework can be built, where all QoS reservation states for guaranteed services are
eliminated from the network core. The remainder of this chapter is devoted to laying formal
foundation for the virtual time reference system. We also illustrate how various scheduling
algorithms fit into the unifying framework. Issues of implementation and admission control
will also be briefly discussed.

4.3 An Ideal Per-flow Virtual Time Reference System

In this section we motivate and introduce the notion of packet virtual time stamps in the
context of andeal per-flow systemrhe virtual time reference system defined in this con-
text is then extended in the next section to account for the effect of packet scheduling in a
real network system.

Figure 4.3 illustrates an ideal per-flow system, where a regulated flow is serviced by a
dedicated channel. The dedicated channel consists of a series of servers in tandem. Packets
of a flow ;5 are servicedn orderfrom server 1 to server. Fork = 1,2, .. ., thekth packet

of flow j is denoted by’*, and its size by.*. Letr/ be the reserved rate of floyy andd’

47

Edge Conditioner fixed-delay server fixed-rate server

flowj]

Figure 4.3: An ideal per-flow system.

a delay parameter associated with flpwFor simplicity of exposition, we assume that in
this ideal per-flow system the propagation delay from one server to the next server is zero.

We consider two types of serverfixed-rate serverandfixed-delay serversA fixed-rate
server has a service capacity equal to the reserved-tat€flow j. Hence a fixed-rate
server taked.”* /r/ amount of time to process packet® of flow j. A fixed-delay server

has a fixed latency, which equals to the delay paranaétefiflow ;. In other words, a fixed-
delay server with latency’ takes exactly’” amount of time to process packets of flgw
independent of their packet sizes. We will see later the importance of fixed-delay serversin
modeling scheduling algorithms that can provide delay-rate decoupling. Throughout this
section, we assume that in the ideal per-flow system, thergfesed-rate servers and— g
fixed-delay servers.

Before we introduce the notion of packet virtual time stamps, we first need to understand
and quantify the end-to-end delay experienced by the packets in the ideal per-flow sys-
tem. We embark on this task in Section 4.3.1. Based on the results obtained thereof, in
Section 4.3.2 we will introduce the ideal per-flow virtual time reference system. Table 4.1
summarizes the important notation used in the chapter.

4.3.1 End-to-end Delay of the Ideal Per-flow System

Recall that before entering this ideal per-flow system, packets fromjflga through an

edge conditioner, where they are regulated so that the rate the packets are injected into the
ideal per-flow system never exceeds the reserved-faiéthe flow. Formally, let?"” be

the arrival timé of packety’* of flow j at the first server of the ideal per-flow system. Then

Note that in order to model non-preemptive, non-cut-through network system, throughout the chapter we
adopt the following convention: a packet is considered to have arrived at a setyevhen its last bit has
been received, and it to have departed the sambrwhen its last bit has been serviced.

48

Table 4.1: Notation used in VTRS.

General Notation

p* | thekth packet of flow;

L7* | packet length ofy’*
L7maz | maximum packet length of floy
L= | maximum packet length of all flows at a server/router

rl reserved rate of flow

@’ delay parameter of floy

h number of hops (servers/routers) along the path of flow

q number of fixed-rate servers/rate-based schedulers along'#gath
Notation for the Ideal Per-Flow System
arrival time of packep’* at nodei
f7% | finish time of packep’* at node;
A" | cumulative queueing delay packet experienced up to servefinclusive)
Notation for the Virtual Time Reference System

virtual time stamp of packet’* at node;
" | virtual finish time of packep’* at node
§%* | virtual time adjustment term for packet®: §7F = AJ*/q
d* | virtual delay of packep’* at nodei: " = /"% — &7
actual time packet’"* arrives at node
f7F | actual time packet’* departs from node

v, error term of scheduling blackbox at node
mii+1 | propagation delay from th#" node to thei + 1) node

the edge spacing condition (4.3) holds, namely,
al* R > R =12, (4.3)

Let A’(7, t) denote the amount of floytraffic that is injected into the ideal per-flow system
over a time intervalr, t|. Using (4.3), it is easy to see that

Al (T, t) < It — 1) + LI™e (4.4)

whereL’™ is the maximum packet size of floyv

In order to derive the end-to-end delay experienced by packets in the ideal per-flow system,
we first consider th@ure rate-basedystem, where all servers are fixed-rate servers, i.e.,

49

g = h. This result can then be extended to the general ideal per-flow system with mixed
fixed-rate and fixed-delay servers.

Fori=1,2,...,h, Ieta{’k denote the time packet” arrives at serves;, andfij’k the time
it leaves servei. In the pure rate-based ideal per-flow system, it is not hard to see that the
following recursive relationships amora@’“’s andf{”“’s hold. Foranyk =1,2,...,

a* =it =2 ... h, (4.5)

and

Lik
=12k, (4.6)

ik ik pik—1
f" = max{a]”, f} }+T

where in (4.6) we have used the convention tffat= 0.

Note that in the special case where all packets of fldwave the same siz&’, each packet

takes precisely.’ /r7 to be processed at each fixed-rate server. (In this case, a fixed-rate
server functions as a fixed-delay server.) Because of the edge spacing property (4.3), we
observe that no packet will ever be delayed in any fixed-rate server (see Figure 4.4(a)). In
other words, fori = 1,2, ..., h, a?* > f7* " and f7* = o!* + L7 /ri. Therefore, in this

case we havgf}{”“ = ol + hL’/ri. Hence in this case, thend-to-end delagxperienced

by packeip’* in the ideal per-flow system, which is definedf$ — al*, is h.L’ /r7.

In the general case where packets of flpmave variable sizes, the situation becomes
somewhat more complicated. As shown in Figure 4.4(b), a small packet may be delayed
at a server due to the longer processing time of a large packet preceding it. This delay can
have a cascading effect which may cause more succeeding packets to be delayed.

Fori = 1,2,...,h, let A7* denote the cumulative queueing delay experienced by packet
p"* up to servei (inclusive). Formally,

ik _ ik _ gk D

For the pure rate-based ideal per-flow system, we can derive an important recursive relation,
A7* to A7*~! and the arrival times of packeté”~! andp’* at the first-hop server. This
recursive relation is given in the following theorem, the proof of which can be found in
Appendix B.1.

50

Theorem 7 For any packep’*, k= 1,...,andi =1,2,...,h,

AP =0

7

and

+ ay —ay + —
rJ

(4.8)

(2

j7k‘71 — L]vk LJ:k
i,k j,k—1 L j,k—1 i,k
A :maX{O,Ag’ +1—]] .

rl

The importance of Theorem 7 lies in the fact that for eath A" can be calculated
(recursively)at the network edgeAs we will see in Section 4.3.2, this fact is critical in
providing acore statelesslefinition of packet virtual time stamps for a system involving
fixed-rate servers with variable packet sizes.

We now consider the general ideal per-flow system with both fixed-rate and fixed-delay
servers. Recall that we assume we ha¥eed-rate servers and — ¢ fixed delay servers.

As before, let:”* andf/* denote the arrival time and departure time of pagk&at server

S;. Clearly, if S; is a fixed-rate server, the recursive relation (4.6) holds anm{)ﬁ’g and

fij’k’s. In the case wher§; is a fixed-delay server, we have that fo= 1,2, .. .,

= P and f7* = odF + @ (4.9)

Unlike a fixed-rate server, every packet of flgvincurs a delay of precisely at a fixed-
delay server, regardless of its size. Hence there is no extra queueing delay due to the packet
size difference (see Figure 4.4(c)). It is easy to see that we can re-arrange the location
of the fixed-rate servers in the ideal per-flow system without affecting the end-to-end delay
experienced by each packet in the system. Hence, without loss of generality, we can assume
that the last. — ¢ servers are the fixed delay servers. Then from (4.7), we have

. . , Lok :

PE =t + AR ¢+ (h—q)d.
Therefore, the end-to-end delay of packét in the ideal per-flow system ﬁ’“ —

‘,k M - . - .

A + g7 + (h — ¢)@. In particular, from Corollary 19 in Appendix B.1, we have
ATF 4 qLF 1) < qL7™* v, Thus,

j,max

+ (h —q)d’. (4.10)

Jik Jsk
—ay < -
h 1T >q i

51

Service curve Service curve

Arrival times of packets g
at afixed-rate srver J

Finish times of packets
at afixed-rate server

Arrival times of packets
at a fixed-rate server

Finish times of packets
at afixed-rate server

(@) Fixed-rate server with (b) Fixed-rate server with
constant-size packets variable-size packets

Sanvice curve

Arrival timesof packets
at afixed-delay server

Finish times of packets
at afixed-delay server

(c) Fixed-delay server

Figure 4.4: Delay experienced by packets at a server in the ideal per-flow system.

Note that the above end-to-end delay bound holds for all packets ofjflo%s an aside,

from the perspective of providing end-to-end delay bounds, we can treat a fixed-rate server
with service capacity’ as if it were a fixed-delay server with a latency parametét /r7.

The resulting “pure” delay-based system yields exactly the same delay bound (4.10). This
treatment of fixed-rate servers may simplify the implementation of the virtual time refer-
ence system in practice (see Section 4.8.1).

4.3.2 Packet Virtual Time Stamps and Ideal Per-flow System

The key construct in the proposed virtual time reference system is the notioackét
virtual time stampsin this section, we formally specify the properties of packet virtual time

52

stamps, and provide a definition in the context of the ideal per-flow system. The resulting
virtual time reference system is referred to as iteal per-flow virtual time reference
system

Fori = 1,2,...,h, let a;g’f denote the virtual time stamp associated with pagké&tat
servers;. Intuitively, we can regard’* as the (virtual) arrival time of packet* at server
S; according to the virtual time At serversS;, packetp’* is also assigned wirtual finish
time, denoted by"*, wherei/* > &7*. The differencel’” = 77" — &?* is referred to as
thevirtual delayassociated with packet* at servess;.

We postulate the following properties that packet virtual time stamps (and the correspond-
ing virtual finish times) of flowj must satisfy at each servéy.

Virtual Spacing: fork=1,2,.. .,

J,k+1
ikl o~k L

Gt Gt > :
rJ

(4.11)

Reality Check: &/ > a’*, where recall that’" is thereal time packety’* arrives at
servers;.

Bounded Delay: fi* = /", or more generallyf;"* — /" is bounded from above.

Core Stateless:the virtual time stamp?{’k of each packept’* can be calculated at each
servers; using solely the packet state information carried by the packet (possibly
with some additional constant parameters associated with the server).

Intuitively, the virtual spacing propertyensures that according to the virtual time, the
amount of flow; traffic arriving at servei is limited by its reserved rate’. To put it
formally, consider an arbitrary time intervat, ¢]. We say thatccording to the virtual
time packetp’* arrives at serverS; during the time intervalr, ¢] (or simply, packep’*
virtually arrivesat serveiS; during the time intervalr, t]), if and only if 7 < Cu{k < t. Let
Ai(r,t) denote the amount of floy traffic arriving virtually in the time intervalr, ¢]. It
can be shown that (see thetual Shaping Lemmand its proof in Appendix B.2)

H(r,t) <t —7) + LImae, (4.12)

This bound is analogous to the traffic envelope (4.4) at the network edge, only that here the
amount of flow; traffic is measured according to the virtual time. It suggests that if packet

53

virtual time stamps are used to schedule paclexgilicit rate control or reshaping within
the network core is not necessary

Thereality check conditiomndbounded delay properigre important in ensuring that end-
to-end delay bounds can be derived using the virtual time reference system (both for the
ideal per-flow system as well as for@al network packet scheduling system, as we will
see later). Theore stateless propertg thekeyto the construction of acalablevirtual

time reference system that does not require per-flow scheduling state information at each
core route? In the following we provide a definition of packet virtual time stamps for the
ideal per-flow system, and show that it satisfies all the four properties listed above.

Consider the ideal per-flow system shown in Figure 4.3. Recall that we assume that there
areq fixed-rate servers and— ¢ fixed-delay servers in the ideal per-flow system. For each
packety’*, defined’* = AJ*/q. We refer toé’* as thevirtual time adjustment terrfor
packety’*. Itis calculated at the network edge and inserted into the packet state in addition
to the reserved rate’ and delay paramete¥. Fori = 1,2,...,h, thevirtual delayd{”“
associated with packgt* at servessS; is computed from the packet state information using
the following formula:
i — { Lfr"r’/rf + gk tf S; is efixed rate server, (4.13)
@’ if S; a fixed delay server.
At the first-hop serves,, the virtual time stamp of packet* is defined to bev/* = a}*,
which is the time packet’* is injected to the ideal per-flow system and arrive§ atThis
value is inserted into the packet statey6f at the network edge. The corresponding virtual
finish time ofp/* at serveis; is given by?™* = /% 4+ d*.

Fori = 2,..., h, the virtual time stampvf’k and the corresponding virtual finish tinv?ék
associated with packet” at serveiS; are defined as follows:

o = ot = @ + dF) andi!t = o + d)". (4.14)

3As an example of the importance of the core stateless property, consrder the following “definition” of
virtual time stamps. At each servsy, we defrnewJ = o’* and z/J = 7% for packetp?*. Then from
(4.3), (4.5), (4.6), and (4.9), we see that the vrrtuaI spacrng property holds. Furthermore, the reality check
condition and the bounded delay property also hold trivially. However, using this definition, computation of
packet virtual time stamps at a core router requires maintenance of per-flow scheduling state (i.e., the value
of the virtual time stamp of the previous packet). Therefore, such a definitiost core stateless.

54

From the above definition, it is clear that the core stateless property holds trivially. In the
rest of this section we show that the other three properties are also satisfied. This fact is
stated in the following theorem.

Theorem 8 For i = 1,2,..., h, the virtual spacing property (4.11) holds at each server
S;. Furthermore,

oIk > ok (4.15)
and in particular,

ok = ik, (4.16)
Proof: We first establish that the virtual spacing property holds. iFaxd letg; be the

number of fixed-rate servers along the path from the first hop t¢ithel)th hop. Clearly
¢; < q. Note that from (4.14) and (4.13), we have

.
|

- o L L) LIk A
OFf =+ Y At =t + (0P + =) + (i - 1 -) (4.17)
q=1

Hence to prove (4.11), it suffices to show

a'{’k + Qi((sj’k + 7) Z Cljl’k ! + qz‘((s%kil 4+ — —,
rJ rJ rJ

or equivalently,

i k— i j,k—1 i,k 3.k
L],k 1 _ L]’k N ajla _ a]f + L

5k > ikl 4 i (4.18)
T qi

From the definition o67* and Theorem 7, we have

NIk AGR=L pik=1 ik gkl o ppk y L9R
_ > q + i L 1 rJ . (419)

q q T q

Using (4.3) and the fact that < ¢, we see that the last term in the right hand side of (4.19)
is larger than the corresponding term in (4.18). Hence (4.18) holds.

55

We now establish (4.15). A8 = &}*, (4.15) holds trivially fori = 1. To show that
(4.15) also hold foi = 2, ..., h, observe that

.) . , ik .
' = i = A e+ -1 -), (4.20)

where recall tha; is the number of fixed-rate servers amafg. .., S; ;.

Comparing (4.20) and (4.17) and using the fact that /g > AZ* /q; (see Corollary 18 in
Appendix B.1), we see that (4.15) indeed holds.

Lastly, (4.16) follows easily from the definitions, as

A A A ik , A
7=t + AR g+ (h—od = T (4.21)

J

4.4 Virtual Time Reference System and Packet Scheduling

In this section we extend the virtual time reference system defined in the context of the
ideal per-flow system to a network system where each core router is shared by multiple
flows. The key notion we will introduce is therror termof a core router (or rather, of its
scheduling mechanism), which accounts for the effect of packet scheduling in providing
delay guarantees for a flow. Based on this notion of error term, we define a generic virtual
time reference system, which provides a unifying scheduling framework to characterize the
end-to-end behavior of core routers in providing delay guarantees.

Consider a flowj, whose path through a network core is shown in Figure 4.5. Flbas a
reserved rate’ and a delay parametét. The traffic of flow; is regulated at the network
edge suchthatfdr=1,2,...,

Lj,k+1

~7,k+1 ~ 3.k
a{7+ _a“iv Z

(4.22)

i

whereal”® is theactualtime packet’* of flow j arrives at the first router along its path,
after being injected into the network core.

As shown in Figure 4.5, the path of flgjconsists of. core routers, each of which employs
certain scheduling mechanism to provide guaranteed service foyj fleari = 1,2, ..., h,

56

AN Corerouter ‘

flow

O a @9@H9$} [

Edge
conditioner

Network core O

AN

Figure 4.5: A flow traverses a network core.

we will refer to the scheduler at core routeas a schedulinglackbox and denote it by

S;. In the following, we will first characterize thper-hop behavionf the scheduling
blackboxes, and then show how end-to-end delay bounds can be derived based on this
characterization of their per-hop behavior.

4.4.1 Scheduling Blackbox: Per-Hop Behavior

Corresponding to the fixed-rate servers and fixed-delay servers in the ideal per-flow system,
we categorize the scheduling blackboxes into two typate-basedscheduling blackbox
anddelay-baseadcheduling blackbox. They are distinguished by how the virtual delay pa-
rameter is computed, as in the ideal per-flow system. For a rate-based scheduling blackbox
S;, packetp’* of flow j is assigned a virtual delay® = L7*/ri + §7%, whered’* is

the virtual time adjustment term carried in the packet state. For a delay-based scheduling
blackboxs;, packety’* of flow j is assigned a virtual dela}”” = d’. In other words, the

virtual delayd’” is given by the same formula as in (4.13). In either case, we see that the
virtual delayd{’k can be computed using only the packet state information carried by the
packet.

Now fix an indexi, where; = 1,2, ..., h, and consider the scheduling blackkg)x For any
flow j traversing the scheduling blackb&, let Cufk be the virtual time stamp associated
with packetp’* as it entersS;. We will provide a definition fo@{’k shortly and establish
its properties. At this point, we only assume that tlality check conditiorholds ats;,
namely,

dg’k < a}lj?k (4.23)

where&?’“ is theactualtime that packep’* enters the scheduling blackb&x Hence upon

57

its arrival atS;, the virtual time stamp associated with packkt is never smaller than its
real arrival time.

At S;, packetp’* is assigned a virtual finish tim&™*, wherei?* = o/* + @@*. Let f*

denote theactualtime packety’* departsS/*, i.e., f#** is thereal finish timeof pi*. We
say that the scheduling blackb&k canguaranteepackets of flow; their virtual delays
with anerror termV,, if for any &,

Ik < oIk g, (4.24)

In other words, each packet is guaranteed to depart the scheduling blagKpihe time
oI = ol 4

By using the packet virtual finish time as a reference point to quantify the real finish time
of a packet at a core router, we are able to abstract and characterize the per-hop behavior
of a core router via an error term. This error term captures the ability of the core router to
provide guaranteed services to a flow. In particular, for a rate-based scheduling blackbox
S;, we say thatS; guarantees flow its reserved rate’ with an error term¥; if (4.24)

holds. For a delay-based scheduling blackSgxve say thatS; guarantees flow its delay
parameter’ with an error termy; if (4.24) holds.

4.4.2 Virtual Time Reference System and End-to-End Delay Bounds

We now extend the virtual time reference system defined earlier to account for the effect
of packet scheduling by incorporating the error terms of core routers into the system. In
particular, we illustrate how packet virtual time stamps associated withjf&dwuld be ref-
erenced and updated as packets of fjavaverse the core routers along the flow’s path. We
also derive and characterize the end-to-end behavior of these core routers in concatenation.

Consider the path of flow shown in Figure 4.5. Suppose there arate-based scheduling
blackboxes and — ¢ delay-based scheduling blackboxes. Fer1,2, ..., h, let ¥, be the
error term associated with the scheduling blacksoxIn other wordsS; can guarantee
flow j either its reserved raté or its delay paramete¥ with an error termV;. The virtual
delayd’* associated with packet* atS; is given below:
ik _ { L% i + 6k if S, is rate-based,
! di if S, is delay-based

58

whered’* = A2* /q is the virtual time adjustment term of packet'.

Fori = 1,2,...,h, let @f’“ denote the virtual time stamp associated with pagké&tof
flow j atS;, and?* be the virtual finish time of packet* atS,. Then

_j <k | ik
Ik = o 4 A

We now defineb{”“ and show that this definition satisfies the four requirements of packet
virtual time stamps, namely, thertual spacing propertythereality check conditionthe
bounded delay properignd thecore stateless propertyHere in defining the reality check
condition and bounded delay property, the quantﬁ[{é‘sandfij’k defined in Section 4.3.2
are replaced byi/* and f7*, which denote theeal arrival time andreal finish timeof
packety’* atS;, respectively.

As in the ideal per-flow system, the virtual time stamp associated with patkett the
first-hop routeS; is set to its (real) arrival time, i.e.,

ot = ai*, (4.25)

Thusi{* = " + dl* = al* + d}*.

From (4.22), the virtual spacing property is clearly met at the first-hop router. Furthermore,
the reality check condition also holds trivially. Therefore, by the definitiow gfwe have

Ajvk "'j?k
i<+

Fori=1,2,...,h— 1, letr;;,, denote theoropagation delayfrom thei" hop routersS;
to the(i + 1) hop routerS;, ;. Then

~dhk _ fak
@iy = fi7 A+ i

By the definition ofl;, we have

by < F U+ (4.26)

“Here for simplicity, we assume that the propagation delay experienced by each packetjofréiows;
to S;11 is a constant. In case this is not true, we can asswme; to be themaximumpropagation delay

from S; to S; 1. Then for any packet’*, dffl < PP

59

In order to ensure that the reality check condition holds as pa¢kegnters thei + 1)
hop routelS;, 1, the relation (4.26) suggests that the virtual time stélﬁp associated with
packetp’* atS;. ; should be defined as follows:

Gl = U = O A+ U 4 (4.27)

/‘jvk Nj>k
Thena)', <&f.

SinceV,’s andr, ;,,’s arefixedparameters associated with the core routers and the path of
flow j, itis clear that the packet virtual time stamps defined using (4.2 Haeestateless
Namely, they can be computed at each core router using only the packet state information
carried by the packets (in addition to the two fixed parameters associated with the routers
and the flow’s path). Thuso per-flow state needs to be maintained at these core routers.

Since¥; +; ;. is a constant independent@f®, comparing the definition ab/* in (4.27)
and that in (4.14), it is easy to see that the virtual spacing property also holds at each core
routerS;. Furthermore, we have

i i
Nj’k _ '“j:k' — "j7k ~j7k
Wi =v + ¥+ mi = ay + E dy + E v, + E Tgq+1-
q=1 q=1 q=1

In particular, we see that the bounded delay property holds, as
i]fk < ’ﬁz’k + 0, = af* + Z d{zyk + Z g+ Z Tq—1.q-
q=1 q=1 q=2

This completes the construction of packet virtual time stamps for floun a nutshell,

packet virtual time stamps are initialized using (4.25) at the network edge, and are refer-
enced and updated using (4.27) at each core router. The reference and update mechanism
of the resulting virtual time reference system is schematically shown in Figure 4.6.

Using the virtual time reference system, the following end-to-end delay bound for; flow
can be easily derived from the bounded delay property of packet virtual time stamps:

ek ” ik ' h h—1
Ph—art < AV G5+ (h—q)d +> U+ > i
=1 =1
] h h—1
+(h=@d +> Ui+ > w1, (4.28)

=1 =1

Lj,maa:
< q

60

Virtual Finish Time Core Stateless Virtual Time
Computation Update

Scheduling Blackbox

Real Time Plane

njk £k
i fi

Figure 4.6: Virtual time reference system: per-hop behavior and operations.

where the last inequality follows from Corollary 19 in Appendix B.1.

In the special case where only rate-based scheduling algorithms are employed at core
routers (i.e.g = h), we have

j,mazx h

N v L h-1
I?k _ a{’k S h i =+ Z \IIZ + Z Tii+1- (429)
=1 i=1

This bound is analogous to those derived for fair-queueing/latency-rate-server based schedul-
ing algorithms [30, 60, 72]. In particular,¥f; = L*™* /C;, whereL*"** is the maximum

packet size permissible at thié router andC; is its service capacity, then the above in-
equality yields precisely the same delay bound as is obtained for a flow in a network of
Weighted Fair Queueing (WFQ) schedulers [60] (or Virtual Clock (VC) schedulers [30]

for that matter).

By incorporating delay-based scheduling algorithms into our framework, we can provide
a certain degree afate and delay decouplingTo see this, letD’ be such thatD? >

61

pL/™ma [y Set

) 1) Lj,max
d = 7h—p[Dj —p

py]. (4.30)
Suppose we can design delay-based scheduling algorithms that can support the delay pa-
rameterd’ for flow j. Then from (4.28) we have

h h—1
Aj7k‘, Ajvk j
R T a1 SD]+Z\IIi+Z7Ti,i+1-

i=1 =1

In the special case whege= 0 (i.e., only delay-based scheduling algorithms are employed
along the path of flow), settingd’ = D7 /h yields

h h—1
Ajvk /‘jvk j
At <DV U4 Y ma

i=1 i=1

Clearly, this delay bound is completely decoupled from the reserved rate of flelence

using pure delay-based scheduling algorithms, it is possible to support an arbitrary delay
boundD’ > 0 for flow j (apart from the constant term?_, ¥; + >0} mii+1 associated

with the path of flow;).

Before we leave this section, it is interesting to compare our virtual time reference system
with the WFQ-based reference system used in the Internet IntServ model [6]. From (4.28),
we see that the constant teﬁjj;l W, + Z?;f Tii+1 IS equivalent to thé,,,, term defined

in the IntServ guaranteed service, whereas the rate-dependen;t%ﬁﬁﬁ corresponds to

the C,..,; termin the IntServ guaranteed service. Furthermore, the delay paraihetien-

ilar to theslack termin the IntServ guaranteed service, can be used to take advantage of the
delay-rate decoupling offered by delay-based scheduling algorithms. Therefore, in terms of
providing delay guaranteed services, our virtual time reference system has essentially the
same expressive power as the IntServ guaranteed service model. What distinguishes the vir-
tual time reference system from the IntServ guaranteed service modet@atstateless
nature. Using the Internet DiffServ paradigm and the notion of packet virtual time stamps,
our virtual time reference system allows for more scalable scheduling mechanisms (e.g.,
core statelesscheduling algorithms) to be employed for the support of guaranteed ser-
vices. In addition, our virtual time reference system can accommodate both core stateless
and stateful scheduling algorithms, thereby making it a unifying scheduling framework.

62

In the next section we demonstrate that the notion of packet virtual time stamps leads to
the design of neweore statelesscheduling algorithms. In particular, we design both rate-
based and delay-based scheduling algorithms witiminénumerror term¥ = L*™ /(.

In Section 4.6 we illustrate how some simple static scheduling algorithms can be used in
our framework to provide scalable scheduling support with resource pre-configuration. In
Section 4.7 we show that the generic scheduling framework based on latency-rate servers
(examples of which include VC, WFQ and various variations of fair queueing algorithms)
can also be accommodated in our framework.

4.5 Core Stateless Scheduling Algorithms: Examples

In this section we illustrate how the notion of packet virtual time stamps can be used to
design newcore statelesscheduling algorithms. In particular, we design a number of rate-
based and delay-based core stateless scheduling algorithms, and establish their error terms
using the properties of packet virtual time stamps.

45.1 Rate-Based Core Stateless Scheduling Algorithms
45.1.1 Core Stateless Virtual Clock Scheduling Algorithm

A core stateless virtual clociC¢VC) schedulelS is a rate-based scheduler. It services
packets in the order of their virtual finish time. For any pagkéttraversings, leto?* be

the virtual time carried by/* as it entersS, andd/* = %k + 67 be its virtual delay. Then

the virtual finish times’* of p/* is given byo’* 4 d*. We claim that the”'sVC scheduler

can guarantee each floyvits reserved rate’ with the minimum error termle o =
L=maer /', provided that an appropriate schedulability condition is met. This fact is stated
formally in the following theorem, the proof of which can be found in Appendix B.2.

Theorem 9 Consider/ flows traversing a8'sVC schedulesS such that the schedulability
condition>>', 7 < C'is satisfied. Suppose that* < &7* for any packep’* of flowj,
j=1,2,...,N. Then

*,max

(4.31)

[*»maz

C

In other words W ¢y o =

63

4.5.1.2 Core-Jitter Virtual Clock Scheduling Algorithm

In [73], the core-jitter virtual clock (CJVC) scheduling algorithm is presented, which can
be considered as a non-work-conserving version ofdp€C scheduling algorithm. In

the CJVC scheduling algorithm, if a packet® arrives too early, it is held in a rate con-
troller until its eligibility time, namely, when the real time reach®$ = &7F + §7F (see
Appendix B.2). It can be shown that the CJVC scheduler has the same error term as the
CgVC scheduler does, i.eli¢ ;v = L*™**/C. The proof follows a similar argument as
used in the case @f3VC. ComparingCsVC and CJVC, we see that theork-conserving
CgVC scheduling algorithm provides the same delay bound asdnework-conserving
CJVC scheduling algorithm, without the additional complexity of rate controdéyeft

core statelegsat each core router as is required by CJVC. This is achieved because of the
virtual shaping property of the core stateless virtual time.

4.5.1.3 Approximation to Core Stateless Virtual Clock

In order to reduce the overhead of sorting, we can use a series of FIFO queues to approx-
imate theCsVC scheduling algorithm. These FIFO queues are referred wakendar
gueuesas they are labeled by discrete time epochs. Conceptually, the virtual time is di-
vided into fixed time slots with a slot unit of 7, 7,...,7,,..., wherer, = p.. Each

time slotr, has an associated FIFO queubpon its arrival, a packet’* is placed in the

queue associated with time skotif 7, < 79* < 7,,,. The calendar queues are serviced

in the order ofr,. Moreover, if queue, is empty, the packet at the head of line from the
next non-empty queue is serviced. However, suppose a new packet arrives at the previously
empty queue;, while this packet (from a queug wherer, > 7,) is being serviced. After

this packet departs, queagwill be serviced next.

We call the above calendar queue approximatio@i®/C the slotted C¢VC. It can be
shown that a slotted'sVC scheduler has an error tef,gssca-cyve = L™ /C +1. This
result is stated in the following Theorem, the proof of which can be found in Appendix B.2.

Theorem 10 ConsiderN flows traversing a slotted~4VC schedule& such that the schedu-
lability condition -, r/ < C'is satisfied. Suppose that" < &’* for any packep’* of

SIn reality, only a limited number of FIFO queues are needed. Whenever the currenttasses,, the
gueues can be reused for the future time slots. This implementation is similar to the rotation priority queue
proposed by Lieberhest al[54, 55].

64

flowj, 7 =1,2,...,N. Then

*,Mmax

fik < pik 4 + 1. (4.32)

*,max

C

In other words W ;ostca-cyve = +¢.

4.5.2 Delay-Based Core Stateless Scheduling Algorithms
4.5.2.1 Virtual Time Earliest Deadline First Algorithm

A virtual time earliest deadline firsfVT-EDF) schedulekS is a delay-based scheduler.

It services packets in the order of their virtual finish time. Recall that the virtual finish
time of p’* is given by/* = o7k + d7, whered’* is the virtual time carried by’* as it
entersS andd’ is the delay parameter associated with its flow. Provided that an appropriate
schedulability condition is met, it can be shown that the VT-EDF scheduler can guarantee
each flow; its delay paramete#’ with the minimum error termyr-ppr = L*™%/C.

This fact is stated formally in the following theorem, the proof of which is relegated to
Appendix B.2.

Theorem 11 ConsiderN flows traversing a VT-EDF schedulér, whered’ is the delay
parameter associated with flojy1 < j < N. Without loss of generality, assuie< d' <
d?> < -.- < d". Suppose the followingchedulability conditiortnolds:

Mz

[(t — d) + L1500y < Ct, foranyt > 0 (4.33)

Jj=1

where the indicator function >4, = 1if ¢ > d/, 0 otherwise. Suppose that* < i+
for any packep’* of flowj, j = 1,2,..., N. Then

*,max

C

Fik < pik (4.34)

[*,mazx

In other words Vv r-gpr = -

We observe that the schedulability condition is essentially the same as the one derived for
the standard EDF scheduling algorithm with flow traffic envelopes of the form givenin (4.4)
(see, e.g., [33, 55]). When using the standard EDF scheduling algorithm in a network to

65

support guaranteed delay servigast-hop re-shaping at core routers is requir€this is to
ensure that the flows conform to their traffic envelopes so that the schedulability condition
still holds at each hop [34, 82]. This rendition of the standard EDF is sometimes referred
to as rate-controlled EDF, or RC-EDF. In contrast, using VT-EDF only requires shaping
at the network edge to control the rate of each flow (i.e., to ensure (4.3) holds). As long
as the the schedulability condition (4.33) holds at every VT-EDF schedweper-hop
re-shaping is needed for any core routdrhis is because the VT-EDF scheduler services
packets using the packet virtual arrival times, not their real arrival times. From (4.12), we
see thaaccording to the virtual timgthe traffic envelope for each flow is still preserved at
each core router.

It is also interesting to compare the schedulability condition of the Core Stateless Virtual
Clock with that of the Virtual-Time EDF. For each floyy setd’ = L?™* /ri, Then the
condition "), 7 < C'is equivalent oy, [/ (t — d’) + L#me*] < Ct for all t > 0,
Comparing this condition with (4.33), we see that for 8smedelay parameterg’ =
Lrmae [ri| the schedulability condition of Core Stateless Virtual Clock follows from that
of VT-EDF.

In fact, because the left hand side of (4.33) is a piece-wise linear function, the schedulability
condition (4.33) can be simplified into the following setabdsed-formconditions on the
ratesr’’'s and delay parametet®’s of the flows:

N .
Zr] <C
j=1

andforj =1,2,..., N,

dj o Lj,maz + Zin_zll [Lm,mam _ dem] '
N C =it pm

In particular, ifd = L7™ /ri 5 = 1,2,..., N, then the above conditions ak’s hold
trivially if the condition onr’’s holds, i.e,Ej.V:1 rJ < C. Hence for this set of delay param-
eters, the rate conditioﬁjj‘\’:1 rJ < (C'is sufficient. This is why the core stateless virtual
clock can guarantee each flow a maximum detay- L7e* /17 as long as~ Y, r < C|

In general, the VT-EDF scheduler can guarantee each flow a delay paraimasdong as
the above set of conditions on the raté's and delay parameter®’s are satisfied.

66

4.5.2.2 Calendar Queue Approximation to VT-EDF

As in the case of the core stateless virtual clock scheduling algorithm, we can also design
a calendar-queue approximation to the VT-EDF scheduling algorithm. This approximation
scheme is referred to as tlséotted VT-EDF scheduling algorithm. This scheme works
exactly the same as the slottéVC scheduling algorithm, except that the virtual finish
time /% of a packetp’* is computed using’* = 3% + & instead ofoi*F = HIF +

LIk [4 53k,

The schedulability condition for the slotted VT-EDF scheduling algorithm becomes

N
St +e— &)+ L 1ysay < Ct, foranyt > 0.
7=1
We claim that if the above schedulability condition holds, then a slotted-VT-EDF scheduler
can guarantee floyits delay parameter with an error tefmy yscq-vr-ppr = L= /C+1.

4.5.3 Virtual Time Rate Control and Delay-Based Schedulers

Any delay-based scheduling algorithmnsessenceore stateless in that it does not need to
maintainper-flow scheduling stat®r determining when to service a packet so long as the
delay parameter can be inferred from the packet directly (say, either from an explicit delay
parameter carried by the packet or implicit from the flow label carried by the packet). What
makesconventionatdelay-based scheduling algorithms such as Ekefulis the need to
perform per-flow shapingat each hop in order to support guaranteed delay services. For
example, in the rate-controlled EDF (RC-EDF) scheduling algorithm, the rate controller
needs to maintain per-flow state information to ensure that the flow traffic envelope process
is satisfied at each hop. The VT-EDF scheduler proposed in Section 4.5.2.1 circumvents
this problem by scheduling packets using their virtual finish time, a quantity that can be
computed directly from the packet state information. An alternative approach is to use
a (core stateless) virtual time rate controllewhich is described below. Replacing the
conventional rate controller with this virtual time rate controller, we can convert any rate-
controlled, delay-based scheduling algorithm inttoee statelesscheduler.

The operation of a virtual time rate controller is very simple. Upon the arrival of packet
p”*, the virtual time rate controller assigns to it @igibility time e7*, which is equal to its
virtual time stamp, i.e.¢’* = ©*. The packet is held at the virtual time rate controller
until the real time reaches its eligibility time. The packet is then released to the delay-based

67

scheduler. Clearly, this virtual time rate controller does not need to maintain any per-flow
state information. It can be easily implemented using a sorted list and a single timer.

For any flowj, let A%, (7, t) denote the amount of flowtraffic released by the virtual
time rate controller into the scheduler over any time intepwal. We claim that

Wip-po(T,t) < ri(t — 1) + LA™, (4.35)

This is because any packet* released by the virtual time rate controller to the scheduler
during the time intervalr, t] must satisfy the condition: < &7* < t. Applying the Virtual
Shaping Lemma in Appendix B.2 to the time interyalt], we see that (4.35) holds.

As an example toillustrate its usefulness, we design a new delay-based core stateless sched-
uler by incorporating the virtual time rate controller into the conventional static priority
scheduling algorithm. The resulting core stateless scheduling algorithm is referred to as
the virtual-time rate-controlled static prioritfVT-RC-SP) scheduler. Its “stateful” coun-
terpart is the rate-controlled static priority (RC-SP) scheduler proposed in [82].

In the following we present the schedulability condition and the error term for the VT-RC-
SP scheduler. Far < ¢ < M, let D, be a delay parameter associated with qugwehere

0 < Dy <Dy, <--- < Dy. Suppose a packet from flojvwith a delay parametet’

is placed into queue if D, < &’ < D,,;. Let F, be the set of flowj sharing queue.
Assuming that the following condition oR,’s holds:

q_) Lj,mam
quzp_l%fﬁ -forg=1,2,..., M,
O - Zp:l Zjefp I

then the VT-RC-SP scheduler can guarantee eachffiowr, a delay parameted, < d’
with an error term¥yp-go-sp = L5 /C.

The above schedulability condition for VT-RC-SP can be established by applying the
schedulability result obtained for RC-SP in [55] with the traffic envelope (4.35).

Lastly, we comment that we can also combine the virtual time rate controller with a rate-
based scheduler. The core jitter virtual clock (CJVC) scheduling algorithm proposed in [73]
and discussed in Section 4.5.1.2 is such an example. Note that in this case, the virtual time
rate controller has a somewhdifferentdefinition: the eligibility timeé’* of a packet is
defined as)’* + §7* instead ofo’*(See the Virtual Rate Control Lemma in Appendix B.2).

68

4.6 Static Scheduling Algorithms with Resource Pre-configuration

Another way to achieve the objective of scalable scheduling is to enspédig scheduling
algorithms. Here by ataticscheduler we mean a scheduling algorithm which doeslirot
rectlyuse flow-dependent packet state information such as the packet virtual time stamp, re-
served rate or delay parameter of a flow. Examples of static scheduling algorithms are FIFO
or simple priority-based scheduling schemes. In contrast, scheduling algorithmsdehich
use this information are referred dgnamic For example, the core stateless scheduling
algorithms designed in the previous section are dynamic. Observe that static scheduling al-
gorithms by definition areore statelessas no per-flow states need to be maintained. Static
scheduling algorithms are typically employed to supp@ffic aggregatiorand to provide

class of serviceslIn the following, we will use a number of examples to illustrate how
static scheduling algorithms can be accommodated in our framework. In these examples,
we assume that resources associated with the schedulpreacenfigured namely, they

are not dynamically allocated or de-allocated to flows as they arrive or depart.

46.1 FIFO

An FIFO schedulesS services packets in the order of their actual arrival time, regardless
of their virtual time. We can view an FIFO scheduler as a delay-based scheduler with a
fictitiousdelay parameted’ = 0 assigned to each flow passing through the scheduler. We
now determine the error terdi-; o for an FIFO scheduler with pre-configured service
and buffer capacities.

Consider an FIFO schedul8rwith a service capacitg’ and a total buffer sizé. Suppose
that NV flows shareS, where the sum of the reserved raEﬁ1 rJ < C. Furthermore, we
assume that the buffer capacibyis appropriately provisioned such that no packet from any
flow will ever be lost. (We will illustrate how to provision buffer and bandwidth resources
for scheduling algorithms such as FIFO under the virtual time reference system in future
work.) For any packet’*, leta’* be the actual arrival time at the scheduler, gatibe its
actual departure time. Itis clear th&t* < a* + B/C + L*™* /C'. Sincex’* > a/* and

ik = ik we have

N A B [maz
]7k < ~]7k J—
frE <ot C + C

ThereforeV p;ro = B/C + L™ /C.

69

By updating the virtual time stamp of packeét® using@?’?,,.,,,, = @* + & + L2 4 1,

wherer is the propagation delay to the next hop of pagkét it is clear thawi’fxt_hop not
only preserves the virtual spacing property of packet virtual time stamps but also meets the

reality check condition at the next hop.

We can also use the FIFO scheduling algorithm dgraamicdelay-based scheduler with

a fixed delay parameter: only flows with a delay paramétesuch that#’ > B/C can

be supported. Under this interpretatiohy; o = L*™**/C. Like other dynamic delay-
based schedulers, the virtual time stamp of a packet is updated as foltci\fgg;hop =

oIk 4+ @ 4+ L2224 . Clearly, a scheduler needs to choose one of the two interpretations

C
so that the packet virtual time stamps can be updated appropriately and consistently.

4.6.2 Static WFQ with Pre-Configured Rates

To provide more service differentiation than the simple FIFO scheduler, we can employ a
fixed number of FIFO queues with pre-configured service and buffer capacities. Bandwidth
sharing among the FIFO queues can be implemented using, e.g., a Weighted Fair Queuing
(WFQ) scheduler, or any of its variations. Suppose we hevEIFO queues which are
serviced by a WFQ scheduler with a total service capacit¢'ofForq = 1,2,..., M,

let C, = ¢,C be the pre-configured service rate of queyevhere0 < ¢, < 1 and

Zfl‘il ¢4 = 1. In other words, each queyas guaranteed a minimum service rate’f In
addition, we assume that the buffer capacity for queise5,.

Let 7, denote the class of flows sharing queuaVe assume the schedulability condition
Yier, ri < C, holds for each queug Furthermore, the buffer capacify, is also appro-

priately provisioned such that no packet from any flowFpwill ever be lost. Then using

the same argument as in the FIFO case, we can show that each queue has an error term
v, = B,/C,+ L*™*/C. Namely, for any packet’* of flow j € F,,

[¥maz

A . B
s c, "

where as in the case of FIFO, we defidé = 37",

Forl < ¢ < M,letD, = B,/C,. Without loss of generality, assume tilat D; < D, <

-+ < Dy ThenV, = D, + L*™** /C. In other words, using this static WFQ scheduler
with multiple FIFO queues, we can support a fixed number of guaranteed delay classes.
Note that using this multiple-queue WFQ scheme, flows from different queues can have

70

different error terms. Hence the packet virtual time stamp must be updated accordingly,
depending on from which queue it is serviced.

As in the case of FIFO, we can also view this multiple-queue WFQ schemeasamic
delay-based scheduler with a set of fixed delay parameters: a flow with a delay parameter
d’ can be supported and placed into queué < ¢ < M, if D, < & < D,. Under
this interpretation, the multiple-queue scheme has an errorderm, = L*™**/C'. Like
other dynamic delay-based schedulers, the virtual time stamp of a packet is updated as
follows: @’*

next=hop

[*¥,max

=P+ d + = 4

4.6.3 Static Priority with Pre-Configured Rates

As an alternative to the static WFQ scheduler with multiple FIFO queues, we can also
implement a static priority scheduler with multiple FIFO queues. Again suppose we have
M FIFO queues, where queues of lower index have higher priority. Namely, queue 1 has
the highest priority, whereas queue M has the lowest priority. The queues are serviced in
the order of their priorities: whenever quegés not empty, it is serviced before queue

g+ 1,9+ 2,...,qym. The scheduler is assumed to be non-preemptive.

The queues of the static priority scheduler is configured and provisioned in the following
manner. Foy = 1,2,..., M, C, > 0 is anominalservice rate assigned to queyavhere

ﬁl‘il C, = C. The nominal service rate of a queue is used to control the aggregate rate
of flows sharing the queue. Lé&F, denote the class of flows sharing queyeave control
the number of flows sharing queyeo ensure thal ;. -, ri < C, holds for each queug
Furthermore, the buffer capacity, is also appropriately provisioned such that no packet
from any flow inF, will ever be lost.

Forl < ¢ < M, let D, be a delay parameter associated with qugu&/e assume that
0 < Dy < Dy <---< Dy. Using the result obtained in [55], we can show the following
schedulability condition. If the following condition ab, s holds:

q

. B
Dy > == forq=1,2,..., M,
C_ZpZICP

[*max

=—. Namely, for any packet’* of flow

B
then each queue has an error tebin= C—Z +
J € Fyr
Bq L*,max

Ajvk < ~j7k N

71

wherepit = ik,

Clearly, we can also view this static priority queue scheme as a dynamic scheduler with
an error termb = L*™* /', The decision for placing a flow into an appropriate queue
and mechanism for updating packet virtual time stamps are exactly the same as used in the
static WFQ scheme with multiple queues.

4.7 Latency-Rate Servers and the Virtual Time Reference System

The virtual time reference system proposed in this chapter does not exclude thstate-of

ful scheduling algorithms, namely, those scheduling algorithms that maintain per-flow state
information in order to provide guaranteed services. Such per-flow state information, for
example, is imperative if “bounded fairness” in bandwidth sharing among flows is desired,
in addition to delay and rate guarantees. To accommodate these stateful scheduling algo-
rithms into our framework, it suffices to identify the error term incurred by these stateful
scheduling algorithms. As an example to show how this can be done generally, we consider
the class of scheduling algorithms introduced in [70, 72]—tency-rate serversThis

class encompasses virtually all known fair-queueing algorithms and its variations.

In defining a latency-rate server, a key notion introduced in [72] is the concdpirsf
perioc®. For any flow;, aflow j burst periodis a maximal time intervalr;, 7] such that
for any timet € (r, 2], packets of flow; arrive with rate greater than or equal to its
reserved rate’, or

Ay, t) > (t — 1) (4.36)

whereA’(7;,t) denote the amount of floytraffic arriving during the timer intervat , ¢].

Consider a serve$. Suppose that thesth burst period of flow; starts at timer. Let 7*

be the time that the last packet of theh burst period of flow; departs serve§. For

7 <t < 7%, denote byWW?™ (1, t) the total service provided to the packets of ttie burst
period of flow; up to timet by serverS. We saysS is a latency-rate server (with respect to
flow 7) if and only if for any timet, 7 <t < 7%,

Wj’m(T, t) > max{0, it —1— @j)},

Actually, the term “busy period” instead of “burst period” is used in [70, 72]. In order to avoid confusion
with the standard definition and usage of “busy period” in queueing theory, we opt to use the term “burst
period.” Incidentally, the term “backlogged period” is used in [70, 72] to refer to the standard notion of “busy
period.”

72

where®’ is the minimum non-negative number such that the above inequality holds. It is
referred to as thiatencyof servers.

To relate a latency-rate server to the virtual time reference system, we provide an alternative
definition of the latency-rate server.

Consider thenth burst period of flow;j. Leta’* denote the actual arrival time of tiieh
packet in thenth burst period of flow; at serverS. Then clearlya’! = 7, where recall
that is the beginning of thenth bursty period of flowj. For each packe#* in themth
burst period, define’* recursively as follows:

. e . 4 , Li*
vl =gt 4+ Z— andit = max{l/]’k*1 dj’k} +—Fk>2. (4.37)
ri ’ rJ

From the definition of burst period, it is not too hard to see thatfor 1, we must have
a/* < v*=1 In other wordsy/* = pik=1 %k Consequently, we have

k
rl (P — bty =" L. (4.38)
q=1

For each packet’*, let fﬂ’f be the actual time it finishes service at seieil he following
lemma provides an alternative definition of a latency-rate server, the proof of which can be
found in Appendix B.3.

Lemma 8 A serverS is a latency-rate server with a latency parame®er(with respect to
flow ;) if and only if for any packet’* of flow j, the following inequality holds:
Lk

frk ik <@l -
< =

Using Lemma 8, we now determine the error term for the latency rate s€rveéor each
packety’* of flow j, let &7* be its virtual time as it entekS. Define its virtual finish time
pik by pik = ik 4 di* . Using the fact that#* > a/* and the virtual spacing property
of @¥*, it is not too hard to prove by induction that

k> ik forall k > 1.

73

Table 4.2: Error terms of latency-ratéR) servers.

LR server | PGPS/WFQ, VC, FFQ, SPFQ SCFQ
Latency@] LJ:;W;*,maf*’cr:mL LJ:;Laz*j;af*’C':LmL (N — 1)
Error termW¥ . (N -1)
Then from Lemma 8, we have
. ‘ o [k , ‘
frh<oh 4ol - = <t e
r

Hence we see tha has an error tern¥ such thatt < ©7. This leads to the following
theorem.

Theorem 12 Any latency-rate server with a laten€y (with respect to flow) has an error
term such that

U< 67,

For several well-known scheduling algorithms studied in [70, 72], we can actually show
that¥ = ©7 — 22" @7 and its corresponding error term for these scheduling algorithms

rd

are listed in Table 4.2.

4.8 Discussions
4.8.1 Implementation Issues

So far we have focused on the theoretical foundation for the virtual time reference system.
In this section we will briefly discuss issues regarding its implementation. Future work will
further explore these issues.

A straightforward method to implement the virtual time reference system is to use the
dynamic packet statéDPS) technique proposed in [73, 74]. Using this technique, the
packet virtual time stamp is updated at every core router as a packet enters or departs. An

74

alternative method is to ussatic packet state This technique requires an explicit path
set-up procedure, which can be done, for example, using a simplified RSVP or MPLS
(Multiprotocol Label Switching) [9, 66]. Note that this path set-updifferentfrom a
reservation set-up for a flow. In fact, multiple flows can share the same path. During the
path set-up, the/” router along the path is configured with a paraméler= Zf];ll v, +

f];ll Tq.q4+1, Which represents the cumulative error term and propagation delay along the
path up to routei. The:'”" router is also configured with another parameigmwhich is the
number of rate-based schedulers along the path up to rofgeclusive). Note that both;
andp; are parameters that are related only to the path characteristics, and are independent
of any flow traversing the path. At the network edge, the virtual time stamp di/é),
of a packet is initialized to the time it is injected into the network core. Atithe@outer
along the path of its flow, the virtual time stamp associated with the packet is computed as
ol" = o 4+ D; + C;, whereC; = pi(25 + 67%) + (i — 1 — p,)d’. Using this approach,
we see that once the packet state is initialized at the network edge, it will not be modified
or updated inside the network core. This may speed up the packet forwarding operation of
core routers. In particular, for a core router whose scheduling mechanism does not use the
packet virtual time stamp information (e.g., a FIFO scheduler), there is no need to compute
packet virtual time stamps.

The virtual time reference system is amenable to incremental deployment. Consider, for
instance, the scenario where, between two core routers which employ the VT-EDF schedul-
ing algorithms, there is one core router which does not support packet virtual time stamps.
As long as the scheduling mechanism of this router can be characterized by an error term
U, its effect on the virtual time can be treated as if it were part of the link propagation delay
between the two virtual-time-aware routers, and can be absorbed into the propagation delay
between these two routers.

A critical question in implementing the virtual time reference system is how to encode the
packet state. In its most general form, the packet state contains four parameters: packet
virtual time stampu?*, reserved rate’, delay parameted’ and virtual time adjustment
termd’*. Observe that in terms of providing end-to-end delay bounds, a rate-based sched-
uler can be treated as if it were a delay-based scheduler with a virtual delay parameter
Limae [ri (see the comment at the end of Section 4.3.1). Hence we can eliminate the vir-
tual time adjustment terV"* completely. As discussed in [73], there are several options
that we can use to encode the packet state: using an IP option, using an MPLS label, using
the IP fragment offset field. Using the last option, for example, the packet state informa-

75

tion can be efficiently encoded using floating point representation with 17 bits [73]. Our
virtual time reference system allows for additional flexibility in packet state encoding. In
the case where only coarse-grain QoS guarantees (say, a fixed number of bandwidth or de-
lay classes) is to be supported (e.g., in a DiffServ domain), the rate and delay parameters
can be encoded in the TOS bits of the IP header as part of PHBs. Thus only the packet
virtual time stamp needs to be carried in a separate field. It is possible to represent packet
virtual time stampspproximatelyusing the notion o$lotted virtual time Accuracy of the
approximation clearly hinges on the number of bits available to represent the virtual time.
These issues will be investigated further in the future work.

4.8.2 QoS Provisioning and Admission Control

As stated in the introduction, one major objective of our work is to use the virtual time ref-
erence system as a QoS abstraction to decouple the data plane from the QoS control plane
So as to facilitate the design of a bandwidth broker architecture for guaranteed services. In
this section we briefly describe how this may be achieved. The details are left to future
work.

In our bandwidth broker architecturep QoS reservation state, whether per-flow or ag-
gregate reservation state, is maintained at any core rauandwidth brokers have the
topology information of a network domain amynamicallymaintain all the QoS states
regarding the flows and routers. When a request for setting QoS reservation for a flow ar-
rives, a bandwidth broker looks up its QoS database, finds an appropriate path and checks
whether sufficient resources are available at each router along the path. In case the flow can
be admitted, the bandwidth broker would choose a reserved i@te a delay parameter

d for the flow, and informs the edge router to configure the edge conditioner accordingly.
No QoS configuration or “state update” is needed at core rootees per-flow basisAs

a result, the problem abbustnesgacing the conventional hop-by-hop admission control
approach [73], e.ginconsistenQoS databases due to loss of signaling messages, is sig-
nificantly alleviated. Because of the virtual time reference system, this bandwidth broker
architecture is capable of supporting QoS provisioning and admission control with similar
granularity and flexibility of the IntServ guaranteed service. The decoupling of QoS control
plane and data plane enables sophisticated admission control algorithms to be employed in
powerful bandwidth brokers for network-wide optimization of resource utilization. This is
generallyinfeasiblein the conventional hop-by-hop admission control approach. Further-
more, the bandwidth broker architecture makes it easy to implement policy-based admis-

76

sion control or advanced reservation.

4.9 Summary

In this chapter we have proposed and developed a novel virtual time reference system as a
unifying scheduling framework to provide scalable support for guaranteed services. This
virtual time reference system is designed as a conceptual framework upon which guaran-
teed services can be implemented in a scalable manner using the DiffServ paradigm. The
key construct in the proposed virtual time reference system is the notion of packet virtual
time stamp, whose computation is core stateless, i.e., no per-flow states are required for its
computation. In the chapter, we have laid the theoretical foundation for the definition and
construction of packet virtual time stamps. We described how per-hop behavior of a core
router (or rather its scheduling mechanism) can be characterized via packet virtual time
stamps, and based on this characterization, establish end-to-end per-flow delay bounds.
Consequently, we demonstrated that, in terms of its ability to support guaranteed services,
the proposed virtual time reference system has the same expressive power as the IntServ
model. Furthermore, we showed that the notion of packet virtual time stamps leads to the
design of new core stateless scheduling algorithms, especially work-conserving ones. In
addition, our framework does not exclude the use of existing scheduling algorithms such
as stateful fair queueing algorithms to support guaranteed services.

77

Part Il

Scalable Network Resource
Management Control Plane

78

Chapter 5
Background and Overview

The ability to provide end-to-end guaranteed services (e.g., guaranteed delay) for net-
worked applications is a desirable feature of the future Internet. To enable such services,
Quality-of-Service (QoS) support frobyoth the network data plang@.g. packet schedul-

ing) and the control planée.g., admission control and resource reservation) is needed. In
the first part of this dissertation, we have investigated how powerful and flexible QoS can
be supported in the Internet in a scalable manner. In this part, we focus on reducing the
operational complexity on the control plane.

Previous attempts at reducing the complexity of QoS control plane have mostly followed
the conventionahop-by-hopeservation set-up approach adopted by RSVP and ATM through
QoS control state aggregatioim the conventional hop-by-hop reservation set-up approach,
the QoS reservation set-up request of a flow is passed from the ingress router towards the
egress router along the path of the flow, where each router along the path processes the
reservation set-up request and determines whether the request can be honorég adnot
ministering a local admission control test using its own QoS state informakomever,

due to the distributed nature of this approach and unreliability of the network, potential
inconsistency (e.g., due to loss of signaling messages) may result in the QoS states main-
tained by each router, which may cause serious problems in network QoS management.
RSVP addresses this problem by ussgjt stateswhich requires routers to periodically
retransmit PATH and RESV messages, thus incurring additional communication and pro-
cessing overheads. These overheads can be reduced through a number of state reduction
techniques [40, 79, 80]. Under tleere statelesramework proposed in [73], the scalabil-

ity issue of QoS control plane is addressed by maintaining agdyyegate reservation state

79

at each router. The problem of inconsistent QoS states is tackled via eoamellidth esti-
mationalgorithm, which relies on the dynamic reservation information periodically carried
in packets, and incurs additional processing overhead at core routers.

The conventional hop-by-hop reservation set-up approach ties such QoS control functions
as admission control, resource reservation and QoS state management to core routers,
whether per-flow or aggregate QoS states are maintained at core routers. Besides the is-
sues discussed above, this approach requires admission control and QoS state management
modules to be installed at every single router to support guaranteed services. As a result, if
a new level of service (say, a new guaranteed delay service class) is introduced into a net-
work, it may require upgrade or reconfiguration of the admission control modules at some
or all core routers. An alternative, and perhaps more attractive, approachbarttieridth
broker(BB) architecture, which is first proposed in [58] for tReemium Servicesing the
DiffServ model. Under this BB architecture, admission control, resource provisioning and
other policy decisions are performed by a centralized bandwidth broker in each network
domain.

This centralized bandwidth broker model for QoS control and management has several ap-
pealing features. For example, the centralized bandwidth broker model decouples (to a
large extent) the QoS control plane from the data plane. In particular, QoS control func-
tions such as admission control and QoS state maintenance are removed from the core
routers of a network domain, reducing the complexity of the core routers. Consequently,
no hop-by-hop signaling for reservation set-up along the data path is needed, removing
the signaling overhead from core routers. Furthermore, because the network QoS states
are centrally managed by the bandwidth broker, the problems of unreliable or inconsistent
control states are circumvented [73]. This is in contrast to the IETF IntServ QoS control
model based on RSVP [6, 84], where every router participates in hop-by-hop signaling for
reserving resources and maintains its own QoS state database. Hence in this respect, the
centralized bandwidth broker model provides a more scalable alternative for QoS control
and management.

On the other hand, although several implementation efforts in building bandwidth brokers
are under way (see, e.g., [75]), so far it is not clear what level of guaranteed services can
be supported and whether core routers are still required to petdmahadmission control
under the proposed BB architecture in [58]. Moreover, the centralized bandwidth broker
model for QoS control and management also introduces its own scalability issue, in partic-
ular, the ability of the bandwidth broker to handle large volumes of flows as the network

80

system scales. In a DiffServ network where only slow time scale, static resource provi-
sioning and traffic engineering (e.g., those performed to set up virtual private networks)
are performed, the scalability problem may not be acute. But with the rapid evolution of
today’s Internet, many new applications and services such as Voice over IP (MolP), on-
demand media streaming and real-time content delivery (e.g., stock quotes and news) may
require dynamic QoS control and management such as admission control and resource
provisioning at the time scale of flow arrival and departure. In these circumstances, an
inappropriately centralized bandwidth broker system can become a potential bottleneck,
limiting the number of flows that can be accommodated into the network system, while the
network system itself is still under-loaded. See [3, 76, 85] for more detailed discussions on
the issues in designing and building such a centralized bandwidth broker architecture.

In this part, we will present two scalable bandwidth broker architectures. In Chapter 6,
we design a centralized bandwidth broker architecture, which relies on the virtual time
reference system we studies in the last chapter to completely decouple the QoS control
plane from the packet forwarding data plane. Using this bandwidth broker architecture,
we demonstrate how admission control can be done on an entire path basis, instead of
on a “hop-by-hop” basis, which may significantly reduce the complexity of the admission
control algorithms. In Chapter 7, we present a hierarchical bandwidth broker architecture
to further improve the control plane scalability in supporting QoS in the Internet.

81

Chapter 6

A Centralized Bandwidth Broker
Architecture

6.1 Introduction

In this chapter we present a novel bandwidth broker architecture for scalable support of
guaranteed services thagcouples the QoS control plane from the packet forwarding plane
More specifically, under this BB architecture, The QoS reservation states are stored at and
managed solely by the bandwidth broker(s) in a network domain. Despite this fact, our
bandwidth broker architecture is stilhpable of providing end-to-end guaranteed services,
whether fine-grain per-flow delay guarantees or coarse-grain class-based delay guaran-
tees This bandwidth broker architecture is built upon thdual time reference system
developed in [86]. This virtual time reference system is designeduagigng scheduling
framework based on which both tiper-hop behavior®f core routers (in terms of their
abilities to provide delay and bandwidth guarantees) anéildeto-end propertiesf their
concatenation can be characterized. Furthermore, it also provides a QoS abstraction for
scheduling mechanisms of core routers that allows the bandwidth broker(s) in a network
domain to perform (either per-flow or aggregate) QoS control functions such as admission
control and reservation set-up with no or minimal assistance from core routers.

Because of this decoupling of data plane and QoS control plane, our bandwidth broker ar-
chitecture is appealing in several aspects. First of all, by maintaining QoS reservation states
only in a bandwidth broker (or bandwidth brokers), core routers are relieved of QoS con-
trol functions such as admission control, making them potentially more efficient. Second,

82

and perhaps more importantly, a QoS control plane that is decoupled from the data plane
allows a network service provider to introduce new (guaranteed) services without neces-
sarily requiring software/hardware upgrades at core routers. Third, with QoS reservation
states maintained by a bandwidth broker, it can perform sophisticated QoS provisioning
and admission control algorithms to optimize network utilization meéwork-widefash-

ion. Such network-wide optimization is difficult, if not impossible, under the conventional
hop-by-hop reservation set-up approach. Furthermore, the problem of inconsistent QoS
states facing the hop-by-hop reservation set-up approach is also significantly alleviated un-
der our approach. Last but not the least, under our approach, the reliability, robustness
and scalability issues of QoS control plane (i.e., the bandwidth broker architecture) can be
addressedeparately from, and without incurring additional complexity to, the data plane

for example, by using distributed or hierarchical bandwidth brokers [88].

To illustrate some of the advantages presented above, in this chapter we will primarily fo-
cus on the design of efficient admission control under the proposed bandwidth broker archi-
tecture. We consider botber-flowend-to-end guaranteed delay services aads-based
guaranteed delay services with flow aggregation. Using our bandwidth broker architecture,
we demonstrate how admission control can be performed at an patindevel, instead

of on a “hop-by-hop” basis. Such an approaeim significantly reduce the complexity of

the admission control algorithms. In designing class-based admission control algorithms,
we investigate the problem of flow aggregation in providing guaranteed delay services, and
devise a new apparatus to effectively circumvent this problem using our bandwidth bro-
ker architecture. We conduct extensive analysis to provide theoretical underpinning for
our schemes as well as to establish their correctness. Simulations are also performed to
demonstrate the efficacy of our schemes.

The remainder of this chapter is structured as follows. In Section 6.2, we first briefly review
the virtual time reference system, and then present an overview of our proposed bandwidth
broker architecture. In Section 6.3, we present per-flow path-oriented admission control
algorithms. These admission control algorithms are extended in Section 6.4 to address
class-based guaranteed delay services with flow aggregation. Simulation investigation is
conducted in Section 6.5, and the chapter is concluded in Section 6.6.

83

6.2 Bandwidth Broker Architecture Overview

In this section we present a brief overview of a novel bandwidth broker architecture for
scalable support of guaranteed services. This bandwidth broker architecture relies on the
virtual time reference system, which we studied in the last chapter, to provide a QoS ab-
straction of the data plane. First, we need to provide an end-to-end delay bound within
the virutal time reference system by incoporating the delays packet experienced at edge
routers.

An important consequence of the virtual time reference system outlined above is that the
end-to-end delay bound on the delay experienced by packets of a flow across the network
core can be expressed in terms of the rate-delay parameter pair of a flow and the error terms
of the routers along the flow’s path. Suppose there areidtaps along the path of floyy

of which ¢ routers employ rate-based schedulers, ardq delay-based schedulers. Then

for each packet’* of flow j, we have

J,max

h h—1
Vot <dl, =gt (g + W+ Yo (6.1)
=1 =1

whereL’™ is the maximum packet size of floyv

Suppose the traffic profile of flowis specified using the standard dual-token bucket regu-
lator (o7, p?, P7, L7"™*) wheres? > L7 is the maximum burst size of floy p’ is the
sustained rate of floy, P/ is the peak rate of floy. Then the maximum delay packets of
flow j experienced at the edge shaper is bounded by

»Pj— J Lj,mam
T (6.2)

rJ rl

dj

edge

whereT? = (o7 — L3™®) /(P7 — p7) is the maximum duration that floyvcan inject traffic
at its peak rate into the network (here the edge traffic conditioner). Hence the end-to-end
delay bound for flow; is given by

B =1 e S U S (6.3
edge_l— core — Ton i +(Q+) ri +(_Q) +Z Z_I_Zﬂ-i‘(:)

j
r i—1 i—1

d‘j

end—to—end —

Observe that the end-to-end delay formula is quite similar to that specified in the IETF
Guaranteed Service using the WFQ as the reference system. In this sense, the virtual time

84

reference system provides a conceptu@ke statelesframework based on which guaran-
teed services can be implemented in a scalable manner using the DiffServ paradigm.

Now let's move to the overview of the bandwidth broker architecture. Each fontére
network domain is characterized by an error term. The novelty of the proposed bandwidth
broker architecture lies in thatl QoS reservation and other QoS control state information
(e.g., the amount of bandwidth reserved at a core router) is removed from core routers,
and is solely maintained at and managed by bandwidth brokehisjupporting guaran-

teed services in the network domain, core routers perfa@QoS control and management
functionssuch as admission control, but ordgta plane functionsuch as packet schedul-

ing® and forwarding. In other words, the data plane of the network domain is decoupled
from the QoS control plane. Despite the fact that all the QoS reservation states are removed
from core routers and maintained solely at the bandwidth broker, the proposed bandwidth
broker architecture is capable of supporting guaranteed services with the same granular-
ity and expressive power (if not more) as the IntServ/Guaranteed Service model. This is
achieved without the potential complexity and scalability problems of the IntServ model.
Furthermore, as mentioned in the introduction, our bandwidth broker architecture for sup-
porting guaranteed services has many appealing features that makes ftaxibie and
arguably, morescalable In this chapter, we will illustrate some of these advantages by ad-
dressing the admission control problem under the proposed bandwidth broker architecture.
The major components of the bandwidth broker architecture (in particular, those pertinent
to the admission control) are described below.

As shown in Figure 6.1, the bandwidth broker (BBpnsists of several modules such as
admission control, QoS routing and policy control. In this chapter, we will focus primar-
ily on the admission control module. The BB also maintains a number of management

1The bandwidth broker architecture presented in this chapter is designed for supporting guaranteed ser-
vices only. We assume that each router deploys an appropriate (i.e., characterizable by the notion of error
term) scheduler with certain amount of bandwidth and buffer size provisioned for supporting guaranteed de-
lay service. Hence precisely speaking, the error term of a router is that of the scheduler deployed at the router.
Throughout the chapter, by a router we mean the scheduler of the router used for supporting guaranteed ser-
vices.

2Since the virtual time reference system does not mandate the scheduling mechanism used by a core
router, in particular, that core stateless schedulers sudx&3C' and VT-EDF be used, it is possible for
some routers (e.g., those at or near the network edge) to implement stateful scheduling algorithms (e.qg.,
static WFQ or even per-flow WFQ [86]) to support guaranteed services. In the latter case,smdréainling
parameters (either class-based or per-flow) may need to statically or dynamically configured by the bandwidth
broker, e.g., during a path set-up or at other occasions.

3For simplicity, we assume that there is a single centralized BB for a network domain. In practice, there
can be multiple BBs for a network domain to improve reliability and scalability [88].

85

Management information bases (MIBs)

- topology information base

Step 2: admission control process - policy information base

Control plane - flow information base
- BB - network QoS state information base
o * path QoS state information base
* node QoS state information base
J Service modules
, ,+* Step 3: decision (accept/reject) - admission control module
Step 1: new flow’ S~ - QoS routing module
service request,” S - policy control module
/
newflow
N \afflfl C, ’ a e . e Cm— =
Edge Corerouter

conditioner .
A network domain

Data plane

Figure 6.1: lllustration of a bandwidth broker (BB) and its operation in a VTRS network
domain.

information bases (MIB) for the purpose of QoS control and management of the network
domain. For example, thimpology information baseontains topology information that

the BB uses for route selection and other management and operation purposespahd the
icy information baseontains policies and other administrative regulations of the network
domain. In the following we describe the MIBs that are used by the admission control
module.

Flow Information Base. This MIB contains information regarding individual flows such

as flow id., traffic profile (e.g.(0”, p’, P?, L7"™*)), service profile (e.g., end-to-end delay
requirementD?), route id. (which identifies path that a flow traverses in the network do-
main) and QoS reservatiofr{, d’) in the case of per-flow guaranteed delay services, or a
delay service class id. in the case of class-based guaranteed services) associated with each
flow. Other administrative (e.g., policy, billing) information pertinent to a flow may also be
maintained here.

Network QoS State Information Bases. These MIBs maintain the QoS states of the
network domain, and thus are the key to the QoS control and management of the network
domain. Under our BB architecture, the network QoS state information is represented in
two-levels using two separate MIBpath QoS state information basadnode QoS state
information baseThese two MIBs are presented in detail below.

Path QoS state information basemaintains a set of paths (each with a route id.) be-
tween various ingress and egress routers of the network domain. These paths can

86

be pre-configured or dynamically set“upAssociated with each path are certain
static parameters characterizing the path and dynamic QoS state information regard-
ing the path. Examples of static parameters associated afpaite the number

of hopsh on P, the number of rate-based schedulers and delay-based sched-
ulers (h — ¢q) alongP, sum of the router error terms and propagation delay along
P, D, = .cp(¥; + m;), and the maximum permissible packet size (i.e., MTU)

L* ™ The dynamic QoS state information associated Witimclude, among oth-

ers, the set of flows traversirig(in the case of per-flow guaranteed delay services) or
the set of delay service classes and their aggregate traffic profiles (in the case of class-
based guaranteed delay services) and a number of QoS state parameters regarding the
(current) QoS reservation status@fuch as the minimal remaining bandwidtfy
alongP, a sorted list of delay parameters currently supported alagd associated
minimal residual service points, and the set of “bottleneck” nodes akong

Node QoS state information basemaintains information regarding the routers in the net-
work domain. Associated with each router is a set of static parameters characterizing
the router and a set of dynamic parameters representing the router’s current QoS state.
Examples of static parameters associated a ratitare the scheduler type(s) (i.e.,
rate- or delay-based), its error term{) propagation delays to its next-hop routers
7's, configured total bandwidtty and buffer sizeB for supporting guaranteed delay
services, and if applicable, a set of delay classes and their associated delay param-
eters, and/or a set of pre-provisioned bandwidth and buffer size {@irs3;) for
each delay class supported 8y The dynamic router QoS state parameters include
the current residual bandwidd® atS, a sorted list of delay parameters associated
with flows traversings and their associated minimal residual service point aind
so forth.

In the following sections we will illustrate how some of the path and router parameters will
be utilized and maintained by the BB to perform efficient admission control. Before we
move to the problem of admission control using the proposed BB architecture, we briefly
discuss the basic operations of the BB, in particular, those pertinentadithission control
module

“Note that during the process of a path set-up, no admission control test is administered. The major func-
tion of the path set-up process is to configure forwarding tables of the routers along the path, and if necessary,
provision certain scheduling/queue management parameters at the routers, depending on the scheduling and
gueue management mechanisms deployed. Hence we refer to such arapfiih @ngineeredTE) path. Set-
up of such a TE path can be done by using a path set-up signaling protocol, say, MPLS [9, 66], or a simplified
version (minus resource reservation) of RSVP.

87

When a new flow with traffic profilés’, p/, P?, [7"™**) and end-to-end delay requirement
Direa grrives at an ingress router, the ingress router sends a new flow service request mes-
sage to the BB. Upon receiving the service request, the BB first checks for policy and other
administrative information bases to determine whether the new flow is admissible. If not,
the request is immediately rejected. Otherwise, the BB selects 2 (fratim the ingress to

an appropriate egress router in the network domain) for the new flow, based on the network
topology information and the current network QoS state information, in addition to other
relevant information (such as policy constraints applicable to this flow).

Once the path is selected, the BB will invoke the admission control module to determine
if the new flow can be admitted. The details of admission control procedure for support-
ing per-flow guaranteed delay services and class-based guaranteed delay services will be
presented in Section 6.3 and Section 6.4, respectively. Generally speaking, the admission
control procedure consists of two phasesadinission control tegthase during which it

is determined whether the new flow service request can be accommodated and how much
network resources must be reserved if it can be accommodated; dondkReepinghase

during which the relevant information bases such as the flow information base, path QoS
state information base and node QoS state information base will be updated, if the flow is
admitted. If the admission control test fails, the new flow service request will be rejected,
no information bases will be updated. In either case, the BB will inform the ingress of the
decision. In the case that the new flow service request is granted, the BB will also pass
the QoS reservation information (e.gr/, d’)) to the ingress router so that it can set up

a new or re-configure an existing edge conditioner (which is assumed to be co-located at
the ingress router) for the new flow. The edge conditioner will appropriately initialize and
insert the packet states into packets of the new flow once it starts to send packets into the
network.

Before we proceed to discuss admission control algorithms in the proposed bandwidth
broker architecture, it is worth noting that the proposed bandwidth broker architecture is
only aconceptually centralizedrchitecture. It can be implemented in a distributed matter

in practice. In particular, the separationR#th QoS State Information BaaadNode QoS

State Information Baskcilitates the design of distributed (hierarchical) bandwidth broker

5If necessary, a new path may be set up dynamically. The problem of QoS routing, i.e., finding an
“optimal” path for the flow can be handled relatively easily under our BB architecture. Since it is beyond the
scope of this chapter, we will not discuss it here. As an aside, our BB architecture can also accommodate
advance QoS reservation in a fairly straightforward fashion, owing to decoupling of the QoS control plane
and data plane and the centralized network QoS state information bases.

88

systems [88]. Moreover, the admission control algorithms developed in this chapter can be
used as middlewares to build distributed bandwidth broker systems.

6.3 Admission Control for Per-Flow Guaranteed Services

In this section, we study the problem of admission control for support of per-flow guaran-
teed services under the proposed bandwidth broker architecture. We prpatnoaiented
approach to perform efficient admission control test and resource allocation. Unlike the
conventionalhop-by-hopapproach which performs admission contiradividually based

on thelocal QoS statet each router along a path, this path-oriented approach examines
the resource constraingdong the entire path simultaneousignd makes admission con-

trol decision accordingly. As a result, we can significantly reduce the time of conducting
admission control test. Furthermore, we can also perform path-wide optimization when
determining resource allocation for a new flow. Clearly, such a path-oriented approach is
possible because the availability of QoS state information of the entire path at the band-
width broker.

6.3.1 Path with Only Rate-based Schedulers

To illustrate how the path-oriented approach works, we first consider a simple case, where
we assume that the pathfor a new flowr consists of only rate-based schedulers. Hence

in this case, we only need to determine whether a reserved'tatan be found for the

new flow for it to be admitted. The delay parame#&rwill not be used. For simplicity

of exposition, we assume that a scheduler suctoas-stateless virtual clociC¢VC) or
core-jitter virtual clock(CJVC) is employed at the routef alongP. Letj € F; denote

that flow j currently traversess;, andC; be the total bandwidth a§;. Then as long as
Yjer 7 < C;, S; can guarantee each flopits reserved bandwidth. We useCyy, to
denote the residual bandwidth &, i.e., C5i, = C; — Y ez /. We consider the two

phases of the admission control procedure.

Admission Test. Let (¢, p¥, P¥, L*"™%*) be the traffic profile of a new flow, and D"
be its end-to-end delay requirement. kdie the number of hops iR, the path for the new
flow. From (6.3), in order to meet its end-to-end delay requirem®rit?, the reserved rate
r¥ for the new flowr must satisfy: 1p” < ¥ < P”, and 2)

PV — p¥ v,max

+(h+1)

DYt >ty + d

edge core — T:n + DZ(DJt (64)

/rl/

89

whereTy, = (0¥ — L") /(P* — p’) andD{}, = Yicp Wi + Liep,izn Ti-

Furthermorey” must not exceed the minimal residual bandwi@fh, along pathP, where
C? . = min;cp Ci, is maintained, as a path QoS parameter associatedRyitinthe path

res

QoS state MIB.

Letr” . bethe smallest’ that satisfies (6.4), i.ex;,

tmin = [Ton PY + (h + 1) L7 /[D¥"e9 — DE, 4 T .
Define

O

low

Tfea = max{p”, r; .} andr}i’a = min{P",C" }.

ThenRj,, = [ri%, rit,] is thefeasible rate rangefrom which a feasible reserved rate
can be selected. Clearly, R}, is empty, then the service request of the new flomust
be rejected. Otherwise, it is admissible, atid= % is theminimalfeasible reserved rate
for the new flowv. Given that the path QoS parametér§, andC?” associated withP

Tes

are maintained in the path QoS state MIB, the above admission test can be dfig.in

Bookkeeping. If the new flowr is admitted into the network, several MIBs (e.g., the flow
MIB, the path and node QoS state MIBs) must be updated. The flow id., traffic profile and
service profile of the new flow will be inserted into the flow MIB. The minimal residual
bandwidthC”, _ will be subtracted by, the reserved rate for flow. Similarly, for each

S; along P, its residual bandwidtiC'S:, will also be subtracted by”. Furthermore, for

any path?’ that traversess;, its minimal residual bandwidt’”, may also be updated,
depending on whether the update®f, changes"”.. Lastly, note that when an existing

flow departs the network, the relevant MIBs should also be updated.

6.3.2 Path with Mixed Rate- and Delay-based Schedulers

We now consider the general case where the fafior a new flowr consists of both
rate-based and delay-based schedulers. In this case, we need to determine whether a rate-
delay parameter pair”, d”) can be found for the new flow for it to be admitted. Let

be the number of rate-based schedulers /ardq the number of delay-based schedulers
along pathP. For simplicity of exposition, we assufthat the rate-based schedulés

along path? employ C¢VC (or any similar) scheduling algorithm whose schedulability
condition isy";c -, 7 < Cj, whereas the delay-based schedutgremploy theVT-EDF

®The schedulability conditions @fsVC' and VT-EDF scheduling algorithms are representative of rate-
based and delay-based scheduling algorithms [86]. Hence the results presented here for these two schedulers
are also applicable to other schedulers, perhaps with some modifications.

90

scheduling algorithm, whose schedulability condition is given in (4.33). HenSgid a
rate-based scheduler alofy it can guarantee each floyits reserved bandwidth’, as
long asy_ ;.7 7 < C;. Similarly, if S; is a delay-based scheduler aloRgit can guarantee
each flow;j its delay paramete#’, as long as the schedulability condition (4.33) is satisfied.
We now consider the two phases of the admission control procedure.

Admission Test. Because of the inter-dependence of the reservedrtasad the delay
parameterl” in the end-to-end delay bound (6.3) as well as the more complex schedula-
bility condition (4.33) for the delay-based schedulers, the admission test for this case is
less straightforward. By uncovering the monotonicity properties of the end-to-end delay
formula (6.3) and schedulability condition (4.33), we show how an efficient admission test
can be designed using the path-oriented approach. In addition, if the new oadmis-

sible, this admission test finds aptimalfeasible rate-delay parameter péit, ") in the

sense that” is theminimalfeasible rate. In other words, no other rate-delay parameter pair
(r*',d”") such that”" < r" is feasible.

Before we present the algorithm, we need to introduce some notation and transform the
end-to-end delay formula (6.3) as well as the schedulability condition (4.33) into a form
such that their monotonicity properties can be derived. As beforégtep”, P¥, L")

be the traffic profile of the new flow, andD""<? its end-to-end delay requirement. In order

for the new flonv to be admitted along the pahwith a rate-delay parameter pait’, d”),

its end-to-end delay requiremeht’"*? must be satisfied, namely, j < r* < P”, and

P — ¥ v,max

Dl > dgdge + dZOT‘e = T:n + (q + 1) + (h o q)dV + DZ()Jt' (65)

7n1/

Furthermore, the schedulability condition at each schedsjlenust not be violated. Let
C7 . be the minimal residual bandwidth alo®y i.e.,C”,, = min;cp CSi.. Then from the

res

schedulability conditions for the rate- and delay-based schedulers, we seé that”,

res’t

Furthermore, for every delay-based scheddigrlong P, let (r¥. d¥) be the rate-delay

parameter pair of flovi, wherek € F;. Then for eachk € F;, S; € P such thau? > d”,
we must have

> A = d]) + L) 4 [— d7) + L] < Cidy (6.6)

{jeFidi<dk}

In summary, in order fo{r”, d”) to be a feasible rate-delay parameter pair for the new flow
v, we must have that” € [p¥, min{P",C”._}] and that-” andd” must satisfy (6.5) and

91

(6.6). We now transform (6.5) and (6.6) into simple constraints“aitnat are functions of
dv.

Definet” = ;= (D" — Df;, + T,,) and=" = ;2 [Ty, P + (q + 1) L*""**]. After some
simple algebraic manipulations, we can rewrite (6.5) in the following form:

<t - (6.7)

/rl/
or equivalently,

—_
=V
=

r’ >

— ty_dl/'

(6.8)

Note that from (6.7), itis clear that' < ¢”. Furthermore, it” decreases, the upper bound
onr” in (6.8) also decreases. Hence the feasible range’fshrinks from the right, ag”
decreases.

We now consider the delay constraints (6.6). Given any flotnaversing a delay-based
schedulers; such thau® > ¢, define

Sh=Cdf — > [(df =)+ L. (6.9)

{jeFidl<dF}

Then (6.6) becomes
r(df —d) + LT < SE (6.10)

Note thatS* denotes theninimum residual servicever any time interval of length? at
scheduless;. Hence (6.10) states that the new flovean be accommodated &t with a
rate-delay parameter pdir”, d”) while withoutaffecting the delay guarantee for fldwif
the service required by the new flanover any time interval of lengttl¥ does not exceed
SF. For simplicity, we shall refer t&* as theminimum residual servicef S; at timed?.

We can consolidate the delay constraints at all the delay-schedulers7alasgollows.
Let 79¢ be the union of the sets of the flows at all the delay-based schedulerg; e
U{j € F; : S, is delay-baseHl Suppose there are a total &f distinctivedelay parameters

92

associated with the flows i, Let these distinctivé/ delay parameters be denoted by
d,d?,...,d™ where0 < d' < d®> < ---<dM. Form =1,2,..., M, define

S™ =min{S¥ : k € F; andd® = d™, S; is delay-baseH (6.11)

Clearly, S™ denotes the minimal residual serviaemong all the delay-based schedulers
at timed™. Hence we refer t&™ as theminimal residual service of patR at timed™.
With this notation, we see that the new flencan be accommodated along p&twith a
rate-delay parameter pdir”, ") while withoutaffecting the delay guarantee for any flow
at any delay-based scheduler along the path, if ford&@hy> d”, we have

,r,l/(dm _ dl/) _"_ Ll/,max S Sm
Using (6.8), we can re-write the above inequality as the following constraint:on
r’(dm —t") < S™ - = — Lrmer, (6.12)

We now show how to use (6.8) and (6.12) to determine whether a feasible rate-delay pa-
rameter pairr”, d”) exists, and if it exists, how to find the minimum feasibte Define

d® = 0 anddM+*! = oo. Then if the new flow is admissible, there must exist a rate-delay
parameter paifr”, d"), whered” € [d™~1, d™) for somem = 1,2,..., M +1. From (6.7),

itis clearthat) < d” < t“. Letm* be suchthad™ —! <t < d™". Clearly,[d™ ~*,d™") is

the rightmost delay interval that may contain a feasitjleWe now examiné&erativelythe
validity of each of the delay intervald™!, d™), starting fromm = m* down tom = 1.

Form = m*,m* —1,...,2,1, supposel” € [d" ' d™). Then from (6.8) as well as the
constraint that” € [p”, min{ P, C} }], we must have” € R}., = [r}@fl,rﬁﬁ], where

ml — v m,r .
Tfea = max{m,p b Tfea = min{

—— P",CL}. (6.13)

v —dm’

Similarly, from (6.12), it is not too hard to see thét € [d™~!, d™) implies thatr” €
Ri = [s v |, where
Sk _ =V _ [vmazx

—

m,l

Ty, = ax
del m§k<m*{ dk — v }’
=v v,max k =v v,max
) . =Y+ LY R AL g
riy’ = min{ min {—————}, min : (6.14)
m<k<m* " ¥ — dF k>m* dk — tv

93

interval shrinking

at each iteration ggterval_movi_ ng towards | eft

each iteration
’—»Rm<—‘ FRm
del fea
}[][]
m,| m,r m,l m,r rate
rdel rdel I’fea rfea
1 1 1 1 1 1 i 1 1 |
d=0 o8 o - .. d™ gm ... g g g w1
| | delay
d’ tV (constant)

Figure 6.2: The behavior of feasible rarigg;, and delay constraint rangej;, at themth
iteration in the search of feasible rate-delay parameter(pair”) for a new floww.

Observe that when we move from the current delay intefat!, d™) to the next delay
interval to the leffd™~2, d™~'), the corresponding feasible rate rargg,, determined by
(6.13) also shifts to the left (see Figure 6.2). In contrast, the corresponding feasible rate
rangeR;, determined by the delay constraints (6.14) shrinks: the left eﬁééncreases

while the right edge’);)] decreases (see Figure 6.2). Using these monotonicity properties
of R}, andRy;;, we obtain the following theorem, which states whether a feasible rate-
delay pair(r”,d”) exists such thaf” € [d™!, d™]. In addition, it also specifies whether

the intervals to the leftnaycontain a feasible solution, or a feasible solution with a smaller

r¥ mayexist.

Theorem 13 If R, N'RY, is empty, then no feasible rate-delay pafrs, d”) exist such
thatd” € [d™~',d™]. Furthermore, ifR7}., is empty, orRy, is empty, orriy, < ol
then no intervals to the left contain a feasible solution either. More precisely, no feasible

rate-delay pairg(r”, d”) exist such that” € [0,d™).

If R, N Ry, is not empty, then a feasible rate-delay pait, d”) exists such that” €
[d™=1,d™]. Furthermore, ifrj. < ri, thenr” = 7} is the smallest rate such that there
exists some” > 0 for which (r”,d") is a feasible rate-delay pair. In other words, any
rate-delay pair(r”, d*) wherer” < 7/ is not feasible.

Based on Theorem 13, the admission test is presented (in pseudo-code) in Figure 6.3. Start-
ing with the rightmost intervald™ —1, d™"), this algorithm determines iteratively whether

a feasible rate-delay pafr”, @) exists such that” € [d™ 1, d™"). If the new flowv is
admissible, the algorithm also finds tleasiblerate-delay parameter pdir’,) such that

94

= T D T
Letm* such thaud™ —1 < t¥ < d™
form=m*m*—-1,...,2,1
)0
Ry, = bl o]
m, m,r
,errélnf [Tdeln;rdel
if (Rfea n Rdcl == .
if (RT:,, == PR, == ®||r?;’; <)
break with d¥ = d™
eIse/*R;;m N R:l}lz # 0¥
. m,l m,
if (Tfea < r%el)
10. (Sl 50
11. v —tr - =
12. break with d¥
13. if (@ > t¥) no feasible value found
14. else returnd”

N aOpr WwDhE O

©

Figure 6.3: Admission test for a new flowon a path with mixed rate- and delay-based
schedulers.

r” is minimal The time complexity of the algorithm i@(1/). Note that in general, we
haveM < |F%| < 3 s is delay-basedFi |- HENCe the complexity of the algorithm hinges only

on the number of distinctive delay parameters supported by the schedulers along the path of
the new flow. This reduction in complexity can be significant if many flows have the same
delay requirements. This is particularly the case when we consider class-based admis-
sion control with flow aggregation where a number of fixed delay classes are pre-defined.
Clearly this reduction in complexity is achieved because our admission control algorithm
considers all the admissibility constraints along a path simultaneously. Tino$pessible

using the conventional hop-by-hop reservation set-up approach (e.g., as employed in the
IETF IntServ model with RSVP).

Bookkeeping.When a new flow is admitted in the network, the BB needs to update the flow
MIB, path QoS state MIB and node QoS state MIB, among others. For &patth mixed
rate-based and delay-based schedulers, in addition to path parametersBfichrdC’, .,

we assume that the minimum residual sen#¢eat eachi™ is also maintained, wheré”

is a distinctive delay parameter supported by one of the delay-based scheduler® along
These parameters facilitate the admission test described in Figure 6.3. Hence when a new
flow is admitted along pati®, these parameters need also to be updated. Furthermore,
we assume that for each delay-based schedijJ¢éhe minimum residual servicg of S;

at eachd" is also maintained at the node QoS state MIB. Hence these parameters must
be updated accordingly. Furthermore, for any path traverSjinghe corresponding path
minimum residual service parameters may also need to be updated.

95

microflows

—_— macroflows
: class1 \

N cla'ssK Q/

— Core Router Core Router Core Router
Edge Conditioners

scheduler | —s= |SCheduler |=—3=— .., =3 | scheduler

Figure 6.4: Class-based guaranteed services: dynamic flow aggregation along a path.

6.4 Admission Control with Dynamic Flow Aggregation

Traffic aggregation is a powerful technique that can be used to significantly reduce the
complexity of both the data plane and the control plane of a network domain. This reduc-
tion in complexitymaycome at a price— that guaranteed services may only be provided

to individual flows at acoarser granularity In this section we address the problem of
admission control for class-based guarantee services, where a fixed number of guaranteed
delay service classes are offered in a network domain. The class-based guaranteed delay
service model is schematically shown in Figure 6.4. A new user flow will be placed in one

of the delay service classes if it can be admitted into the network. All flows in the same
delay service class that traverse the same path will be aggregated into ansarogédlow

This macroflow is shaped using an aggregate reserved rate at the edge conditioner, and is
guaranteed with an end-to-end delay bound determined by the service class. We refer to
the individual user flows constituting a macroflow as thieroflows

A key issue in the design of admission control for this class-based service model is the
problem ofdynamicflow aggregation. The dynamics come from the fact thatroflows

may join or leave a macroflow at any timeéHence the aggregate traffic profile for the
macroflow may change dynamically, and as a result, the reserved rate for the macroflow
may need to be adjusted accordinglhis dynamic change in the aggregate traffic profile
can cause some undesirable effect on the end-to-end delay experienced by the macroflow
(see Section 6.4.1). As far as we are aware, this problem of dynamic flow aggregation has
not been identified nor addressed before in the literature. The existing work on traffic ag-
gregation (in particular, in the context of guaranteed services, see, e.g. [40]) has implicitly
assumedtaticflow aggregation: a macroflow is an aggregation ékedmicroflows, with

no new microflows joining or existing constituent microflows leaving in the duration of

96

the macroflow. The remainder of this section is organized as follows. In Section 6.4.1 we
first illustrate the impact of dynamic flow aggregation on providing end-to-end guaranteed
services, and then in Section 6.4.2 we propose solutions to circumvent the problems using
our BB architecture. In Section 6.4.3, we will briefly describe how to perform admission
control for class-based guaranteed services.

6.4.1 Impact of Dynamic Flow Aggregation on End-to-End Delay

Before we illustrate the impact of dynamic flow aggregation, we first introduce some nota-
tion and assumptions. Consider a macroftowvhich currently consists of. microflows.

Let (o7, p/, P7, L7™7) be the traffic profile of the microflow, 1 < j < n. For simplic-

ity, we will use a dual-token bucket regulatés®, p®, P~ L*™*), as the aggregate traffic
profile for the macroflowy. Hence we have® = 3°7_, o/, p* = X7_, p?, P* = 37, P,

and Lemar = 370, [2me®. Note thatLeme® = 370 | [/™e is because a packet of the
maximum size may arrive from each of themicroflows at the same time. Hence the
edge conditioner may see a burst/¢f™** at any time. In contrast, since only one packet
from the macroflonx may leave the edge conditioner at any given time, the “maximum
burst” the macroflow may carry into the network corenisx’_, Limaz LetP denote the
path of the macroflowy, and L”"™* denote the maximum packet size permissible in a
macroflow (i.e., a delay service class) aloRg Then 7™ > max’_, L7maz \Nithout

loss of generality, we assume that ™ is fixed.

Supposave treat the macroflowt asstatic i.e., with no microflows joining or leaving at

any time. Let(r®, d*) be the rate-delay parameter pair reserved for the macroflow. For
simplicity, assume that path consists of only rate-based schedulér®{ them in total).

Then from the end-to-end delay formula (6.3), the end-to-end delay experienced by the
macroflowa (and therefore by any packets from any constituent microflows) is bounded

by

Pa _ po [max LP,max
—re s T +h +DF, (6.15)

ro ro re

d?ndftofend = da + da

edge core

whereD], = Yicp U + Xicp izn Ti-

We claim that if we allow microflows to dynamically join or leave a macroflow, the end-to-
end delay bound (6.15) mayo longerhold. We illustrate this through an example. Con-
sider a new microflow joins the existing macroflow at timet*. Let (¢”, p¥, P¥, L")

97

Arrival process

po+V Qstatic
Qdynamic r a+Vv
Lo+ may p¢ ,
Lo max
—— Onedynamic flow arrival pattern
””” Static flow aggregation
Qdynamic > Qstatic
r(X
a { \Y { o .
0 TorT };ron Jon Time
-I—V

on

Figure 6.5: An example illustrating the edge delay bound violation when a new microflow
joins.

be the traffic profile of the new microflow. Denote the “new” macroflow after the microflow
v has been aggregated (i.e., the macroflow that enters the network corg)dfter’, and

let (o, p*', P, L*"™a*) be its traffic profile. Suppose that the reserved rate for the “new”
macroflow increases front to r at timet*.

We first show that the packets from the “new” macroflow may experience a worst-case
delay at the edge conditioner that is larger thgp, = 775 £~ L2 This can hap-

/,-Ot

&/
—T

— .
pen, for example, in the scenario shown in Figure 6.5. In this scerf;%tb@ TY ,and thus

TV < T < T°.We assume that all the constituent microflows of the existing macroflow
« start at the same time (i.e., time 0) and greedy they dump the maximum allowed burst
into the network at any timg i.e., A%(0,¢) = £%(t) = min{ Pt + L*™** p*t+0c}. The

new microflowr joins the existing macroflow at timet* = T —T% , and itis als@reedy

at any timet > ¢*, AV(t*,t) = EY(t — t*) = min{P¥(t — ¢*) + L™ p¥(t — t*) + 0" }.
Then it is not difficult to see that at time= 7 , the total amount of traffic that is queued

at the edge conditioner is given by

Q(t) = (P* = r*)Tg, + (P¥ +r* — r®)Ty, + L™,

Hence the delay experienced by a packet arriving the edge conditioner at=tiridg, will

be at leasty(t)/r*’, which can be shown to be larger thd@‘jlge in general. This larger
delay is caused by the fact that at the time a new microflow is aggregated into an existing
macroflow flow, the buffer at the edge conditiomeay not be emptyThe “old” packets

98

Arrival process

P s Qdynamic g
-7 Qstatic /,/’rx“*'v

a, -7
Lomax [

Q- V,max|
L

—— Onedynamic flow arrival pattern
””” Static flow aggregation

Qdynamic > QS““iC

LV -max dra

0 TV Time

on

Figure 6.6: An example illustrating the edge delay bound violation when a constituent
microflow leaves.

gueued there can cause the “new” packets to experience additional delay that is no longer
bounded byi%,

edge*

We now consider the delay experienced by packets from the “new” macroflimside

the network core. Despite the fact that packets from the “new” macraflcave serviced

with a higher reserved rate”’ (>), it can be formally established that some of these
packets may experience a worst-case delay in the network core that is bounded by
hLPmaez [re 1 DP notbyd?, . = hLP™ /re' + DP . Intuitively, this can happen because

the packets from the “new” macroflow may catch up with the last packets from the “old”
macroflow. Hence they may be queued behind the “old” packets, incurring a worst-case
delay bounded by? _ instead ofl®,,. Considering both the delay at the edge conditioner

and that in the network core, we see that packets of the “new” macroflow may experience
an end-to-end delay that is no longer bounded by the end-to-end delay formula (6.15).

A similar situation may also occur when a constituent microflow leaves an existing macroflow,
if we immediately decrease the reserved r&téo a new lower®'. For example, consider

the scenario illustrated in Figure 6.6. Assume that a microflafumps one packet with

the maximum packet size of the microflow at tiieand this packet is serviced first by

the edge conditioner. Furthermore, we assume that the microflow leaves the system at the
time L™ /r~. Suppose all other microflows in the macroflow are all greedy from time

Then it is not hard to see, if the reserved ratedbis immediately reduced te, that at

99

timet = T the total amount of traffic that is queued at the edge conditioner is given by,

a/

Q(t) _ La',maw + T(%Pa’ _ T’O/T(?T; + Ly,mazL
TOL
Hence the delay experienced by a packet arriving the edge conditioner at-iriig’ will

be at least)(¢)/r’, which is larger thaml2; ..

In conclusion, we see that when a new microflow joins or a constituent microflow leaves
an existing macroflow, the end-to-end delay experienced by the resulting macroflow after
the microflow is aggregated or de-aggregated may not be bounded by the end-to-end delay
formula (6.15). In other words, we cannot simply treat the resulting macrefahit were

a completely new and independent flolhis is because when a new microflow joins or

a constituent microflow leaves an existing macroflow, the buffer at the edge conditioner
may not be empty in general. These packets queued at the edge conditioner may have a
lingering effect that invalidates the end-to-end delay formula (6.88)v apparatuses are

thus needed to tackle the problem caused by dynamic flow aggreg8tdore we move

on, we would like to comment that the problem of dynamic flow aggregationtignique

to the virtual time reference system used in this chapter. The same problem exists in a
more general context. For example, dynamic flow aggregation will have the same effect
on a network of WFQ schedulers, the reference system used in the IntServ model. This is
because the situation happening at the edge conditioner described above will also apply to
a WFQ scheduler.

6.4.2 End-to-End Delay Bounds under Dynamic Flow Aggregation

In this section we present new mechanisms to effectively circumvent the problems caused
by dynamic flow aggregation. The basic objective of our approach is to enable the band-
width broker to make admission control decisions at any given time, using only the traffic
profile and reserved rate of the macroflow at that time. In other words, we do not want
the bandwidth broker to maintain an elaborate history record of the microflow arrival and
departure events of a macroflow. To take care of the potential extra delay at the edge con-
ditioner, in Section 6.4.2.1 we introduce the notioncohtingency bandwidtlwhich is
allocated for a short period of time (referred toa@mtingency periodafter a microflow

joins or leaves an existing macroflow to eliminate the lingering delay effect of the pack-
ets queued in the edge conditioner at the time the microflow joins or leaves an existing
macroflowa. In Section 6.4.2.2 we extend the virtual time reference system to accommo-

100

date the problem of dynamic flow aggregation. With these new mechanisms implemented,
we can show that the end-to-end delay of the macroflow after a microflow joins or leaves is
bounded by a modified end-to-end delay formula. We shall see in Section 6.4.2.2 that this
modified end-to-end delay bound can be computed based on the old delay bound (before a
microflow joins/leaves) and the traffic profile of the “new” macroflow.

6.4.2.1 Contingency Bandwidth and Edge Delay Bound

We introduce the notion afontingency bandwidtto eliminate the lingering delay effect of

the backlog queued in the edge conditioner at the time a microflow is aggregated into or de-
aggregated from an existing macroflow. It works as follows: Suppose at tienmicroflow

v joins or leaves an existing macroflaw In other words, the traffic from the microflow

will start arriving or stop arriving at the edge conditioner after Besides the reserved

rate r® being adjusted to a new reserved rate at t*, a contingency bandwidtihr is

also temporarily allocated to the resulting “new” macroflaw for a contingency period

of 7 time units In other words, in addition to®’, an extraAr” amount of bandwidth is
allocated to the “new” macroflow’ from time ¢* to t* + 7, but de-allocated after time

t* 4+ 7. The contingency bandwidthr” and contingency period” is chosen in such a
manner that the maximum delay in the edge conditioner experienced by any packet from
the “new” macroflow’ after timet* is bounded above by

A" < max{d%¢ do, 1. (6.16)

edge edge’ “edge

whered?;,. denotes the maximum edge delay bound on the “old” macroflow (i.e., before

t*) anddg‘;ge — Toaﬂi (Po/ o Ta/)/ra/ + La/7maw/,’na/.

The following two theorems state the sufficient conditionsfotf and ¥ so that (6.16)
holds, the proofs of which are fairly straightforward, which are delegated to Appendix C.1.

Theorem 14 (Microflow Join) Suppose at time a new microflow with the traffic profile
(o¥, p*, P, L»™*) joins an existing macroflow. Letr” = r* —r* andQ(t*) be the size
of the backlog in the edge conditioner at tirie Then (6.16) holds if

Q")
Arv

Ar” > PY —r”andt” > (6.17)

101

Theorem 15 (Microflow Leave) Suppose at timeé* a constituent microflow with the
traffic profile (¥, p¥, PV, L***) leaves an existing macroflow Letr” = r* — r® and
Q(t*) be the size of the backlog in the edge conditioner at tim&hen (6.16) holds if

Q(t")

Ar” > r”andt” > .
Arv

(6.18)

When a microflowv joins or leaves an existing macroflaw the BB can choose a con-
tingency bandwidth allocatiothr” using the two theorems above. For example, when a
microflow v joins, we can sef\r” = P” —r” = P 4+ —r® Whereas when a microflow

v leaves, we can sétr” = r” = r®*—r®. To compute the contingency perioti precisely

we need to know the backlag(¢*) in the edge conditioner at tim#. Since at time* the
maximum delay at the edge conditioner is boundedd4y};,, we have

Q(t*> S dold T(t*) — dold

edge edge(lra + Ar® (t*)) (619)
wherer(t*) is total bandwidth allocated to the macroflow at titie which includes the
reserved rate® and thetotal contingency bandwidtthr*(¢*) allocated to the macroflow
a at timet*. Given this upper bound ofy(¢*), the BB can determine an upper boutid
on the contingency period’ as follows:

od T4 Are(t*)

N
T = dedge Arv

: (6.20)
Hence afterr”, the BB can de-allocate the contingency bandwidNitf at timet* + 7. We

refer to this method of determining contingency periddas the (theoreticaontingency
period boundingapproach. This scheme does not require any feedback information from
the edge conditioner regarding the status of its buffer occupancy. However in general it can
be quiteconservative

A more practical approach is to have the edge conditionefeedback the actual contin-
gency periodo the BB. This scheme is referred as tntingency feedbackethod, and
works as follows. When a new microflowjoins or leaves an existing macroflaw the
BB sends aredge conditioner reconfiguratiomessage to the edge conditioner. In this
message, in addition to the new reserved ratethe contingency bandwidthr” is also

102

included. Suppose the edge conditioner receives this message &t tiftechecks the
current queue lengt®(¢*), and computes the new contingency peridd It can immedi-
ately inform the BB of the actual value ef. Or it can wait untilt* 4+ 77, and then send

a contingency bandwidth resetessage back to the BB. Note that whenever the buffer in
the edge conditioner becomes emptgoatingency bandwidth resetessage can also be
sent back to the BB, resettiradl of the contingency bandwidth allocated to the macroflow
a (i.e., settingAr® = 0). This is because after this point, the maximum delay experienced
by any packets of the macroflowis bounded by, ., which is solely determined by the
currentaggregate traffic profile of the macroflaw

6.4.2.2 Extension to VTRS and Core Delay Bound

Recall that in the core stateless virtual time reference system, packets from the same flow
carry virtual time stamps. These virtual time stamps satisfy, among the othevs;ttizd

time spacingproperty, which depends on the reserved rate of the flow. The virtual time
reference system is developed based on the assumption that the reserved rate of a flow is
fixed. In this section we illustrate how the virtual time reference system can be extended
to accommodate flow aggregation with dynamic rate changes. Based on this extension, we
also derive a modified core-delay bound for flow aggregation.

Consider an existing macroflawwhich traverses the paf. For simplicity of exposition,

we first assume that all the schedul&k&s along the path are rate-based. Suppose that
at time7*, the reserved rate of the macroflewis adjusted at the edge shaper frorno

r’ (this happens every time the rate of the edge conditioner is adjusted),*'Lbe the

last packet that leaves the edge conditioner before the rate changeaadp® +! be the
first packet that leaves the edge conditioner after the rate change @hen fork < k*,

arvtt —ak > Lk /r, and fork > k*, at™ — ak > LF+1 /', where recall that® denotes

the time packep® departs the edge conditioner and arrives at the first-hop scheduler.

To accommodate reserved rate change in the virtual time reference system, we need to
modify the definition of the virtual time adjustment for the transitional pagket' as
follows. Define

, , (6.21)
T T T

. . Lk* Lk*+1 . . Lk*+1
Ak+1:max{0,Ak—|—h(—)+al —ai 4 T—— 1.

For the packets after* !, the definition ofA* is not changed, namely, it is given in (4.8)
with 77 replaced by’. Indeed we can show that far = &* + 1,k* + 2,..., AF is the

103

cumulative delay experienced by packktlong the patlP in theideal dedicated per-flow
systen{86], where the rate of the servers is changed fréno " at timer*.

With the above modification, we can show that the following theorem holds. For its proof,
see Appendix C.2.

Theorem 16 For k = k* + 1,k* + 2,..., let5* = A*/h, where fork = k* + 1, A is

given by (6.21), and fok = k* +2, ..., A¥ is given in (4.8) with- replaced by~. Then the
virtual spacing and reality check properties hold for the macroflow after the rate change at
7*. Namely, fork = k* +1,..., 0% — oFt > Lk /v, andaF < &F, i € P. Furthermore,

the delay experienced by these packets in the network core is bounded by the following
modified core delay formula:

r r!

R P,max L'P,maa:
fr—ah < hmax{ : } +DP.. (6.22)

The above modified core delay bound is derived under the assumption that all the sched-
ulers along pattP are rate-based. We now consider the case where some schedulers along
path’P? aredelay-basedin order to ensure the validity of the virtual time reference system
under this case, we need to impose an assumptiba delay parametei® associated with

a macrofloww is fixed, no matter whether there are microflow arrivals or departures in the
macroflow Under this assumption, delay-based schedulers can be easily incorporated into
the extended virtual time reference system presented above. Suppose thestedmsed
schedulers anfl — ¢ delay-based schedulers along p&thThen the delay experienced by
packetsp®'s, k = k* + 1,k* + 2,... from the macroflow after the rate change at is
bounded by the following core delay formula:

L’P,ma:v LP,ma:p

f,lf—&]fgqmax , ,
r r

} + (h —q)d* + DT .. (6.23)

6.4.3 Admission Control with Dynamic Flow Aggregation

We now illustrate how to perform admission control and resource reservation with dynamic
flow aggregation, based on the results obtained in Section 6.4.2.1 and Section 6.4.2.2. Con-
sider a macroflowy. Let D*"? be its end-to-end delay requirement, which we assume is

"This assumption igot too restrictive in a network where a numberfodfed delay service classes are
provided.

104

fixedthroughout thentireduration of the macroflow. Whenever a microflow joins or leaves
the macroflow, we need to ensure that its end-to-end delay requirement is still satisfied.
At a given time, letr® be thereservedrate of macroflowa excluding the contingency
bandwidth allocatedLet Ar“(¢) denote theotal contingency bandwidth allocated &oat

any timet. (Here we denoté\r©(¢) as a function temphasize its time dependent nature

as every time a contingent period expires, the corresponding contingency bandwidth

is reduced fromAr®.) Hence at any given timethe actual bandwidth allocated to the
macroflowa is r(t) = r* + Ar®(t) > r*. Using this fact and (6.23), we see that if no
new microflow joins or leaves, the delay in the network core experienced by packets of
macroflowa is always bounded by = qL”™ /r® + (h — q)d* + D],, despite that

the actual rate for macroflow is not a constant. LeP be the path of macroflow, and

let C” . be the minimal residual bandwidth along p&th Hence at mos€’’,, additional
amount of bandwidth (reserved and contingent) can be allocated to any macroflow along
P. We now consider how to deal with microflow joins and leaves. We consider these two

cases separately below.

Microflow Join. Consider a new microflow wanting to join the existing macroflow
at timet*. If the new microflow can be admitted, we need to determine, for the resulting
“new” macroflowa/, a new reserved rate’ > r* as well asAr” amount of new con-
tingency bandwidth for a contingency period©f. From Theorem 14, without loss of
generality, we choosar” = P¥ —r* +r®. In other words, during the contingency period,
an additionalP” amount of bandwidth is allocated to macroflow Hence in order to be
able to admit the new microflow into the existing macroflow, first of all, we must have
Pv < C7 . If this condition is satisfied, then we need to find the minimal new reserved
rater® so that the end-to-end delay requiremérit™? can be satisfied for the resulting
macroflowa’. Note that after contingency period, the edge queueing delay for any packets
of the class is determined by the new class traffic profile and the reserved rate, therefore,
Sd—to—end = egge + max{d,, di, } < D7 (6.24)
Sincer® > ro, [Pmaer [po’ < [Pmaz pa Henced?,, < d% .. The constraint (6.24)
is reduced to ensure thdg(;ge < D~rea — 4o . From this constraint;® can be easily
computed. Hence the new microflow can be admitted if the new reserved‘ratan be
accommodated along pafh(i.e., if p* < r® —r® < P* < CP).

res

If the microflow can be admitted:* + P is allocated to the macroflow during the con-
tingency period (i.e., from* to t* + 7¥), and aftert* + 7, only " will be allocated for

105

S1 11 El D1

0@ @ 0 @ U

E2 D2

Figure 6.7: The network topology used in the simulations.

Table 6.1: Traffic profiles used in the simulations

Type | Burst size (b)] Mean rate (b/s) Peak rate (b/s) Max pkt size (B)| Delay Bounds (s
0 60000 0.05M 0.1M 1500 2.44 2.19
1 48000 0.04M 0.1M 1500 2.74 2.46
2 36000 0.03M 0.1M 1500 3.24 2.91
3 24000 0.02M 0.1M 1500 4.24 3.81
macroflowq/.

Microflow Leave. When a constituent flow leaves the macroflow at timet*, we may
reduce the current reserved rateto r*. Clearly, we must ensure that the amount of
bandwidth reduced;” = r* — r®', is chosen such that the end-to-end delay requirement
D>"4 must not be violated. Furthermotéis reduction in reserved rate may not take place
immediately in generalFrom Theorem 15 and choosiny” = r”, we must continue

to service the macroflow with the current reserved rat¢' for a period ofr”. Only
after the contingency period endstat+ 7, can we reduce the current reserved rate by
r’ = r® —r® amount. To determine” = r* — r®', we must ensure that (6.24) holds.
Sincer®” < r*, we haved?, . < d% . Hence we need to find a new reserved rete
such thatd?,, + d2,, < D>, In either of these cases, the minimal (if it exists) that

satisfies the end-to-end delay bound (6.24) can be found easily.

6.5 Simulation Investigation

In this section, we conduct simulations to explore the efficacy of our admission control
algorithms for both per-flow and class-based guaranteed services. In particular, we com-
pare the performance of our per-flow admission control algorithm with that used in IntServ

106

Guaranteed Service (GS) model. We also investigate the impact of dynamic flow aggrega-
tion on class-based guaranteed services.

Figure 6.7 depicts the network topology used in the simulations, where flows generated
from source 1 (S1) are destined to destination 1 (D1) via the path connecting the ingress
node (I11) to the egress node (E1), and flows generated from source 2 (S2) are destined to
destination 2 (D2), via the path connecting the ingress node (I12) to the egress node (E2).
Each ingress node consists of two components: edge conditioners; @ord atateless
scheduler, which is the first-hop scheduler along the pathz et y denote the outgoing

link from nodex to nodey. The capacity of outgoing links of all core routers is set to
1.5Mb/s. The link capacity ofSi — I: and that of i — Di, ¢ = 1,2, are assumed

to be infinity. All the links are assumed to have zero propagation delay. We consider two
simulation settings. In the first settingi{e-based schedulers op)yall core routers employ
CgVC schedulers. In the second settimgiXed rate/delay based scheduderschedulers
employed for the outgoing linkél — R2, 12 — R2, R2 — R3, R5 — E1 areCgVCs,

while those forR3 — R4, R4 — R5, and R5 — E2 are VT-EDFs. The flow traffic
profiles and possible delay requirements used in the simulations are listed in Table 6.1.

We first conduct a set of simulations to compare the efficacy of the admission control
schemes (both per-flow and class-based) in the BB/VTRS model with the standard admis-
sion control scheme [34, 69] used for the GS in the IntServ model. In the GS model,
the counterpart of &'sVC scheduler is VC, while for VT-EDF, it is RC-EDF. The RC-

EDF [34, 82] scheduler employs a per-flow shaper to enforce that the traffic of each flow
entering the EDF scheduler conforms to its traffic profile. In this set of simulations, traffic

is sentonlyfrom sourceS1 to destinationD1 (i.e., there is no cross traffic). All flows are of
type0, and have the same end-to-end delay requirement (&thes or 2.19 s). Moreover,

each flow has an infinite lifetime. Note that under the per-flow guaranteed services, when
the delay requirement of a typeflow is 2.44 s, a reserved rate equal to its mean sending
rate will meet the delay requirement. Whereas, when the delay requiremznf is a

higher reserved rate is needed to meet the delay requirement. In the BB/VTRS aggregate
scheme, a single delay service class is used, where the end-to-end delay requirement of the
class is set to either eitherd4 s or 2.19 s. For each flow in the class, a fixed delay parame-

ter (cd) is used at all of the delay-based schedulers (this parameter will only be used in the
mixed rate/delay-based scheduler setting). Simulations are conducted using three different
values ofcd (0.10 s, 0.24 s and0.50 s). The objective of our simulation investigation is

to compare thenaximumnumber of flows that can be admitted under the three different

107

Table 6.2: Comparison of IntServ/GS, per-flow BB/VTRS and aggregate BB/VTRS
schemes.

Number of Calls admitted
Rate-Based Only Mixed Rate/Delay-Based
Delay bounds (s) 2.44] 219 2.44 | 2.19
IntServ/GS 30 27 30 27
Per-flow BB/VTRS 30 27 30 27
cd =0.10 (s) 29 29
Aggr BB/VTRS | cd =0.24 (s)| 29 29 29 29
cd =0.50 (s) 29 28

admission control schemes: IntServ/GS, Per-flow BB/VTRS and Aggr BB/VTRS.

The simulation results are shown in Table 6.2. From the table we see that the IntServ/GS
and Per-flow BB/VTRS schemes accept exactly the same number of flows under all the
simulation settings. Whereas the Aggr BB/VTRS scheme has either slightly worse or better
performance, depending on the end-to-end delay requirements of the flows. When the delay
requirement i®.44 s, the Aggr BB/VTRS scheme accepts one fewer flow than that can be
accepted by either the IntServ/GS or Per-flow BB/VTRS scheme. This performance loss is
due to contingency bandwidth allocation in the Aggr BB/VTRS scheme: when a new flow
is accepted into the delay service class, an amount of bandwidth equal to its peak rate is
reserved during the contigency period to avoid potential delay bound violation. In contrast,
in both the IntServ/GS and Per-flow BB/VTRS schemes, the bandwidth reserved for the
new flow is equal to its mean rate. However, when the delay requiremertds, the

Aggr BB/VTRS scheme can accept one or two more flows than that can be accepted by
either the IntServ/GS or Per-flow BB/VTRS scheme. This performance gain is due to a
number of factors: 1) each flow has precisely the same delay requirement as is provided by
the delay service class; 2) the aggregate flow has a smaller core-delay bound than that of
each individual flow in the per-flow guaranteed services; and 3) all flows have infinite life
time, which, in this case, masks th@nsienteffect of contingency bandwidth allocation
used in the Aggr BB/VTRS scheme.

To better understand why the Aggr BB/VTRS scheme yields better performance in the case
when the end-to-end delay requirement of the flow2.19 s, we examine more closely

the bandwidth allocation allocated under the three schemes. Figure 6.8 plots the average
bandwidth allocated to each flow using the three schemes (under the mixed rate/delay-
based scheduler setting) as a function of the number of flows accepted into the network.

108

70000 i T
IntServ/GS —+— Per-flow BB/VTRS —+—
Per-flow BBVTRS - - Contingency Period Feedback ---x---
Aggr BB/VTRS (cd = 0.108) -+~ ontingency Period Bol
Aggr BB/VTRS (cd = 0.24s) &
Aggr BB/VTRS (cd = 0.50s) -—-m-— 0.25 |
65000

02 [
60000

reserved bandwidth

55000 [g..g

Blocking probabilities

Mean
x

-
50000 |- ¥—% B &-—E— B8 B —E - BB E - H - 4 01 F

45000 L L L L L 0.05
0

Flows accepted Offered loads

Figure 6.8: Mean reserved bandwidth. Figure 6.9: Flow blocking rates.

From the figure we see that under the Aggr BB scheme, the average reserved bandwidth
per flow decreases, as more flows are aggregated into the delay service class. (Note in
particular that with the fixed delay parametér= 0.10 s, a per-flow bandwidth allocation

that is equal to the mean rate of the flows is sufficient to support the end-to-end delay
bound2.19 s of the delay service class.) The average reserved bandwidth eventually drops
considerably below those of the Per-flow BB/VTRS and IntServ/GS schemes. As a result,
under the Aggr BB/VTRS scheme there is sufficient residual bandwidth left to admit one
or two more flows into the network. Under the Per-flow BB/VTRS scheme, a VT-EDF
scheduler starts with allocating the minimum possible delay parameter to a flow, thereby
producing the minimum bandwidth allocation (i.e., the mean rate of the flow). However,
as more flows are admitted, the feasible delay parameter that can be allocated to a new
flow becomes larger, resulting in higher reserved rate. As a result, the average reserved
bandwidth per flow increases. It is interesting to note that although the Per-flow BB/VTRS
and IntServ/GS admit the same number of flows (i.e., 27), the Per-flow BB/VTRS scheme
has a slight smaller average reserved rate per-flow. Hence there is more residual bandwidth
left under the Per-flow BB/VTRS scheme than that under the IntServ/GS scheme, albeit
this residual bandwidth is not enough to admit another flow. This slight gain in the residual
bandwidth is due to the ability of the Per-flow BB/VTRS scheme to perform path-wide
optimization when determining the minimum feasible rate-delay parameter pair for a flow.
In contrast, in the IntServ/GS scheme, the reserved rate of a flow is determined using the
WFQ reference model, which then limits the range that the delay parameter can be assigned
to the flow in an RC-EDF scheduler.

In the above simulations, we have assumed that all flows have infinite life time. We now
conduct another set of simulations in which flows have finite holding times, and investigate

109

the impact of dynamic flow aggregation on the flow blocking performance of class-based
guaranteed services. In this set of simuatations, flow holding time is generated using an
exponential distribution with a mean 860 seconds. Flows may originate from either of

the two sources$'1 or S2. We vary the flow inter-arrival times to produce various offered
loads. We implement two versions of the aggregate BB/VTRS scheme: one using the
contingency period bounding method, and another using the contingency period feedback
method, as described in Section 6.4.2.1. Figure 6.9 shows the flow blocking rates of these
two schemes as well as that of the per-flow BB/VTRS scheme, as we increase the flow
arrival rates (and thus the offered load to the network). Each point in the plots of this figure
is the average of 5 simulation runs. From the figure we can see that with dynamic flow
arrivals and departures, the per-flow BB/VTRS scheme has the lowest flow blocking rate,
as is expected. The theoretical contingency period bounding method has the worst flow
blocking rate, because it uses the worst-case bound on the backlog of the edge conditioners.
This leads to a portion of the link bandwidth used as the contingency bandwidth, which is
not immediately released. Using the contingency period feedback method, the contingency
period7” is in general very small, thus the contingency bandwidth allocated is de-allocated
in a very short period of time. In general, because it requires peak rate allocation at the
time a new microflow arrives, the Aggr BB/VTRS schemes have a higher flow blocking
rate than that of the per-flow BB/VTRS scheme. However, as the offered load increases,
the flow blocking rates of these schemes converge. Hence as the network is close to its
saturation point, the (transient) effect of contigency bandwidth allocation under the Aggr
BB/VTRS scheme on the flow blocking performance becomes much less prominent.

6.6 Summary

In this chapter we have presented a novel bandwidth broker architecture for scalable sup-
port of guaranteed services that decouples the QoS control plane from the packet forward-
ing plane. More specifically, under this architecturere routers do not maintain any QoS
reservation states, whether per-flow or aggregdtestead, the QoS reservation states are
stored at and managed by a bandwidth broker. There are several advantages of such a band-
width broker architecture. Among others, it avoids the problem of inconsistent QoS states
faced by the conventional hop-by-hop, distributed admission control approach. Further-
more, it allows us to design efficient admission control algorithms without incurring any
overhead at core routers. The proposed bandwidth broker architecture is designed based
on acore statelessgirtual time reference system developed in [86]. In this chapter we fo-

110

cused on the design of efficient admission control algorithms under the proposed bandwidth
broker architecture. We consider bgibr-flowend-to-end guaranteed delay services and
class-baseduaranteed delay services with flow aggregation. Using our bandwidth broker
architecture, we demonstrated how admission control can be done on arpatttibasis,
instead of on a “hop-by-hop” basis. Such an approach may significantly reduce the com-
plexity of the admission control algorithms. In designing class-based admission control
algorithms, we investigated the problem of dynamic flow aggregation in providing guaran-
teed delay services, and devised new mechanisms to effectively circumvent this problem.
We conducted extensive analysis to provide theoretical underpinning for our schemes as
well as to establish their correctness. Simulations were also performed to demonstrate the
efficacy of our schemes.

111

Chapter 7

A Hierarchical Bandwidth Broker
Architecture

7.1 Introduction

The objective of this chapter is to study the scaling issues in the centralized bandwidth
broker model for flow-level dynamic QoS control and management. We consider the fac-
tors that may potentially affect the scalability of the centralized bandwidth broker model

— in particular, we identify two major limiting factors: the memory and disk access speed
and communication capacity between the bandwidth broker and edge routers. Because of
the need to access and update the network QoS states during admission control operations,
the number of memory and disk accesses/updates plays a dominant role in the time the
bandwidth broker takes to process flow reservation requests. Therefore, reducing the over-
all number of QoS state accesses and updates is a key means to enhance the overall call
processing capability of the bandwidth broker, thereby its scalability. In this chapter we
develop a path-oriented, quota-based dynamic bandwidth allocation approach to address
this issue. This approach is designed based on the two-level representation of the network
QoS states proposed in [85], i.e., a path QoS state database representing the path-level QoS
states as well as a link QoS state database representing the link-level QoS states of the net-
work domain. By allocating bandwidth in units of quota to paths on demand, the proposed
dynamic bandwidth allocation approach limits the majority of flow reservation requests to
the path state accesses/updates only, avoiding the more time-consuming link state accesses
and updates. As a result, the overall number of QoS state accesses and updates is sig-
nificantly reduced, thus increasing the overall call processing capability of the centralized

112

bandwidth broker system.

This path-oriented, quota-based dynamic bandwidth allocation approach also leads to a
natural architectural extension to the centralized bandwidth broker model: a hierarchically
distributed bandwidth broker architecture to address the scaling problem caused by the
potential communication bottleneck between the centralized bandwidth broker and edge
routers. The proposed hierarchically distributed architecture consists of a number of edge
bandwidth brokers, each of which manages a (mutually exclusive) subset of path QoS states
and performs admission control for the corresponding paths, and a central bandwidth bro-
ker which maintains the link QoS state database and manages the quota allocation among
the edge bandwidth brokers. We conduct extensive simulations to investigate the impact of
the proposed mechanisms and architectural extensions on the network system performance,
and to demonstrate their efficacy in enhancing the scalability of the centralized bandwidth
broker model. Our study shows that the scalability issue of the centralized bandwidth bro-
ker model can be addressed effectively, without incurring any additional overhead at core
routers.

The remainder of the chapter is organized as follows. In Section 7.2, we first present a
centralized bandwidth broker architectural model, and then discuss the potential scaling is-
sues of the centralized bandwidth broker architecture. In Section 7.3, we describe the basic
path-oriented, quota-based dynamic bandwidth allocation approach, and study its efficacy
in enhancing the overall call processing capability of the centralized bandwidth broker sys-
tem. In Section 7.4 we present the hierarchically distributed multiple bandwidth broker
architecture designed using the path-oriented, quota-based dynamic bandwidth allocation
approach. Its impact on the system performance is investigated. We conclude the chapter
in Section 7.6.

7.2 Bandwidth Broker Architecture: Basic Model and Scaling Issues

As the basis for our study, in this section we first present a basic centralized bandwidth
broker architectural model and describe how admission control is performed under such a
model. We then discuss the potential scaling issues in this centralized bandwidth broker
model, and briefly outline the solutions that we will develop in this chapter to address these
issues.

113

Two level QoS states Management infor mation bases (M Bs)

- path level QoS states - Hapolp infgtr_maléon base

- - flow information base

link level QoS states - policy information base

- path QoS state information base

- link QoS state information base
Service modules

- admission control module

- QoS routing module

- policy control module

Edge node

Data Plane

Figure 7.1: Illustration of a bandwidth broker.

7.2.1 The Basic Bandwidth Broker Model

The basic centralized bandwidth broker (BB) model for the management and control of
the QoS provisioning of a network domain is schematically depicted in Figure 7.1. This
model is based on the bandwidth broker architecture proposed in [85]. In this architectural
model, the bandwidth broker centrally manages and maintains a number of management
information (data)bases (MIBs) regarding the network domain. Among them, the network
topology database and network QoS state databases are most relevant to the study of this
chapter. The network topology database and network QoS state databases together provide
a logical representation (i.e., a QoS abstraction) of the network domain and its entire state.
With this QoS abstraction of the network domain, the bandwidth broker performs QoS
control functions by managing and updating these databases. In this sense, the QoS control
plane of the network domain is decoupled from its data plane. The core routers of the
network domain are removed from the QoS control plane: core routers do not maintain any
QoS reservation states, whether per-flow or aggregate, and do not perform any QoS control
functions such as admission control.

In our centralized bandwidth broker model, the network QoS states are represented at two
levels: link-level and path-level. The link QoS state database maintains information regard-
ing the QoS state of each link in the network domain, such as the total reserved bandwidth
or the available bandwidth of the link. The path QoS state database maintains the QoS state
information regarding each path of the network domain, which is extracted and “summa-
rized” from the link QoS states of the links of the path. An example of the path QoS state is
the available bandwidth along a path, which is the minimal available bandwidth among all
its links. As shown in [85], by maintaining a separate path-level QoS state, the bandwidth
broker can conduct fast admissibility test for flows routed along the path. Furthermore,

114

path-wise resource optimization can also be performed based on the (summarized) path
QoS state. As will be demonstrated in this chaptes two-level representation of the net-

work QoS states is also the key feature that leads to scalable design of bandwidth broker
architectures for dynamic flow-level QoS provisioningastly, we note that both the link

QoS states and path QoS states are aggregate QoS states regarding the links and paths.
No per-flow QoS states are maintained in either of the two QoS databases. The QoS and
other control state information regarding each fl@uch as its QoS requirement and re-
served bandwidth is maintained in a separate flow information database managed by the
bandwidth broker [85].

We now briefly describe a simple admission control scheme to illustrate how flow-level
dynamic QoS provisioning can be performed under the basic centralized bandwidth broker
model. For simplicity of exposition, throughout this chapter we assume that bandwidth is
the critical network resource that we are concerned about. We consider the flow reservation
set-up request first. When a new flow arrives at an edge router, requesting a certain amount
of bandwidth to be reserved to satisfy its QoS requirement, the flow reservation set-up re-
guest is forwarded by the edge router to the bandwidth broker. The bandwidth broker then
applies an admissibility test to determine whether the new flow can be admitted. More
specifically, the bandwidth broker examines the path QoS state (obtained from the corre-
sponding link states) and determines whether there is sufficient bandwidth available along
the path to accommodate the new flow. If the flow can be admitted, the bandwidth bro-
ker updates the path QoS state database and link QoS state database (as well as the flow
information database) to reflect the new bandwidth reservation along the path. If the ad-
missibility test fails, the new flow reservation set-up request will be rejected, and no QoS
information databases will be updated. In either case, the BB will signal the ingress edge
router of its decision. For a flow reservation tear-down request, the bandwidth broker will
simply update the corresponding link state database and path state database (as well as the
flow information database) to reflect the departure of the flow. Clearly, using the basic
admission control scheme presented above, processing either the flow reservation set-up or
tear-down request requires access/update to the link QoS state database as well as the path
QoS state database. Access and update of the link QoS states are necessary to ensure that
the link QoS states are always up-to-date, so that the bandwidth broker can obtain accurate
path QoS state information and make correct admission control decisions. We refer to this

Un this chapter a flow can be either an individual user flow, or an aggregate flow of multiple users,
defined in whatever appropriate manner (e.g., an aggregate flow representing traffic from an institution or a
sub-network).

115

“naive” admission control scheme that requires per-flow link QoS state access/update, as
thelink-updateadmission control scheme. In this chapter we will present a more efficient
approach to performing bandwidth allocation and admission control that can significantly
reduce the overall number of QoS state accesses and updates.

7.2.2 Scaling Issues

The issue of scalability is an important consideration in the design of a (centralized) band-
width broker system. An important measure of scalability is the ability of the bandwidth
broker system to handle large volumes of flow reservation requests, as the network system
scales. For example, as the network link capacity increasesathgrocessing capability

of the bandwidth broker system, defined as the number of flow requests that can be pro-
cessed by the bandwidth broker system per unit of time, must scale with the increasing
number of flows that can be accommodated in the network system. In particular, the band-
width broker system shouldot become the bottleneck while the network system has not
been overloaded.

Although it is possible to enhance the call processing capability of a bandwidth broker sys-
tem by simply adding more processing power or increasing memory and disk access speed,
such an approacim itself in general does not provide a scalable solution. To develop a
scalable bandwidth broker architecture, we need to gain a fundamental understanding of
the potential scaling issues and problems in a centralized bandwidth broker architecture,
and then devise appropriate mechanisms and architectural extensions to address these is-
sues and problems. This is precisely the objective of this chapter. In this section we will
identify two key factors that can potentially limit the scalability of the centralized band-
width broker architecture, and outline the solutions we will develop in the remainder of the
chapter.

There are many factors that may potentially affect the call processing capability of a band-
width broker system. Among them, the speed of memory and disk accesses plays a promi-
nent role. Recall that when processing a flow reservation set-up request, the bandwidth
broker must perform an admissibility test, and if the request can be granted, update the
relevant QoS states. Likewise, when processing a flow reservation tear-down request, the
bandwidth broker needs to update the relevant QoS states. In either case, access and/or up-
date to QoS states are involved. Since memory/disk access speed is typically much slower
than processing speed, we argue that the processing time of flow requests is determined in
a large part by the number of memory/disk accesses and updates. Therefore, an important

116

means to enhance the call processing capability of a bandwidth broker system is to reduce
the number of accesses and updates to the network QoS states maintained by the bandwidth
broker.

Another factor that may affect the overall call processing capability of a centralized band-
width broker system is the capacity of the communication channels (e.g., the network or
I/O bandwidth) between a centralized bandwidth broker system and various edge routers.
As the number of flows increases, these communication channels can become a potential
bottleneck, limiting the number of flow requests delivered to the centralized bandwidth
broker system, thereby reducing its overall call processing capability. To scale with the
demand of the network system, a distributed multiple-bandwidth-broker architecture may
be called for. Therefore, architectural extension to the basic centralized bandwidth broker
model must be considered.

The focus of this chapter is on the design of mechanistic enhancement and architectural
extension to the basic centralized bandwidth broker model to improve its scalability. In
particular, we propose and developath-oriented, quota-base€th short, PoQ) dynamic
bandwidth allocation mechanism for performing admission control. This PoQ dynamic
bandwidth allocation mechanism exploits the two-level representation of the network QoS
states used in the basic centralized bandwidth broker model, and attempts to avoid ac-
cessing and updating the link QoS states every time a flow reservation set-up or tear-down
requestis processed. In other words, this mechanism limits the majority of accesses and up-
dates to path QoS states only, thereby reducing the overall number of accesses and updates
to the network QoS states. The basic PoQ mechanism is described in detail in Section 7.3.
Using the PoQ dynamic bandwidth allocation mechanism, in Section 7.4, we extend the
basic centralized architecture with a single bandwidth broker to a hierarchically distributed
architecture with multiple bandwidth brokers to address the scaling problem posed by the
potential communication bottleneck between the bandwidth broker system and the edge
routers. Our results demonstrate that the proposed path-oriented and quota-based dynamic
bandwidth allocation mechanism is indeed an effective means to increase the overall call
processing capability of the bandwidth broker. Furthermore, the bandwidth broker archi-
tecture can be designed in such a manner that it scales, as the network capacity increases.

117

15. opp: if opp == 0, pathp is in the normal mode.

16. if opp > 0, pathp is in the critical mode.

17. clp: list of critical links along patlp.

18. Ry: total reserved rate along path

19. Qp: number of quotas allocated to pathit also denotes
20. the total quota bandwidth alopgif no confusion.
21. agb,: available quota bandwidth gn agb, = Qp — Ry.
22. opy: if op;y == 0, link [is not critical.

23. if op; == 1, link [is critical.

24. Cj: capacity of linki.

25. Qq: total quotas of link.

26. ag: available quota of link. aqy = Q; — Y 1ep @r-

27. rb;: residual bandwidth of link. rb; = C; fpz: Rp.

p:lEp

Figure 7.2: Notation used in the algorithm.

7.3 Single Bandwidth Broker Design

In this section we present the path-oriented, quota-based (PoQ) mechanism for dynamic
bandwidth allocation under a single bandwidth broker. We first describe the basic operation
of the mechanism (the base scheme), and then analyze its complexity and performance.
Simulation results are presented at the end of the section to illustrate the efficacy of the
scheme.

7.3.1 The Basic PoQ Scheme

As pointed out in Section 7.2, using the basic link-update admission control scheme to
process a flow reservation set-up or tear-down request, the bandwidth broker needs to ac-
cess/update the link QoS state of each link along the flow’s path. Hence the per-flow request
processing time is proportional to the number of link state accesses/updates. As the vol-
ume of flow requests increases, these per-flow QoS state accesses/updates can slow down
the operations of the bandwidth broker, limiting its flow processing capability. Therefore,
reducing the number of link Q0S state accesses/updates is an important means to prevent
the bandwidth broker from becoming a potential bottleneck.

In this section we present the basic PoQ dynamic bandwidth allocation mechanism for a
single centralized bandwidth broker, and illustrate how it can be employed to reduce the
overall number of link QoS state accesses and updates. We first outline the basic ideas be-
hind the PoQ mechanism, and then provide a more formal and detailed description. Under
the basic PoQ scheme, the total bandwidth of each link of the network is (virtually) divided
into quotas A quota is a “chunk” of bandwidth, appropriately chosen, that is much larger
than the average bandwidth requirement of typical fladamndwidth is normally allocated

118

Upon an arrival of a new floyf at a pathp:
case l:(opp == 0 andagb, > r¢)
Ry, «— Ry + ry; accept the flow; return.
case 2:(opp == 0 andagb, < r¢)
request more quota on all the linkd € p (Fig. 4);
case 3:(opp > 0)
request bandwidth; on all critical links:! € cl,, (Fig. 4);
for I & clp
if (agbp <) request more quota (Fig. 4);
if (all requests are granted)
10. update)),, if more quotas are allocated;
11. R, «— Ry + ry; accept the flow; return.
12. elsereject the flow reservation set-up request.

©CONOUMWNEO

Figure 7.3: Path level admission control.

on-demand to each path in units of quot&e.be more precise, bandwidth allocation along

a path operates in two possible modes:ntbemalmode andaritical mode. During the nor-

mal mode, the bandwidth broker allocates and de-allocates bandwidth in unit of one quota
at a time. The path QoS state of a path maintains the number of quotas of bandwidth that
have been allocated to the path, in addition to the actual bandwidth that has been reserved
for the flows routed along the path. When a flow reservation set-up request along a path
arrives, the bandwidth broker only needs to check the corresponding path QoS state to see
whether the quotas of bandwidth allocated to the path are sufficient to satisfy the flow’s
request. If the answer is positive, the flow request is accepted, and the relevant path QoS
state is updated accordingly (i.e., the actual reserved bandwidth along the path is increased
by the amount requested by the flow). Similarly, when a flow reservation tear-down request
arrives, the bandwidth broker simply needs to update the relevant path QoS state (i.e., the
actual reserved bandwidth of the path is decreased by the amount reserved for the flow).
We see that in the above two cases, flow requests can be processed by accessing and updat-
ing the path QoS states only, without the need to access/update the link QoS state database.
When there are a large number of flows arriving and departing in a short period of time,
with an appropriately chosen quota size we expect that many of these flow requests (either
reservation set-up or tear-down) will be processed by the bandwidth broker using only the
path QoS states. This key observation is the major motivation behind our PoQ dynamic
bandwidth allocation mechanism.

In the case that the bandwidth allocated to a path is not sufficient to satisfy the reservation
set-up request of a flow, the bandwidth broker will attempt to allocate a new quota to the
path to accommodate the flow reservation set-up request. In this case, the bandwidth broker
needs to check each link QoS state along the path to see whether there is a quota available
at all the links. If this is the case, a new quota is allocated to the path, and the number of

119

available quotas at each link of the path is decremented by 1. When there is an extra unused
guota available along a path (due to flow departures), the extra quota will be re-claimed by
the bandwidth broker, and the extra quota is returned to each link along the path. The
available number of quotas at these links will be increased by 1. Clearly, quota allocation
and de-allocation incur some overhead. In particular, the bandwidth broker needs to access
and update the link QoS states to keep track of the available quotas at each link. Generally
speaking, large quota size tends to reduce the overhead of quota management. On the other
hand, large quota size has other performance implications, as we will see later.

Quota allocation for a path can fail if one of the links along the path does not have sufficient
guotas left. In this case, bandwidth allocation for the path enters intoritieal mode.

More generally, when the available quota of a link falls below a threshold (say, no quota
left), we say that the link isritically loaded(or the link is critical). When a link is critically
loaded, all paths traversing this link enter the critical mode. Once a path is in the critical
mode, the bandwidth broker will cease allocating bandwidth along the path in units of
guota. Instead, the bandwidth is allocated or de-allocated on a per-flow basis, as in the
basic link-update scheme described in Section 7.2. In particular, it maintains an accurate
link QoS state for each critically loaded link (e.g., the precise amount of reserved bandwidth
at the link). Hence when processing a flow reservation set-up or tear-down request for a
path in the critical mode, the bandwidth broker must access and update the link QoS states
of those critically loaded links along the path. In this way, we ensure that the admission
control decision is always made correctly. We switch to the link-update admission control
scheme so that no flow reservation set-up request will be rejected unnecessarily. As a result,
whenever a flow is admitted using the link-update scheme, it will also be admitted using the
basic PoQ scheme. In the next section, we will consider a “lossy-path” model in the context
of the multiple bandwidth broker. The “lossy-path” model can also be used in combination
with the basic PoQ scheme to reduce the link QoS state access/update overhead.

In the above we have provided an outline of the basic PoQ dynamic bandwidth allocation
scheme. A more formal and detailed description of the scheme is presented in pseudo-code
in Figures 7.3, 7.4, and 7.5. Figure 7.2 summarizes the notation used in the description.
For the ease of exposition, the scheme is divided into three function blocks. Figure 7.3
describes the path-level admission control for flow reservation set-up and quota allocation
management. Figure 7.4 describes the link-level bandwidth allocation and quota allocation
management. Finally, Figure 7.5 describes both the path-level and link-level bandwidth
and quota management operations for handling flow departures.

120

Upon a patlp requests-, on a link!:
* rp can be a quota or a flow’s request rate */
case 1:(op; == 0 andag; < rp)
collect residual bandwidthb; «— C; — Zp:lEp Rp;
if (rb; < rp) reject the request; return.
case 2:(op; == 1 andrb; < rp) reject the request; return.
/* The request can be honored */
if (op; == 0andagq; < rp)
op; < 1; [* transition: normal— critical */
for (p' : 1 € p')
10. clyr — clpr Ul opyr — oppr + 1,
11. case li(op; ==0)aq; <— aq; — 1
12. case 2:(op; == 1) rb; — rb; — 1p.

©CONOU A~ WNEO

Figure 7.4: Link level bandwidth/quota allocation.

0. Upon an existing flowf departs on a path:

1. Rp — Rp — T

2. if (opp > 0)

3. for (I € clp)

4. rby « rb; + r5; recomputenq;;

5. if (ag; > 0) /* transition: critical— normal */
6. for (p' : L € p')

7. Opp — opy — 15 8etQ]

8. clyr — cly —1;

9. else if(opp, == 0 andp has excess quota)
10. Qp — Qp — 1; [* return excess quota */
11. for (I € p)

12. aq — aq; + 1,

Figure 7.5: Scheme for handling flow departure.

121

7.3.2 Complexity and Performance

In this section, we will provide a simple analysis of the complexity of the basic PoQ dy-
namic bandwidth allocation scheme, and compare it with the link-update admission control
scheme in terms of the QoS state access/update overhead. Since the path QoS states are
always accessed/updated for every flow reservation set-up or tear-down request, we focus
on the number of link QoS state accesses/updates. We measure the complexity of the PoQ
scheme by thexpected cost of link QoS state access/update per iflewthe number of

link QoS state accesses and updates incurred by processing a flow arrival and departure.

Consider a network domain whose average path lengkh iset ¢ be the probability that

an “average” path of lengtl? is in the critical mode, and be the probability a flow is
rejected due to unavailability of bandwidth along the path. Note that under the basic PoQ
scheme, a flow can only be rejected when the path is in the critical mode. In additipn, let
andy denote, respectively, the probability that the flow reservation set-up request triggers
a quota allocation, and the probability that the flow reservation tear-down request triggers
a quota de-allocation, conditioned on that the flow is admitted. Then the expected link
access/update cost, denoteddy,, is given by the following expression:

Opog = Py +3P¢(1 —v) + Pl +x)(1 — 7). (7.1)

The first term in the above expression is the number of link QoS state accesses for a flow
that is rejected. The second term is the number of link QoS accesses and updates for
processing a flow arrival in the critical mode plus the number of link QoS state updates for
processing a flow departure in the critical mode. Here we assume that to admit a flow in
the critical mode, the relevant link states are first accessed for the admissibility test, and
then updated after the flow is admitted. Note also that for a flow admitted in the normal
mode, no link QoS state is accessed or updated. The last term in (7.1) reflects the overhead
of quota allocation and de-allocation.

Comparing the expected link QoS state access/update cost of the PoQ scheme with that
of the naive link-update admission control sche®g, ; = Py + 3P(1 — v), we see

that the reduction in the per-flow link QoS access/update cost under the PoQ scheme is
(approximately) proportional tb — ¢. Hence if the network system can accommodste

flows, then the reduction in the total link QoS access/update cost is in the old¢t 6fp).

For a largeV, this can amount to significant cost reduction, even whénfairly close to

1 (say,¢ = 0.9). On the other hand, this reduction in the link QoS state access/update

122

|:2 _ 5 5

K

Figure 7.6: Topology used in the simulations.

cost is offset to some degree by the overhead of quota allocation and de-allocation. Hence
judicious choice of quota size is important in controlling this overhead and balancing the
overall cost reduction. This issue will be investigated in our simulation study reported in
the next section.

Before we leave this section, we comment that the complexity of the PoQ scheme can be
analyzed formally using queueing theory. In particular, under the assumption of exponen-
tial flow arrival and departure, the PoQ scheme can be modeled as a Markovian system,
and the probabilities, ¢, ¢ andy can be derived either precisely or approximately. A key
result from the analysis is that as the network capacity increases (thus the number of flows
that can be accommodated also increases), the probapilitat a path enters the critical
mode decreases, while the normalized network load (defined as the ratio of the offered load
to the network capacity) is fixed. As we will see in the next section, this observation is also
supported by our simulation results. Hence the PoQ scheme indeed improves the scalability
of the centralized bandwidth broker model.

7.3.3 Simulation Investigation

In this section we conduct simulations to study the performance of the basic PoQ scheme.
In particular, we will investigate the impact of quota size on the performance of the scheme
and its scaling property as the network capacity increases.

Table 7.1: Call admission and quota allocations (C = 5400).

normalized load a=0.95 a=1.00

quota size 30 | 60 [100 [120 [150 30 | 60 [100 [120 | 150
total flow arrivals 22946 | 22946 | 22946 | 22946 | 22946 | 24099 | 24099 | 24099 | 24099 | 24099
total accepted flows 22946 | 22946 | 22946 | 22946 | 22946 | 23878 | 23878 | 23878 | 23878 | 23878
flows accepted in normal] 22946 | 22946 | 22570 | 22464 | 22395 | 17519 | 11204 | 7582 | 7370 | 7319
flows accepted in critical 0 0 376 482 551 6359 | 12674 | 16296 | 16508 | 16559
quotas allocated 736 396 220 155 39 499 114 6 0 0
quotas deallocated 739 397 222 156 39 499 114 6 0 0

123

Since using the PoQ scheme the QoS state of a link is only accessed and updated when the
link becomes critical, in our simulations we use a simple network topology with a bottle-
neck link to study the cost of link QoS state accesses and updates. This simple topology
allows us to focus on the key features of the PoQ scheme and provide an adequate environ-
ment to explore its performance. The network topology is shown in Figure 7.6, Wihere
ingress routers1, 72, ..., [K, are connected via a core roufet to an egress router1.

The link R1 — E1 is thebottlenecKink of the network topology, and the links — R1

are assumed to have infinite capacity 1,2, ..., K. Flows arriving at the ingress routers
have an exponential interarrival time with its mean denoted by, and an exponential
holding time with its mean denoted ly'x.. In our simulations the mean flow holding

time 1/ is fixed at 900 seconds, while we vary the mean flow interarrival time to produce
different offered load. Thefferedload p is \/u, which represents theveragenumber of

flows that may exist in a system (if no flows are blocked). Each flow requests a unit of
bandwidth, and the bottleneck linkl — FE1 hasC units of bandwidth. Hence the maxi-
mum number of flows that can be accommodated by the bottleneck lirk\ige introduce
thenormalized network load = p/C' as a metric for measuring how heavy the bottleneck
link is loaded. For example, i < 1, then the offered load (i.e., the average number of
flows that may exist at any time) is less than what can be accommodated by the bottleneck
link, the system is not overloaded. Otherwise, the network system is overloaded. In our
simulation study, all simulations last 10000 simulated seconds, of which 6000 seconds are
the warm-up times. Each value reported in the results is the mean value of 5 simulation
runs with different random seeds for the mean flow interarrival times.

In the first set of simulations, we examine the impact of quota size on the performance
of the scheme. In this set of simulations, the bottleneck link capdcity 5400. The
number of pathgy is set to 3, i.e., we have three ingress routers, 11, 12, and 13. Flow
arrivals are uniformly distributed onto the three ingress routers. We conduct simulations
using five different quota sizes, namely 30, 60, 100, 120, and 150. The simulation results
are summarized in Table 7.1 under two different normalized loads (a=0.95 and a=1.00).
In this table, we list the total number of flow arrivals at all the ingress routers, the total
number of flows accepted into the network system, and among the flows accepted, the total
number of flows accepted in the normal mode as well as the total number of flows accepted
in the critical mode. We also list the total number of quota allocation and de-allocation
operations performed by the bandwidth broker after the warm-up period (i.e., when the
network system is in a more stable state).

124

Expected link QoS state update for each accepted flow

Per flow link QoS state update

Normalized network load (a) Normalized network load (a)

Figure 7.7: Proportion of flows accepted-igure 7.8: Expected link level QoS up-
critical mode date/accepted flow (C = 5400).
(C =5400).

From Table 7.1 we see that in the casexof= 0.95, i.e., the network is relatively light-
loaded, the majority of the flows are accepted in the normal mode. In particular, when the
guota sizes are 30 and 60, all flows are accepted in the normal mode, whereas when the
guota size increases to 100, 120 and 150, only a few hundreds of flows are accepted in the
critical mode. Hence in this light-load case, the portion of calls accepted in the critical mode
is very small. In contrast, in the case®t= 1.00, i.e., the network is now heavily loaded,

the portion of flows accepted in the critical mode increases significantly. In particular, when
the quota sizes are large, the majority of flows are accepted in the critical mode. Figure 7.7
shows the portion of flows accepted in the critical mode with the five different quota sizes,
as the normalized network load increases. We see that when the network is relatively light-
loaded (sayg < 0.95), the quota size has little impact on the portion of the flows accepted

in the critical mode. However, as the network load increases, the impact of the quota size is
more significant. In particular, in the case that the quota size is 60 or bigger more than half
of the flows are accepted in the critical mode when the normalized load reaehéd)0.

Hence when the network is over-loaded, the quota size has a significant impact on the
performance of the PoQ scheme. However, it is also interesting to observe that in the heavy
load cases, increasing the quota size beyond a certain value (say, 100) does not seem to
have any further impact.

We now shift our attention to the cost of the PoQ scheme, namely, the expected cost of link
QoS state access/update. To simplify discussion, we focus on the link QoS state update cost
incurred by flow arrivals and the overhead of quota allocation and de-allocation. Hence,
instead of the expected cost of link QoS state access/update pelcQwy, defined in
Section 7.3.2, we use a simplified metric, the expected cost of link QoS state update for

125

accepted flows, defined below:

. M+G+ L
®P0Q:Tv

(7.2)
where N denotes the total number of accepted flolsthe number of flows accepted in
the critical mode, ands and L denote a number of quota allocations and de-allocations,
respectively.

Figure 7.8 shows the expected cost of link QoS state update per accepted flow as a function
of the normalized network load for various quota sizes. The bottleneck link cagacsty

set t05400. From the figure we see that when the normalized network load is etiy

the expected cost of link QoS state update per accepted flow is les$.théor all the

guota sizes. Hence on the average more than half of the flows accepted do not require any
link QoS updates. Even for the network is heavily overloaded,say,1.03, the expected

cost of link QoS state update per accepted flow is still less th&nIn other words, the

PoQ scheme is capable of reducing the overhead of per-flow processing even at the heavily
loaded scenarios. In general, smaller quota sizes tend to have better performance when
the network is heavily loaded. This is because the link QoS update cost is dominated by
the cost incurred by flows accepted in the critical mode. On the other hand, when the
network is not heavily loaded (say,= 0.95), smaller quota size (say, 30) actually incurs
more overheads because of the more frequent quota allocation and de-allocation operations.
These observations are supported by the data shown in Table 7.1.

To demonstrate the scalability of our PoQ dynamic bandwidth allocation scheme, we ex-
amine how the expected cost of link QoS state update per accepted flow changes as we
increase the network capacity (in this case the bottleneck link cap@agityhe results are
plotted in Figure 7.9 for two different quota sizes (a) 30 and (b) 100. From the figures,
we see that as the network capacity increases, the expected link level QoS update cost per
accepted flow decreases. This is actually not too surprising (see our comments at the end
of Section 7.3.2): with the normalized network load fixed, the probability that a flow is
accepted in the critical mode decreases as the link capacity increases, due to the increased
multiplexing gains. From these results we conclude that the PoQ scheme scales well as the
network capacity increases. This is particularly the case, when the network is not heavily
overloaded. When the network is heavily loaded, our scheme still leads to some amount of
cost reduction (especially with appropriately chosen quota size), albeit not as significant as
when the network is not heavily loaded. Note that when the network is heavily overloaded,

126

Expected link QoS state update for each accepted flow

N ' ' ' ' ' link-Update schemne
a=095 7
a=1.00 ~x-
0.9 - a=105 x|
*
08 - g
*
@
2 *
g o7f i
E
% 0.6 x. -
@
2
o 05 X 1
£
3 oaf g
& o3 *
02 g
P
o1y T e B
°
1500 2000 2500 3000 3500 4000 4500 5000 5500
Normalized link capacity with respect to flow rate
Expected link QoS state update for each accepted flow
N))) ' ' link-Update schene
" a=095 -
* a.5.1.00 ---%--
a=1.05 Hon K
x
0.8 1
. e
g
g
E =
E
g osf g
@
3
[eg
£ e
3 oaf g
5
&
0.2 1
e
7777777777777777777777 .
°
1500 2000 2500 3000 3500 4000 4500 5000 5500

Normalized link capacity with respect to flow rate

(b) Quota size = 100.

Figure 7.9: Expected cost of link QoS state updates as the network capacity increases.

127

Proj

Number of paths sharing the link

Figure 7.10: Proportion of flows accepted in critical mode as the number of paths increases
(C =5400, a=0.95).

some slow-down in flow request processing may not be a severe problem, since the network
itself is not capable of accommodating all the flows. Furthermore, in this case we can use
an extended PoQ scheme (the lossy-path PoQ scheme introduced in the next section) to
further improve the flow processing capability of the bandwidth broker.

Lastly, we consider the impact of the number of paths sharing a bottleneck link on the
performance of the PoQ scheme. Figure 7.10 shows the proportion of flows accepted in
critical mode as we increase the number of paths sharing the bottleneck link. In this set of
simulations the normalized loadis set t00.95. Note that when there are a small number

of paths, most of the flows can be accepted in the normal mode. But when the number
of paths are large, large quota size causes more flows to be accepted in the critical mode.
This is because there are not enough quotas to go around among all the paths. As a general
rule-of-thumb, in order to make the PoQ scheme work efficiently, the ratio of the number of
guotas a link has over the number of the paths sharing the link should be reasonably large.
In particular, a network with many paths sharing a bottleneck link, smaller quota sizes are
preferred.

7.4 Multiple Bandwidth Broker Design

In this section we extend the centralized bandwidth broker architecture with a single band-
width broker to a hierarchically distributed architecture with multiple bandwidth brokers.
This multiple bandwidth broker (MBB) architecture addresses the scaling problem posed
by the potential communication bottleneck between the bandwidth broker system and the
edge routers. The MBB architecture is presented in Section 7.4.1, where an extended PoQ
mechanism — thdossy-path PoQynamic bandwidth allocation scheme — is also in-

128

troduced to further reduce the call processing overheads at the central bandwidth broker.
Simulation results are presented in Section 7.4.2.

7.4.1 The MBB Architecture and the Lossy-Path PoQ scheme

The hierarchically distributedmultiple bandwidth broker architecture we propose is de-
signed based on the two-level network QoS representation and the PoQ dynamic band-
width broker architecture. As illustrated in Figure 7.11, the proposed MBB architecture
consists of acentral bandwidth broker (cBB) and a number eflgebandwidth brokers
(eBBs). The central bandwidth broker maintains the link QoS state database and manages
guota allocation and de-allocation among the edge bandwidth brokers. Whereas, each of
the edge bandwidth brokers managesidually exclusiveubset of the path QoS states and
performs admission control for the corresponding paths. The number of eBBs can vary, de-
pending on the size of the network domain. In the extreme case, for example, we can have
one eBB for each edge router (as shown in Figure 7.11), and the eBB can co-locate at the
edge router.

When a flow arrives at an edge router, the flow reservation set-up request is forwarded by
the edge router to the eBB that is in charge of the flow’s path. The eBB will make admis-
sion control based on the path state it maintains such as the currently available bandwidth
allocated to the path. If no sufficient bandwidth is available on the path, the eBB requests
a new quota for the path from the cBB. If the request is granted, the eBB admits the flow
and updates its path QoS state. If the request fails (i.e., one or more links along the path
are critically loaded), we can operate just like the basic PoQ scheme: the eBB forwards
the flow reservation request to the cBB, which will perform admission control using the
per-flow link-update scheme. We refer to this eBB operation modehtrelossy-path
model, as no flows will ever be rejected by the eBB, based on its path QoS state. We now
introduce an alternative eBB operation model — litsy pathmodel. Under this model,
when a quota request fails, the eBB will simply reject the flow reservation request, instead
of passing it to the cBB. We refer to the PoQ dynamic bandwidth allocation scheme under
the lossy path model tHessy-path Po@cheme. With the lossy-path PoQ scheme, the role

of cBB is much simpler: it performs only quota management, and all admission control
decisions are now delegated to the eBBs. Combining the proposed MBB architecture with
this lossy-path PoQ scheme, we can not only avoid the communication bottleneck to the
cBB, but also significantly reduce the processing burden at the cBB. This is particularly
desirable in a large network with high traffic intensity. Clearly, the enhanced scalability of

129

Data Plane

Figure 7.11: Multiple bandwidth brokers on the control plane for a network domain.

Flow blocking rates with different load (a) Ratio of quotas v.s. ratio of load

non-lossy-
lossy-path model (q
lossy-path model (q
lossy-path model (qu

Flow blocking rate
Ratio of quotas allocated to the path

:
0.94 0.96 0.98 1 1.02 1.04 1.06 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66
Normalized network load (a) Ratio of flows on the path

Figure 7.12: Flow blocking rates of the néilgure 7.13: Quotas allocated to a path is pro-
lossy-path portional to the traffic load distributed on the
and lossy-path models (C = 5400). path (C = 5400, a = 0.95).

the architecture is gained at the expense of some loss in performance, as some flows that
are rejected may be accommodated if the non-lossy-path model is used. In the next section
we will investigate the performance implication of the lossy-path MBB architecture model.

Before we move on to the simulation investigation, we would like to comment on some of
the advantages of the proposed MBB architecture. Note that a straightforward approach to
building a distributed bandwidth broker architecture to avoid the communication bottleneck
problem would be a replicated bandwidth broker system, with multiple identical bandwidth
brokers geographically dispersed in the network system. However, due to the need to both
access and update the network QoS states, maintagangistent QoS state databases
requires synchronization among the bandwidth brokers, which can be time-consuming and
problematic. In contrast, our hierarchically distributed bandwidth broker architecture does
not suffer such a problem, owing to the appropriate partition of the path QoS states and the
PoQ dynamic bandwidth allocation mechanism we employ.

130

7.4.2 Simulation Investigation

In this section, we conduct simulations to study the performance of the MBB architecture
using the lossy-path PoQ dynamic bandwidth allocation scheme. We use the same network
topology as shown in Figure 7.6, with the number of paths traversing the bottleneck link
set to 3. We assume that there is an eBB associated with each path. The normalized
link capacity with respect to the flow rate is 5400. All flows have an exponential holding
time with a mean of 900 seconds. We again vary the flow arrival rate to produce different
network loads.

Recall that under the lossy-path MBB architecture, an eBB will reject a flow when its
request to the cBB for a new quota fails, i.e., when the bottleneck link has no quota left.
Note that in this case, the total unreserved bandwidth on thenhaibe sufficient to
accommodate the flow, since itis possible that not all the paths have used up the bandwidth
allocated to it. Hence in general, the lossy-path model may result in a higher flow blocking
rate than the non-lossy-path model. Figure 7.12 shows the flow blocking rates of the lossy-
path model with three different quota sizes, as we vary the network load. The flow blocking
rate of the non-lossy-path model is also plotted for comparison. We see that when the
normalized network load is below 0.95, all flows are accepted under all the schemes. As
the load is increased, a small portion of flows is rejected. The lossy-path model suffers some
performance loss compared to the non-lossy-path model. The larger the quota size is, the
bigger the performance loss is. In addition, the performance loss enlarges as the network
load increases. However, after the normalized network load reaches 1, the performance loss
does not seem to increase visibly, in particular for the two larger quota sizes. This is likely
due to the fact that once the network is overloaded, a large portion of those flow reservation
set-up requests that are forwarded by the eBBs to the cBB for admission control under the
non-lossy-path model end up being rejected by the cBB. Hence rejecting these flow requests
at the eBBs does not degrade the system performance significantly, in particular when the
network is highly overloaded. Overall, we observe that the performance loss caused by
the lossy-path model is fairly small. We believe that at the expense of a relatively small
performance loss, the reduced bandwidth broker system overhead may well be worthwhile,
in particular when the network system itself is overloaded.

Lastly, we show the importance of dynamic quota allocation used in our PoQ scheme in
adapting to the offered load along a path. Dynamically allocating quotas to match the flow
activity along a path is particularly important under the lossy-path model, as inadequate
guota allocation can unnecessarily cause flows being rejected, and thus degrade the system

131

0.3557 0.0704 0.0345 0.0233

@ (= Tm) (@] (=)
\/ \/ \/ \/
0.0033 0.0469 0.032 0.1599

Figure 7.14: Quota state transition rate (C = 3600, a = 0.9, quota = 30).

performance. For this reason, we conduct simulations to evaluate the ability of the dynamic
PoQ scheme to track the traffic load on a path. Figure 7.13 shows the ratio of quotas
allocated to a path to the total quotas, as we increase the proportion of flows distributed
onto the path. The normalized network load is fixed at 0.95. The results in this figure show
that the dynamic quota allocation used in our scheme is indeed able to track the traffic
intensity of a path very well.

7.5 Improvements on the Performance of the PoQ Scheme

As we discussed in Sections 7.3 and 7.4, the performance of the PoQ scheme depends crit-
ically on the quota management used in the scheme. For example, to control the impact
of the scheme on the flow blocking rate of the system, smaller quotas are preferred; on the
other hand, smaller quotas introduce more overhead into the system, because of potentially
more frequent quota allocations and de-allocations. In this section, we propose several
extensions to the quota management of the PoQ scheme, aiming to improve the perfor-
mance and enhance the flexibility of the PoQ scheme under different environments. For
each extension, we will first briefly describe the mechanism, and then conduct simulations
to investigate the performance of the mechanism. These extensions can be applied to both
the lossy-path and non-lossy-path models. In the simulation study presented here, however,
we will mainly focus on the lossy-path model. Throughout this section, we use the same
network topology as depicted in Figure 7.6 for the simulations, where the number of paths
traversing the bottleneck link is set to three.

7.5.1 PoQ with Hysteresis

In the PoQ scheme we presented in Sections 7.3 and 7.4, a path will immediately return
an excess quota to the links along the path whenever there is one available. In this way,
the returned excess quota can be used by other paths which share a link with the path.
However, it is possible that a path has an excess quota only becaskertterm, local

132

flow fluctuations. Therefore, the path may need to request a quota shortly after it returns an
excess quota to the links.

To have a better understanding of this phenomenon, we introduce the notjootefstate

transition rateof a path as follows. We say a path is in a quota stéteurrently : quotas

are allocated on the path. L&t denote the total time that a path stays in a quota stiate

an arbitrary time interval, let; ; be the number of transitions from quota state state;

during the same time interval. Then the quota state transitionysate; of the path from

statei to j in the time interval is defined as,
N ;

qstr;; = —=
i

(7.3)

Figure 7.14 shows the quota state transition rates of thelpath F'1 after warm-up of the
simulation, where the capacity of the bottleneck link is set to 3600, the normalized network
load is 0.9, and the quota size is 30. All flows have an exponetial holding time with a mean
of 900 seconds. From the figure we see that the quota state transition rates from the state
34 to 35 and from the state 38 to 37 are much higher than the transition rates between other
states. A close examination of the trace data reveals that most of the time the path has 35,
36 or 37 quotas and only occasionally goes to the states 34 and 38. Moreover, when the
path quota state goes to 34 or 38, it will only stay there wery shorttime.

Such a short time state visit is caused by the short-term local flow fluctuations where a
small number of consecutive flow arrivals and departures triggers both a quota allocation
and a de-allocation in a very short time. Note that short-term local flow fluctuations also
occur in the state transitions between 35, 36 and 37 even though they are not exposed in
this simple figure.

Recall that the operations of quota allocations and de-allocations inpehlenk QoS state
updates along the path, which increases the overall overhead of the system. Therefore,
we should limit the amount of quota allocations and de-allocations as small as possible.
One simple strategy maybe just allow a path to hold excess quotas without returning them.
However, this may cause higher flow blocking rates on the other paths which share a link
with the path because of the shortage of available quotas, which is undesirable.

To regulate the behavior of a path in handling excess quotas, we develop the following
simple mechanism based on the notiorhgéteresis Each path will maintain a threshold
to determine if the path should return an excess quota. Instead of returning an excess quota

133

Flow blocking rates with different loads Flow blocking rates with different hysteresis thresholds
0.025 T T T T T T T 0.001
u

0.0008 |

0.0006 |

Flow blocking rate
Flow blocking rate

0.0004 |

0.0002
0 . /

L L = L L L L L L L L L
0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized network load (a) Hysteresis

Figure 7.15: Effects of hysteresis on flBigure 7.16: Flow blocking rates with differ-
blocking rates ent hysteresis thresholds (C = 3600, a = 0.95,
(C = 3600, hysteresis = 0.05). guota = 60).

immediately after itis available, a path will only return an excess quota after the reservation
rate along the path is below some threshold with respect to the current allocated quotas on
the path. More formally, le€” denote the bandwidth allocated on a p&tHet R” be the

total reservation rate of flows along the path. Then the path will only return an excess quota
if,

RP < C7 — (1 + hysteresis) B1""*, (7.4)

whereB?°“ is the bandwidth of a quota, atdsteresis > 0.

The intuition of the hysteresis based scheme is quite straightforward. Instead of returning
an excess quota whenever it is available, the hysteresis based scheme ties the policy of
guota de-allocation of a path to the (flow) traffic load on the path. When the reservation
rate on a path is below some threshold, it is possible that the path will not use the excess
guota in a relatively long time interval. Therefore, it is desirable to release the excess quota
so that it can be re-used by other paths.

In the following, we conduct simulations to study the effectiveness of the hysteresis based
scheme. The normalized capacity of the bottleneck link with respect to the flow rate is

3600. All flows have an exponential holding time with a mean of 900 seconds. We vary

the flow arrival rate to produce different network loads. In these simulations, the value of

hysteresis is set to 0.05.

Figure 7.15 shows the flow blocking rates of the hysteresis based PoQ scheme under the
lossy-path model for two quota sizes: 30 and 60. For comparison, we also include the

134

Table 7.2: Effects of hysteresis on quota allocations and deallocations (C = 3600, hysteresis
=0.05)

PoQ without hysteresis PoQ with hysteresis
guota size 30 60 30 60
normalized load 0.925\ 1.000 0.925\ 1.000 0.925\ 1.000 0.925\ 1.000

guotas allocated | 517 | 424 | 361 | 123 | 168 | 167 92 43
quotas deallocated 523 | 424 | 364 | 123 | 173 | 167 94 43

corresponding curves of the PoQ scheme without hysteresis. From the figure we see that
when the normalized network load is below 0.95, no flow gets rejected no matter hystere-
sis based mechanism is used or not. In these cases, the quota-based bandwidth allocation
scheme actually does not affect the flow blocking rate because of the low network load.
As the network load increases, the results are different for different quota sizes. When the
guota size is 30, the effects of the hysteresis based scheme on the flow blocking rate is
minor. There are two possible reasons. First, the quota size (30) is relatively small, the ma-
jor contributor to the flow blocking rate is the network load instead of the quota allocation
scheme. Second, when the quota size is 30, the threstiold/(y steresis) B1“*'*) for the

PoQ schemaevith hysteresis to return an excess quota is 31.5, which is close to the quota
size (30), thehresholdfor the PoQ schemwithout hysteresis to return an excess quota.
Therefore the extra bandwidth that maywastedby the hysteresis scheme is small (1.5).
When the quota size is 60, however, the hysteresis based scheme causes a slightly higher
flow blocking rate because of the relatively larger hysteresis threshold.

As discussed above, the motivation of the hysteresis based mechanism is to reduce the
amount of quota allocations and de-allocations of the PoQ scheme. Table 7.5.1 presents
the corresponding quota allocation and de-allocation activities after the warm-up of the
simulations. From the table we see that the reductions are significant by such a hysteresis
based mechanism. Compared with PoQ without hysteresis, there are roughly 3 to 4 times
reduction in the number of quota allocations and de-allocations in the hysteresis based
scheme.

Clearly, the performance and effectiveness of the hysteresis based scheme relies on the
value ofhysteresis of a path. If the value is too conservative, more flows may get rejected

on other paths which share a link with the path because of the shortage of available quotas.
On the other hand, a too optimistic value may undermine the scheme because the threshold
is not large enough to hold an excess quota which the path will need shortly after it is
available. Therefore, high frequent quota allocations and de-allocation may still occur.

135

Figure 7.16 shows the flow blocking rate of the system for a case where the quota size is
60, and Table 7.5.1 presents the corresponding quota allocation and de-allocation activities
of the simulations. Note that when the valuelgfsteresis is 0.01, the hysteresis based
scheme has the same flow blocking rate (i.e., 0) as the PoQ scheme without hysteresis
(hysteresis = 0). However, as we can see from the table, whegnteresis = 0.01

the amount of quota allocations and de-allocations is still quite high. As the value of
hysteresis increases to 0.2, the number of quota allocations and de-allocations drops dra-
mantically with a slight increase in the flow blocking rate of the system. However, even we
further increase the value ofsteresis, the reduction of the amount of quota allocations
and de-alloctions is little. From the above discussion we can see that a modest value of
hysteresis should work well in balancing the reduction of the amount of quota allocations
and de-allotions and the increase in the flow blocking rate of the system.

Note that when the values éf/steresis are 0.2, 0.3 and 0.4, the curve of the flow block-

ing rate of the system is flat. This is partly caused by the fact that the threhold with
hysteresis = 0.2 has caught the trend in the flow fluctuation in a degree, that is, when
the reservation rate of a path is below the threshold Wwitkteresis = 0.2, it will soon

be below the threshold withysteresis equal to 0.3 or 0.4. Therefore, they all have the
similar effects on the quota de-alloctions (see also Table 7.5.1) , and hence the similar flow
blocking rates.

So far, we have discussed the employment of the hysteresis based approach for a path to
hold an excess quota to accommodate the short-term flow fluctuations. Note that it may
be desirable for a path to employf@ward thresholdo request an extra quota before the

path has used up all the allocated quotas on the path [38], especially in the multiple BB
architecture. By such a forward threshold, the path may handle flow requests immediately
when the requests come instead of waiting for a new quota if the allocated quota bandwidth
has been used up on the path. We leave it as an engineering choice and will not elaborate
on this in this chapter.

Table 7.3: Effects of different hystereses on quota allocations and deallocations (C = 3600,
a = 0.95, quota = 60)

| hysteresis | 0 [0.01/0.1]0.2/03[04]05]
quotas allocated | 172| 87 | 30 | 16 | 15 | 15 | 13
guotas deallocated173| 88 | 31 | 18 | 17 | 17 | 15

136

7.5.2 PoQ with Variable Quota Size

Allocating bandwidth based on the notion of quota instead of per flow bandwidth requests
provides us with an efficient bandwidth allocation and admission control mechanism. How-
ever, As shown in Sections 7.3 and 7.4, the performance and cost of the scheme is closely
related to the size of the quota used in the scheme. Generally speaking, smaller quotas are
preferred as the flow blocking rate concerns; on the other hand, to reduce the amount of
guota allocations and de-allocations, larger quotas are favored. In this section, we propose
a scheme based on the notionvafriable sizequota to overcome the dilemma on how to
choose a proper quota size.

Letdq, do, ..., 0 denote the quota sizes that will be used in a network domain. Without loss
of generality, we assume that > 5, > ... > dy. Corresponding to each, there is a link
bandwidth allocation threshol}, i = 1,2, ..., N, whered; < 0,,,fort =1,2,... , N—1.

Let C denote the capacity of a linlg the current total bandwidth allocated to all the paths
traversing the link. We define the quota allocation mechanism as follows: A quota of size
0; is allocated when there is a quota allocation requékt if < g <@;fort=1,2,..., N,
where we used the convention tliiigt= 0.

Figure 7.17 shows the flow blocking rates of the variable quota size scheme (VQS), where
the link capacity is set t8600 with respect to the flow rate. In these simulations, the quota
bandwidth allocation thresholds are 0.9 and 1. For example, when the configured quota
sizes are 60 and 30 in a network domain, a link will allocate a quota of size 60 to meet a
guota request if the proportion of the link bandwidth that has been allocated is less than or
equal to 0.9. Otherwise, a quota with size 30 will be allocated. For comparison, the flow
blocking rates of the original PoQ uniform quota size (UQS) bandwidth allocation scheme
are also included with a quota size 60 and 30, respectively.

Note that the curve of the flow blocking rate of VQS with quota sizes 60 and 30 is almost
identical with the curve of UQS with a quota size 30. These results are not surprising
because, when the allocated bandwidth goes beyond 90 percent of the link capacity, the
smaller quota size is used under VQS, which is equal to the quota size used in the corre-
sponding UQS.

To examine the advantage of the variable quota size scheme in quota allocation, we present
the quota allocation and de-allocation activities in Table 7.5.2 for both VQS and UQS. For
VQS, the quota sizes are 60 and 30, while for UQS the quota size is 30.

137

Flow blocking rate Flow blocking rate

VQS (quota = 60, 30) —— | ' ' ' ' 3 DFT (quota = 1MbJs)
UQS (quota = 30) ----- ; DFT (quota = 5Mb/s) ---x--
UQS (quota = 60) -~~~ UFT (quota = 5Mbl/s) -----

Flow blocking rate
Flow blocking rate with respect to flow request rate

.
0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
Normalized network load (a) Normalized network load (a)

Figure 7.17: Effects of variable quota sizZ€igure 7.18: Flow blocking rate with differ-
on flow blocking rates (C = 3600; = 0.9). ent flow treatment (C=3000).

As shown from the table, when the normalized network load is 0.9, the VQS scheme has a
relatively smaller amount of quota allocations and de-allocations compared with the UQS
scheme. As the network load increases, both schemes have the almost identical amount of
guota allocations and de-allocations. Note that the threshold for the VQS scheme to allocate
a quota of size 30 instead of 60 is 0.9. Therefore, when the network load is below or equal
to 0.9, a quota with larger size (60) is allocated each time under the VQS scheme. Hence the
VQS scheme has a relatively small amount of quota allocations and de-allocations in these
cases. As the network load increases, the VQS scheme will allocate a quota of smaller size
(30), which is identical to the quota size in the UQS scheme. Therefore, they have almost
the same amount of quota allocations and de-allocations when the network load is beyond
the quota bandwidth allocation threshold (0.9).

Table 7.4: Effects of the variable quota size scheme on quota allocations and de-allocations
(C=3600,4, =0.9)
guota size quota = 30 (UQS) guota = 60, 30 (VQS)
normalized load | 0.900] 0.925[0.950[0.975] 1.000 | 0.900] 0.925] 0.950[0.975[1.000
guotas allocated | 483 | 517 | 538 | 523 | 424 | 419 | 510 | 536 | 523 | 424
guotas deallocated 483 | 523 | 540 | 524 | 424 | 419 | 516 | 538 | 524 | 424

From the above discussion and the simulation results, we note that by using variable quota
sizes, the VQS scheme has more freedom to allocate large quota sizes when the network
load is low. When the network load becomes higher, it can start to behave more conserva-
tive on bandwidth allocation. In this way, it may reduce the cost of the system meanwhile
maintaining a smaller flow blocking rate.

138

7.5.3 PoQ with Differentiated Flow Treatments

In both lossy-path and non-lossy-path models we have studied, flows are treated identically
based the flow requests and the availability of the resources. For example, in the lossy-path
model, as soon as there is no quota available at the central bandwidth broker, a flow will be
rejected. However, under certain environments it may be desirable to treat flows differently
based on some pre-defined policies. For example, some types of flows may be critical to
the revenue of an ISP, therefore, instead of rejecting these flows at an eBB because of the
shortage of the quotas, the eBB may forward the flow requests to the cBB, and the cBB can
conduct the admission control for these flows based on different rules.

To illustrate the idea of the differentiated flow treatments with the PoQ scheme, we define
two types of flows. One is the long-tetiarge flows, another is the short-tersmallflows.

A large flow normally requires a large amount of bandwidth, and a small flow requests a
relatively small amount of bandwidth. As an example, we may consider video applications
as large flows, while audio applications like IP Telephony as small flows.

Instead of treating large flows at the edge BBs, an eBB will forward these flow requests to
the central BB. The cBB will conduct the admissibility test usinglihle-updateadmission
control scheme, that is, no large flows will be rejected as soon as there is enough bandwidth
along the path. We call such a scheme as the PoQ with differentiated flow treatment (DFT),
and the original lossy-path scheme as the PoQ with uniform flow treatment (UFT). Note
that, the PoQ with DFT scheme can be considered as a hybrid of the lossy-path and non-
lossy-path models: treating small flows with the lossy-path model while treating large flows
with the non-lossy-path model. Moreover, because large flows are forwarded to the cBB,
a smaller quota size can be used by the cBB to meet the quota requests from the eBBs.
Recall that as the flow blocking rate concerns, a smaller quota size is preferred, therefore,
we may have lower flow blocking rate by such a DFT scheme.

We conduct a set of simulations to study the property of the PoQ scheme with DFT. In these
simulations, small flows have a request rate uniformly chosen in a range from 16 Kb/s to
64 Kb/s; large flows have a request rate uniformly chosen in another range from 0.5 Mb/s to
1.5Mb/s. The mean holding time for a small flow is 900 seconds, while for a large flow, it
is 1800 seconds. We vary the interarrival times of flows to produce different network load,
however, the ratio of the offered load of the small flows over that of the large flows is set to
9/1. Therefore the overall per flow mean rate is 136 Kb/s. The normalized link capacity is
3000 with respect to the mean flow rate (136 Kb/s). All the simulations last 15000 seconds,

139

of which the first 10000 seconds are the warm-up times.

To accommodate the effect of different rate requirements of small and large flows, we
define the flow blocking ratevith respect to flow request ratas follows.

T:Emﬁn’ (7.5)
Eiefz T

whereF; is the set of flows rejected;; the set of all the flows during the simulation, and
r; the requested rate of a floiv

Figure 7.18 shows the flow blocking rates with respect to flow request rates for the PoQ
with DFT and PoQ with UFT schemes. From the figure we see that, when the quota size is
5Mb/s, UFT has a higer flow blocking rate compared to the DFT scheme. Recall that DFT
can be considered as a hybrid scheme of the lossy-path and non-lossy-path models, while
the UFT is a lossy-path model. Therefore, a flow is rejected in the UFT scheme whenever
there is no quota available, but a (large) flow may still get accepted even there is no quota
available by thdink-updateadmission control scheme in the DFT model. As we discussed
earlier, a quota of size 1.5M b/s should be the smallest quota size that an UFT scheme can
use because large flows may have a request rate equal to 1.5M b/s. On the other hand, the
DFT scheme may choose a relatively small quota size (quota = 1M b/s) to have a smaller
flow blocking rate, as illustrated in the figure.

7.6 Summary

In this chapter we studied the scalability issue in the design of a centralized bandwidth bro-
ker model for dynamic control and management of QoS provisioning. We identified two
major factors that may potentially affect the scalability of the centralized bandwidth broker
architecture: the memory and disk access speed and communication capacity between the
bandwidth broker and edge routers. To reduce the overall number of QoS state accesses
and updates, we developed a path-oriented quota-based (PoQ) dynamic bandwidth alloca-
tion mechanism for efficient admission control operations under the centralized bandwidth
broker model. Based on the proposed dynamic bandwidth allocation mechanism, we also
extended the centralized bandwidth broker architecture to a hierarchically distributed archi-
tecture with multiple bandwidth brokers to address the scaling problem posed by the po-
tential communication bottleneck between the bandwidth broker system and edge routers.

140

Our simulation investigation demonstrated that the proposed PoQ dynamic bandwidth al-
location mechanism is indeed an effective means to increase the overall call processing
capability of the bandwidth broker. Furthermore, the bandwidth broker architecture can be
designed in such a manner that it scales with the increase in the network capacity. Further
extensions to the PoQ scheme were also investigated to improve the performance of the
PoQ scheme and to enhance the flexibility of the bandwidth broker architecture.

141

Part Il

Service Overlay Networks

142

Chapter 8

Bandwidth Provisioning for Service
Overlay Networks

8.1 Introduction

Today’s Internet infrastructure supports primarigst-effort connectivitgervice. Due

to historical reasons, the Internet consists of a collection of network domains (i.e., au-
tonomous systems owned by various administrative entities). Traffic from one user to an-
other user typically traverses multiple domains; network domains enter various bilateral
business relationships (e.g., provider-customer, or peering) for traffic exchange to achieve
global connectivity. Due to the nature of their business relationships, a network domain
is only concerned with the network performance of its own domain and responsible for
providing service guarantees for its customers. As it is difficult to establish multi-lateral
business relationship involving multiple domains, deployment of end-to-end services be-
yond the best-effort connectivity that requires support from multiple network domains is
still far from reality. Such problems have hindered the transformation of the current Internet
into a truly multi-service network infrastructure with end-to-end QoS support.

We propose and advocate the notionsefvice overlay networkKSON) as an effective
means to address some of the issues, in particular, end-to-end QoS, plaguing the current
Internet, and to facilitate the creation and deploymenediie-added Internet serviceach

as WolIP, Video-on-Demand, and other emerging QoS-sensitive services. The SON network
architecture relies on well-defined business relationships between the SONs, the underlying
network domains and users of the SONs to provide support for end-to-end QoS: the SON

143

purchases bandwidth with certain QoS guarantees from the individual network domains
via bilateral service level agreement (SL#) build a logical end-to-end service delivery
infrastructure on top of the existing data transport networks; via a service contract (e.g., a
usage-based or fixed price service plan), usdirectly pay the SON for using the value-
added services provided by the SON.

Figure 8.1 illustrates the SON architecture. The SON is pieced togetheemize gate-
wayswhich perform service-specific data forwarding and control functions. |atjieal
connection between two service gateways is provided by the underlying network domain
with certain bandwidth and other QoS guarantees. These guarantees are specified in a
bilateral SLA between the SON and the network domain. This architecture, for exam-
ple, bypasses the peering points among the network domains, and thus avoids the poten-
tial performance problems associated with them. Relying on the bilateral SLAs the SON
can deliver end-to-end QoS sensitive services to its users via appropriate provisioning and
service-specific resource management.

In addition to its ability to deliver end-to-end QoS sensitive services, the SON architecture
also has a number of other important advantages. For example, it decouples application
services from network services, thereby reducing the complexity of network service man-
agement and control, especially in terms of QoS management and control. The network
domains are now concerned primarily with provisioning of data transport services with as-
sociated bandwidth management, traffic engineering and QoS guarantees on a much coarser
granularity (per SON). In particular,the notion of SON also introduces a new level of traf-
fic aggregation -service aggregatethe underlying network domains can aggregate traffic
based on the SONs they belong to and perform traffic and QoS control accordingly based
on the corresponding SLAs. Under the SON architecture, a SON is responsible for ensur-
ing end-to-end QoS for its services. Because of its service awareness, a SON can deploy
service-specific provisioning, resource management and QoS control mechanisms (e.g., at
service gateways) to optimize its operations for its services. Hence the SON architecture
not only simplifies the network QoS management and makes it more scalable, but also
enables flexible creation and deployment of new (value-added) services.

Obviously deployment of SON is a capital-intensive investment. It is therefore imperative
to consider theost recoveryssue for the SON. Among the many costs the SON deploy-
ment incurs (e.g., equipment such as service gateways), a domaganting cost is the

cost of bandwidth that the SON must purchase from the underlying network domains to

lUsers may also need to pay (i.e., a monthly fee) the access networks for their right to access the Internet.

144

t, basic time unit for measuring traffic demand

T, time period for static bandwidth provisioning
traffic demand |

rd

| Service Overlay Network (SON)

Data Transport Networks

Figure 8.1: An illustration of a service over-
lay network. Figure 8.2: Traffic demands.

support its services. The SON must provision adequate bandwidth to support its end-to-
end QoS-sensitive services and meet traffic demands while minimizing the bandwidth cost
so that it can generate sufficient revenue to recover its service deployment cost and stay
profitable. The bandwidth provisioning problem is therefore a critical issue in the deploy-
ment of the SON architectur&his chapter is devoted to the study of this issue.

We develop analytical models to study the problem of SON bandwidth provisioning and
investigate the impact of various factors on SON bandwidth provisioning: SLAs, service
QoS, bandwidth costs and traffic demands. We consider the so-pgie8LA model as

an example to illustrate how the SON bandwidth provisioning problem can be formally
defined. The analyses and solutions can be adapted to the sotuadleSLA model. In
Section 8.2 we describe how the SON logical topology can be represented under the pipe
SLA model and present the model assumptions. Using the pipe SLA model we present a
basic static SON bandwidth provisioning solution in Section 8.3, and study the problems
of the more generataticanddynamicSON bandwidth provisioning, respectively in Sec-
tion 8.4 and Section 8.5. Analytical models and approximate solutions are developed for
both static and dynamic bandwidth provisioning. Numerical studies are also performed
to illustrate the properties of the proposed solutions and demonstrate the effect of traffic
demand distributions and bandwidth costs on SON bandwidth provisioning.

The notion of overlay networks has been used widely in telecommunication and data net-
works. For example, more recently content distribution networks and application layer mul-
ticast networks have been used for multimedia streaming [&{our[67] andResilient
Overlay NetworlKRON) [1] employ the overlay technique to provide better routing sup-
port. Moreover, the overlay technique has attracted a lot of attention from industry [16, 17]
as a means to deliver diverse QoS-sensitive services over the Internet. The service over-

145

lay networks we propose here is simply a generalization of these ideas. Perhaps what is
particularly interesting is the use of SONs to address end-to-end QoS deployment issue.
The major contribution of our work however lies in the study of the SON bandwidth pro-
visioning problem. Our approach and formulation also differ from the traditional capacity
planning in telephone networks (e.g. [35, 48]) in that we explicitly take into account various
factors such as SLAs, QoS, traffic demand distributions.

8.2 Assumptions and Bandwidth Provisioning Problems

In this section we first describe a logical topology representation of the SON under the
pipe SLA model and a simplifying assumption on service QoS. Two modes of bandwidth
provisioning—staticanddynamidoandwidth provisioning—that we will study in this chap-

ter is then introduced. We conclude this section by describing the traffic demand model and
a few notations regarding service revenue and bandwidth cost that will be used later in this
chapter.

8.2.1 SON and Service QoS

The pipe SLA model is a common SLA model used in today’s Internet. Under the pipe
model, the SON can request bandwidth guarantees between any two service gateways
across a network domain (see Figure 8.1); in other words a “pipe” with certain bandwidth
guarantee is provisioned between the two service gateways across the network domain. To
emphasize the relationship between the service gateways and the underlying network do-
mains, we denote thiegical (uni-directional) connection from a service gatewayo a
neighboring service gatewayacross a network domaib by (u, v; D), and refer to it as
alogical link (or simply alink) betweenu andv acrossD. Note that between the SON

and access networks where traffic to the SON originate and terminategsb8LA model

is assumed to be used where certain amount of bandwidth is reserved forenadficg

or exiting the SON. We can treat each access netwérlis afictitious service gateway

u4. Then we can talk about “connection”betweenand a neighboring service gateway
acrossA and the corresponding “logical linkK'u 4, v; A).

Given alogical linkl = (u, v; D), the SON provider will contract with the network domain
D to provide a certain amount of bandwidth guarantebetween the service gateways
u andwv acrossD. The SON bandwidth provisioning problem is then to determine how
much bandwidth to be provisioned for each link= (u,v; D) so that: 1) the end-to-end

146

QoS required by its services can be supported adequately; and 2) its overall revenue or net
income can be maximized.

Although the QoS a SON must support for its services can be quite diverse (e.g., bandwidth,
delay or delay jitter guarantees), in almost all cases a key component in providing such
guarantees is to exert some form of control on the link utilization level, i.e., to ensure the
overall load on a link does not exceed some specified condition. In other words, for the
purpose of bandwidth provisioning, we assume that it is possible to map the service QoS
guarantee requirements to a link utilization thresholtb state this assumption formally,

we assume that a link utilization threshojdis specified for each link; and to ensure
service Qo0S, the bandwidth provisioned for linkl must be such that the (average) link
utilization stays below,.

8.2.2 Bandwidth Provisioning Modes

We consider two modes of bandwidth provisioning under the pipe mastatic band-
width provisioning analynamicbandwidth provisioning. Iistaticbandwidth provisioning
mode, a SON contracts and purchases a fixed amount of bandavatari for each pipe
connecting the service gateways from the underlying network domains. In other words, the
bandwidth is provisioned for (relatively) long period of time without changinglyinamic
bandwidth provisioning mode, in addition to the ability to contract and purchase bandwidth
for each pipea priori, a SON can alsdynamicallyrequest for additional bandwidth from

the underlying network domains to meet its traffic demands, and pay for the dynamically
allocated bandwidth accordingly. To account for the potential higher cost in supporting dy-
namic bandwidth provisioning, it is likely that the underlying network domains will charge
the SON different prices for statically provisioned and dynamically allocated bandwidth.
Hence in either mode the key question in bandwidth provisioning is to determine the ap-
propriate amount of bandwidth to be purchaagatiori so that the total overall net income

of a SON is maximized while in the meantime meeting the traffic demands as well as
maintaining the service QoS.

2This particularly will be the case if the underlying network domain employs aggregate packet scheduling
mechanisms such as FIFO or priority queues. For example, it has been shown [11, 45, 87] that in order to
provide end-to-end delay guarantees, link utilization must be controlled at a certain level. Hence from the
bandwidth provisioning perspective we believe that this assumption on service QoS is not unreasonable in
practice. In fact it is said that many of today’s network service providers use a similar utilization based rule
(e.g., an average utilization threshold of 60% or 70%) to provision their Internet backbones.

147

8.2.3 Traffic Demand, Service Revenue and Bandwidth Cost

We now describe the traffic demand model for the SON. Recall that we assume that traffic
always originates from and terminates at access networks. Given a source aade
destination nodée, for simplicity we assume that a fixed routeonsisting of a series of

links connectings andd is used to forward traffic from to d. Let R denote the collection

of routes between the source and destination nodes. Then the traffic demands over the SON
can be represented by the traffic demands over these routes: for eaéh let p,. denote

the (average) traffic demand (also referred to as traffic load) along rantasured over
some period of time (see Figure 8.2). The periadis relatively short, for example in
seconds or several minutes, compared to the time scale of static bandwidth provisioning,
denoted byl', which could be in several hours or days. The petigglconsidered as the
basic unit of time. The sdlp, : » € R} then represents the traffic demands over the SON
during the time unit they are measured, and is referred to as the traffic demand matrix of
the SON. Note also that the traffic demands are always measured in units of bandwidth.

To capture the traffic demand fluctuations over time, we assume that the traffic dgfmand
along each route varies according to some distributforwe denote the probability density
function of the traffic demand distribution pf by dp,. Then the probability that the traffic
demandp, exceeds: units of bandwidth is given by, dp,. Let p, = [5° p.dp., i.€e.,p, iS

the (long-term) average traffic demand along rautever the time period for static band-
width provisioning. Furthermore, we assume that the traffic demand distributions along the
different routes arendependent In this chapter, we will study the bandwidth provision-

ing problem by considering two different traffic demand models. The first one takes into
account the widely observed self-similar property of the Internet traffic by employing the
M /G /oo input model [61, 63]; the second is based on the measurements of real Internet
traffic.

For each route, we assume that the SON receivesamount of revenue for carrying one
unit of traffic demand per unit of time along route On the other hand, for each logical
link or pipel connecting two service gateways, the SON must pay a cabt(of) per unit

of time for reserving; amount of bandwidth from the underlying network domain. We
refer to®,; as the bandwidth cost function of link Without loss of generality, we assume
that®, is anon-decreasindunction.

3This traffic demand distribution can be obtained, for example, through long-term observation and mea-
surement.

148

8.3 Basic Static Bandwidth Provisioning Model

In static bandwidth provisioning, a certain amount of bandwatirprovisionings needed

to accommodate some degree of fluctuation in traffic demands. The key challenge in static
bandwidth provisioning is therefore to decide timalamount of bandwidth overprovi-
sioning. In this section, we present a basic static bandwidth provisioning model and analyze
its properties. This basic model will serve as the basis for other bandwidth provisioning
models we will consider in this chapter.

In the basic model, the SON provisions bandwidth on each link based on the long-term
average traffic demand matr{%, }, and attempts to maximize tlegpectedet income. To
accommodate some degree of fluctuation from the long-term average traffic demands, we
introduce aroverprovisioning parametef on each link, ¢, > 0. The meaning of the over-
provisioning parameteq; is given as follows: we will provision; amount of bandwidth

on link [such that as long as the overall traffic load on lirdoes not exceed its long-term
average load by, the service QoS can be maintained, i.e., the link utilization is kept below
the prespecified thresholg. To put it formally, definegy, = >°,..c, p., wherel € r denotes

that link lies on router. Then

p(l+ea)=14e) > pr<ma,VleL (8.1)

riler

wherelL is the set of all links of the SON.

Given thatc; amount of bandwidth is provisioned on each linkhe expected net income
of the SON isW = Y. crerpr — Suer @i(e). Hence the basic bandwidth provisioning
problem can be formulated as the following optimization problem:

max W subjectto (8.1).

cp:lel

Sinced;’s are non-decreasing, it is easy to see that the optimal solution to the optimization
problem is given by

C;k = (1 + 65)@/7]1 Vie L. (82)

Hence under the basic bandwidth provisioning model, once we fix the overprovisioning
parameters, the optimal amount of bandwidth to be provisioned for each link can be derived
using (8.2).

149

Assuming thatb,’s are sub-additive, we see that a sufficient condition for the SON to have
positive expected net income is to ensure that

« or(1+e€
S ZlEr CI)l(Cl) _ Zler (I)l(p (771 l))‘

Pr Pr

(8.3)

r

The relationship (8.3) provides a useful guideline for the SON to determine how it should
set its price structure for charging users of its services to recover its cost of bandwidth
provisioning. It has a simple interpretation: we can regai#-<)/11) as the average cost

of carrying one unit of traffic demand per unit of time along routen link /. Then the
right-hand side of (8.3) is the total cost of carrying one unit of traffic demand per unit of
time along route-. To recover its cost, the SON must then charge users of its services more
than this amount. I®,’s are strictly concave (i.e., non-linear), in other words, the per-unit
bandwidth cost decreases as the amount of reserved bandwidth increases, the economy of
scale will benefit the SON: the higher the average long-term traffic demands, the lower
the average cost of providing its services, yielding higher net income. In thebgasae
linear, i.e..®,(¢;) = ¢, then (8.3) becomes. > 3", ¢,(1 + ¢)/m which is independent

of the traffic demands.

8.4 Static Bandwidth Provisioning with Penalty

In the basic static bandwidth provisioning model we assume that the overprovisioning pa-
rameters are given. We now consider the problem of how to obtaioghmal overpro-
visioning parameters under given traffic demand distributions. We study this problem by
taking into account the consequence of potential QoS violation when the actual traffic de-
mands exceed the target link utilization. For this purpose, we assumthéh&0ON may

suffer a penalty when the target utilization on a link is exceeded, and therefore service QoS
may potentially be violated=or example, it is quite likely that the service contract between

the SON and its user is such that when the service QoS is poor (e.g., due to network con-
gestion), a lower rate is charged, or the user may demand a refund. In the case that some
form of admission control is used by the SON to guide against possible QoS violation, the
penalty can be used to reflect the lost revenue due to declined user service requests. We
will refer to this model as thstatic bandwidth provisioning with penalty mogdet in short,
static-penaltymodel.

For each route, let r,. denote the average penalty suffered by per unit of traffic demand
per unit of time along route when the service QoS along routeés potentially violated.

150

Given the traffic demand matrifp,. }, let B,.({p,}) denote the probability that the service
QoS along route is potentially violated, more specificallhe target utilization on one of
its links is exceededThen the total net income of the SON for servicing the given traffic
demand matriX p,} can be expressed as follows:

{pv Z ErPr — Z (I)l Cl Z Tpr B {pr (84)

re€R leL reR

where in the above we us& ({yp,}) to emphasize the dependence of the total net income
on the traffic demand matri§p, }. When there is no confusion, we will drdp,. } from the
notation.

Let d{p.} denote the joint probability density function of the traffic demand mgtpix,
where recall thadp, is the probability density function of the traffic demamdalong route
r. Then the expected net income of the SON under the traffic demand distrib{idiens
is given by

W)= [We i), (8.5)

where/ - [, , denotes multiple integration under the joint traffic demand distributitn} .

Now we can state the problem of static bandwidth provisioning with penalty as the follow-
ing optimization problem: finding the optimal overprovisioning parametersto maxi-
mize the expected net income, i.e.,

n{la}xE(W) subject to (8.1). (8.6)

€

Unfortunately, the exact solution to this optimization problem is in general difficult to ob-
tain. It depends on both the particular forms of the traffic demand distribufigmng and
the service QoS violation probabilitigs,. To circumvent this difficulty, in the follow-
ing, we shall derive an approximate solution (a lower bound) based on the sodoatled
independence assumptiothe link overloadevents (i.e., exceeding the target utilization
threshold) occur on different linksidependently Clearly this assumption does not hold
in reality, but it enables us to express in terms of Bi(p;, ¢;), the probability that the
target utilization levely, on link [is exceeded, wherg, = > ..., p.. (Again, we may
drop the variableg, and¢; in B;(p;, ¢;) if there is no confusion.) Such link independence

151

assumption has been used extensively in teletraffic analysis and capacity planning in the
telephone networks (see e.g., [48]). Under the link independence assumption, the service
QoS violation probability,, i.e., at least one of the links on routés overloaded, is given

by

B,=1-T[(1-B). (8.7)

ler

Before we present the approximate optimal solution, we need to introduce one more set of
notations. Define a small real numbder- 0. For each route, let 5, > p, be such that

| v, < (8.8)

T

Sincefﬁ"rO prdp, > pr [5° dp. = pPr{p, > p,}, we havePr{p, > p.} < d/p,. In other
words, (8.8) basically says thatis such that the probability the traffic demand along route
r exceed9, is very small, and thus negligible.

With these notations in place, we now present a lower bound' @) as follows (see
Appendix D.1 for the detailed derivation).

EW) > Y erpr— S 0(a) = X i Bo{pn}) — Somd(1+ 3 20)

reR leL reR reR r'#r Pr!

, (8.9

Denote the right-hand side of the above equation/hythen E(1W) > V. Comparing

the lower bound” with the expected net incomié” = X, cre.p, — Ser ®i(c;) without
taking penalty into accountve see that ignoring the extremal traffic demands (i.e., when
pr > pr), We pay at most a penalty af. B, ({5, }) per unit of traffic demand on route

for potential service QoS violations. For givén- 0, the penalty incurred due to extremal
traffic demands is upper bounded By 7.6 (1 + 3,4, ;’—) Note also thaB, ({5, }) is

the probability of service QoS violation along routevhen the long-term average traffic
demands are assumed to /e Thus in usingV” as an approximation t& (1), we are
being conservative by over-estimating the probability of potential QoS violations.

FromE(W) >V, we havemaxy,; £(W) > max, V. Therefore we can obtain thest
overprovisioning parameters that maximiZeinstead of the expected net incorigil’)
as an approximate solution to the original optimization problem (8.6). Using the solution
to the basic bandwidth provisioning problem (8.2), we assuyme (1 + ¢,)p;/n, for a

152

given set of{¢ }, i.e., the target utilization constraints (8.1) hold with equality. Under
this assumption, lefe; } be the solution to the optimization problemx ., V, and refer

to them as thexpproximate optimal overprovisioning parameters the following we
demonstrate hoye; } can be derived.

Using (8.7) we can re-writ& as follows:

V= Z(er_ﬂ-r)ﬁr_z CDZ(Q)""ZWTETH 1- Bl Pl;Cl Zﬂ-r 1+Z pT

reR leL reR ler reER r'#r Pr!

Wherelél = Zr:ler ﬁr'

AssumeB; is a continuous and everywhere differentiable function;of (See the next
section for a discrete case.) For each lindefine

= > mpe [1= Bilpr,)G, (8.11)

riler ker,k#l

where(, = — = Bi(j,).

Through some simple algebraic manipulation, it is not too hard to show that

8V (9V 80[8<I>l(cl) R ﬁl
= = + SZ)*.
861 8(:[661 801 m

(8.12)

Suppose thae;} are strictly positive, then a necessary condition for them to be an optimal
solution is that the gradieftV (with respect td ¢; }) must vanish at;’s. Thus from (8.12)
we must have

8@%(@)
80;

=§ VleL. (8.13)

Intuitively, 3, measures the sensitivity of potential penalty reduction to bandwidth increase
on link, Whereasa%f” measures the sensitivity of bandwidth cost to bandwidth increase
on link [. Hence the “optimal” (or rather, the approximate optimal) overprovisioning pa-
rametere; should be chosen such that the two values coincide. In the following discussion,
we will loosely refer tos; as the “per-unit bandwidth gain in potential penalty reduction”
andaqg—c(f” as the “increase in per-unit bandwidth cost.”

153

In the above derivation of the approximate optimal solution to the static bandwidth provi-
sioning problem, we have simply assumed the existenéz,dhe probability that the target
utilization levelr, on link [is exceeded. The particular form of it depends on the distribu-
tion of (average) traffic demands on the link. In the following sections, we consider two
different traffic demand models—a self-similar traffic demand model and a traffic demand
model based on real Internet traffic measurements to demonstrate the static bandwidth pro-
visioning problem.

8.4.1 M/G /oo Traffic Demand Model

Since the pioneering work by Leland, Tagqu, Willinger and Wilson [53], the self-similar (or
long-range dependent) property has been observed in Ethernet Local Area Network [53],
Wide Area Network [63], and World Wide Web traffic [19]. The observed self-similar
property of the Internet traffic has important implications on the dementioning and provi-
sioning of the IP networks. In this section, we consider a traffic demand mbkfet,/ oo,

that captures the (asymptotically) self-similar property of the Internet traffic [61, 63].

Consider anV//G /oo queue, where the service time has a heavy-tailed distribution. We as-
sume that the distribution of the service time has a finite meanXLdéenote the number of
customers in the system attimdort = 0, 1, 2, Then the count proce§s(; }:—o1.2. IS
asympotically self-similar. Let denote the customer arrival rate to th€'G /oo queue and

1 the mean service time, thexy has a Poisson marginal distribution with mean[18].

Now we are ready to present tli¢/G /o traffic demand model on each route. Consider

an arbitrary route.. We assume that the traffic demand (i.e., the average traffic arrival rate
per unit time) is governed by the count procgs§ };—o1. . of an M/G/oo queue. Let

pr denote the mean traffic demand on the route. It is easy to see,thatpu, wherep

andy are the customer arrival rate and the mean service time, respectively,/df/tig¢oo

gueue. As traffic demands along all the routes are assumed to be independent, the average
overall traffic load on a linkis p, = X,..c, pr-

Given the average overall loagl and the link capacity;, it can be shown that the proba-
bility that the total load on link exceeds; = ¢, during any given unit of time is given
by Bi(pi, a1) = (352 41) pi)e*m. Extending the definition oB;(p;, ¢;) to non-integer val-

7!

ues of¢; by linear interpolation. At integer values of define the derivative oB;(p;, ¢;)
with respect ta; to be the left derivative. TheﬁaBl(pl, a) = Bi(pi,a) — Bi(pi, e — 1).

NEEAl

Therefore = — £ Bi(pie)) = mi{ Bu(pv, (mer = 1)) = Bilprome)} = mfcpe ™. By

154

this definition of B;, we are able to obtain the (approximate) optimal overprovisioning pa-
rameters;’s by solving (8.13).

We now discuss thehapesof 5, and &, on (approximate) optimal overprovisioning pa-
rameters;’s as well as their implication in static bandwidth provisioning. Note first that
the shape of; is determined by;, which has a shape of (skewed) bell-shape with a center
approximately ap, (it is essentially a Poisson probability density function). Heggcis

a concave function of, > 0. In particular, there exist§ such thats; is an increasing
function in the rangé0, ;] and a decreasing function in the rarigeocc) (see Figure 8.3).
Intuitively, this means that as moves from O towards, there is an increasing benefit in
bandwidth overprovisioning in terms eéducing potential QoS violation penaltyiow-
ever, ax; moves beyond,, there is adiminished returnn overprovisioning in terms of
reducing potential QoS violation penalty.

Suppose tha®,’ is a linear function, i.e.®;(c;) = ¢iq. Then‘%al—c(fl) = ¢;. Hence (8.13)
becomespy, = 5. Supposep, = §; holds for some; > 0. Because of the shape &,

there potentially exists two solutiors; ande; 5, 0 < €1 < € < €5 such thaiy, = 5. In
particular, ass; is a decreasing function in the ranfg co), ¢, » always exists. A% is
positive in the rangée; 1, ¢;,2), and is negative in the rangéis ¢; ;) and (e, 2, o), we see

that with respect to link, V' is maximized at eithe¢; = ¢, or ate; = 0 (whereas it is
minimized ate; ;). Intuitively, when only a small amount of bandwidth is overprovisioned

on link [, the per-unit bandwidth gain in potential penalty reduction is too small to offset
the per-unit bandwidth cost, hentedecreases. However, as we increases the amount of
bandwidth overprovisioned, the per-unit bandwidth gain in potential penalty reduction be-
comes sufficiently large and offsets the per-unit bandwidth cost, Hénoereases until it
reaches a maximum. Due to the diminished return in the per-unit bandwidth gain in po-
tential penalty reductiorl;, decreases again when too much bandwidth is overprovisioned
on link c¢. In the special case thaj is such thaty, > s, for all ¢, > 0, then a% < 0,

V attains its maximum at; = 0 with respect to linkl. Intuitively it says that when the
per-unit bandwidth cost on linkis higher than the per-unit bandwidth gain in potential
penalty reduction, there is no benefit in overprovisioning any bandwidth or tmkguide
against any potential QoS violation penalty. These observations can be extended to other
bandwidth cost functions such as concave or convex cost functions. In general we see that
the trade-off between the bandwidth cost and overprovisioning bandwidth to guide against
service QoS violations is critical to the problem of SON bandwidth provisioning. It is also
clear from the above discussion that as the per-unit bandwidth cost decreases, there is more

155

14 T T T T T T T T T 1100

[+44
cAAA

S
Tone

idth price (@)

).
asic static model, 3 = 30

400 L L L L L L L L L
0.5 0.6 0.7 0.8 0.9 200 220 240 260 280 300 320 340 360 380 400

Overprovisioning paramet ter (¢) Expected traffic demand

Figure 8.3: Relationship betweéne, & ¢;. Figure 8.4: Comparison df andE(W).

benefit in overprovisioning. Lastly, we comment that from (8.13) and (8.11) and the above
observations, we can compute the approximate optimal overprovisioning paragjiisters
usingfixed point approximatian

8.4.1.1 Numerical Examples

We conduct numerical studies to illustrate the properties of the analytic results we obtained
and demonstrate the effects of various parameters on static bandwidth provisioning. For
this purpose, we consider a simple setting: a single route over a single link. Numerical

studies in more complex settings will be performed in a later section.

Unless other stated, the following parameters will be used in the numerical studies: the
long-term average traffic demand on the route is 200 (measured in unit of bandwidth per
unit of time), i.e.,p,.(= p;) = 200, ande, = 4, ¢; = 1, 7, = 2. We sety = 5 and the target
utilization threshold;, = 0.8.

Figure 8.3 shows; as a function ot; with three different values aof,. 7. = 1,2, 3. In the

figure we also include a line correspondinggio= 1 to illustrate howe; can be obtained

as the solution t@; = ¢;. Recall from Section 8.4, = ¢, (the right intersecting point).
From Fig. 8.3 we see that as the penaifyincreasese; also increases. Hence for higher
penalty it is necessary to overprovision more bandwidth to guide against potential QoS
violations. Likewise, as we increase the per-unit bandwidth ¢pgte., moving up the

line of ¢;), ¢/ decreases. In other words, as the bandwidth cost increases, it is beneficial to
reduce overprovisioned bandwidth so as to maximize the net income.

In Figure 8.4 we compare the lower bouvidvith the actual expected net incorfigil’) for

156

17 1.6 15 1.4
5 Unit bandwidth price (¢)

Figure 8.5: Impact o onV ande*. Figure 8.6: Impact of unit bandwidth price
one*.

two given values of (5 and30). For comparison, we also include the expected net income
W under the basic static model, where the overprovisioning paramjeteobtained from

the static-penalty model. From the figure we see that for both valuggloé lower bound

V' provides a reasonable approximationH¢l/’). Note also that the difference between
the actual expected net incom#1/) under the static-penalty model and the expected net
incomel under the basic static is almost invisible. This is likely due to the fact that the
additional revenue generated when the traffic demand exceeds its long-term average (the
first term in £(1V)) and the potential penalty incurred due to service QoS violations (the
third term in E(WW)) cancel each other out on average. From Fig. 8.4 it is clear that the
lower bound depends on the choicejofThe smaller thé is, the closer the approximate
revenuéel is to the expected revenug(1V). To further explore the relation betweé&mand

V, in Fig. 8.5 we plotl” as a function ob (upper plot). In the figure, we also include the
overprovisioning parametef as a function ob (lower plot). We see thdt is a concave
function of §, and thus there is a uniquethat maximizes/. On the other hand; is a
non-increasing function af.

To highlight the relationship between bandwidth cost and overprovisioning in Fig. 8.6 we
plot the overprovisioning parametgras a function of the per-unit bandwidth cest We

see that as the per-unit bandwidth cegstdecreases (from 2 to 1), the overprovisioning
parametee; increases, i.e., it is more beneficial to overprovision more bandwidth. This is
not surprising.

157

14

Day~time traffic demand
12t

3k B 10F

(o]

.
0 50 100 150 200 250 300 1 2 3
Unit time (5 minutes) Day-~time traffic demand (Mb/s)

0.5 1 15
Night—time traffic demand (Mb/s)

Figure 8.7: Traffic demands of the Auckland~igure 8.8: Histogram of the Auckland data
data trace. trace’s traffic demands.

8.4.2 Measurement-Based Traffic Demand Model

A key property of the presented approximate optimal solution to the static bandwidth pro-
visioning problem is that it only relies on the marginal distribution of the traffic demand on
each link. In this section, we will study the static bandwith provisioning problem based on
the measurements of real Internet traffic. That is, we estimate the marginal distributions of
the traffic demands on the links by the long-term measurements of the traffic data, and then
apply the estimated marginal distributions of the traffic demands to our static bandwidth
provisioning problem.

The data trace we will use was collected at the University of Auckland Internet access link
on December 1, 1999, lasted roughly #drhours (refered to a&uckland data tracg[78].

In the Auckland data trace, there are total}628004 packet arrivals. Figure 8.7 presents

the average traffic arrival rates (i.e. traffic demands) of the Auckland data trace, where each
point represents the average traffic demand foranute time interval (which is also used

as the base unit of time, i.€.,= 5 minutes, see Figure 8.2). Given the largely different
traffic arrival patterns during the day-time and night-time, we will accordingly provision
bandwidth differently for them, where the day-time is defined to be fi®mM0AM to
5:00PM and night-time fron¥:00PM to 7:00AM. We will refer to the traffic demands dur-

ing the day-time and night-time asy-time traffic demandndnight-time traffic demand
respectively. All other times are considered to be transition times. The bandwidth provi-
sioned for the day-time and night-time should be switched during the transition times based
on certain criteria, which is not considered in this paper.

Now let us consider the properties of the day-time traffic demands and the night-time traffic

158

Table 8.1: Provisioning for the Auckland traffic demands.

Mean| STD | C.O.V. || ¢ Vv
Day-time | 2096 | 442 | 0.21 | 0.67 | 3446
Night-time | 609 | 240 | 0.39 0 | 1672

5 16/ 1\l
O @E

8
Cl C2 40 \21 S5 C3 C4

Cl c2 S3 S4

C5 C6
% o o o3 (a) Tree (b) Mesh-Tree
Figure 8.9: Relationship betweép ¢, & ¢,
for Day-time traffic Figure 8.10: SON topologies.

demands. The mean traffic arrival rate over the whole day-time duration &b/s,

while over the night-time duration it i8.6 Mb/s. Figure 8.8 plots the histograms of the
traffic demands for the day-time (left-hand side) and night-time (right-hand side) separately,
where the bin sizes for the day-time traffic demands and the night-time traffic demands
are100 Kb/s and50 Kb/ s, respectively. From the plots we see that the day-time traffic
demands are relatively symmetrically centered at its mean arrival rate, while the night-time
traffic demands are more skewed. In th following studies, we will model the day-time traffic
demands by &Normal distribution, while the night-time traffic demands by agnormal
distribution to retain the different traffic characteristics during the day-time and night-time.
Table 8.1 presents the mean traffic demands and the standard devigli@®{ the day-

time and night-time traffic demands, where the base unit of bandwidth (traffic demand) is
1 Kb/s.

In the following, we will conduct numerical studies to illustrate the static bandwidth pro-
visioning using the Auckland data trace. In all these studies, we again consider the simple
setting: a single route over a single link. The per-unit bandwidth per-unit time earning
e, = 4,and¢; = 1, 7, = 2. We set the target utilization threshojd= 0.8.

Similar to the numerical example for the /G /oo traffic demand model, in Figure 8.9,

159

we shows; as a function ot; with three different values aof,: =, = 1,2, 3, for the day-

time traffic demands. The value é6fused is140. In the figure we also include a line
corresponding ta@; = 1 to illustrate howe; can be obtained as the solution3o= ¢,

(see (8.13)). Following a similar argument as that in Section 8.4.1, there potentially exists
two solutionse; ; ande; o, 0 < €1 < ¢ such thaty, = 5. Moreover, with respect to

link /, V' is maximized at eithee; = ¢, or ate; = 0. From Fig. 8.9 we can draw the
similar conclutions as that in th&/ /G /oo traffic demand model. In particular, we see that

as the penaltyr, increasesg; also increases. Hence for higher penalty it is necessary to
overprovision more bandwidth to guide against potential QoS violations. Likewise, as we
increase the per-unit bandwidth cgs(i.e., moving up the line af,), ¢; decreases. In other
words, as the bandwidth cost increases, itis beneficial to reduce overprovisioned bandwidth
SO as to maximize the net income. However, compared with the result in Figure 8.3, we
see that we obtain larger overprovisioning parameters here. This is caused by the high
traffic fluctuation in the Auckland data trace. Table 8.1 givescthedficient of variancéor

the day-time traffic demands (and the night-time traffic demands) in the column marked as
C.O.V. This value (.21) is much higher than that in Figure 8.3, whichig7.

To compare the different provisioning behaviors during the day-time and night-time, we
present the overprovisioning parameters for both the day-time and night-time traffic de-
mands in Table 8.1. To obtain these results, we have searched for théshibstt yeild

the maximall’’s, respectively. In the table we also include the approximate reverae
(per-unit time) for the day-time and night-time traffic demands. From the table we see that
for the day-time traffic demands the overprovisioning paramgiter 0.67, while for the
night-time traffic demands = 0. The reason is as follows. Even though the average traffic
demands during night-time are much lower than that during day-time, we observe a much
higher traffic demand fluctuation during the night-time than that during the day-time (see
Table 8.1 for their corresponding coefficients of variance). It is too expensive to accom-
modate this high traffic demand variance during the night-timei§¢ dramatically large),
therefore, no overprovisioning is provided in this case. During day-time, the (per-unit time)
approximate revenue 146, which is higher than that during the night-times{2). This

is not unexpected.

8.4.3 Performance Evaluation

We now use two SON topologies—tlree (Fig. 8.4.2(a)) and the mesh-tree (Fig. 8.4.2(b))
topologies—to illustrate the effect of traffic load distribution among various routes of a

160

SON on static bandwidth provisioning. In the following — b denotes a route from
service gateway to service gateway. The path withminimum“hop-count” (i.e., service
gateways) is used as the route between two service gateways. In case there are two such
paths, only one is chosen. In the numerical studies below, we will usk/tie/ oo traffic

demand model. We set = 10, 7, = 2 for all the routes, and, = 1 for all the links. The

value ofé is chosen in such a way thét = ;- p,.

In the tree topology, four routes are usétl = S3 — C1, R2 =51 — C1, R3 = 5S4 —
C2,and R4 = S2 — (2. To investigate the effects of different traffic loads on band-
width provisioning, we consider two types of traffic load distribution among the routes: the
balancedoad where the expected traffic demand for all routeX)is and theunbalanced

load where the expected traffic demands on rodesk2, R3, R4 are300, 100, 250, and

150, respectively. Table 8.2 presents the resulting overprovisioning paragheie provi-
sioned bandwidtla, for six representative links: link, 4, 5,7, 8, and9. The corresponding
average traffic loadg,’s on these four links are also given in the table. From the results
we see that under the balanced load, links with a higher average traffic load have a smaller
overprovisioning parameter. This is due to statistical multiplexing gains for carrying a
higher load on a link. In the Unbalanced case, similar results can be observed. Note that
even links4 and9 have the same traffic demand load, they are overprovisioned differently.
This is caused by the fact that, there are two routes traversing livikile there is only one

on link 4.

Table 8.2: Tree Topology.

Link ID 1 4 5 7 8 9

p | 400 | 200 | 800 | 200 | 200 | 400
Balanced | ¢; | 0.26| 0.3 | 0.23| 0.3 | 0.3 | 0.26
¢ | 630 | 325 | 1230| 325 | 325 | 630
pi | 400 | 250 | 800 | 100 | 150 | 250
Unbalanced ¢ | 0.26| 0.27| 0.23 | 0.41| 0.34| 0.33
¢ | 630 | 397 | 1230| 176 | 251 | 416

We now consider the mesh-tree topology. In this case ther®amutes:R1 = S1 — (1,

R2 =952 — C2,R3 =53 —C1(1),R4=54— C2(1), R5 = S1 — C3 (3),

R6 =52 — C4(3), RT =953 — (C3, R = 54 — C4, R9 = S5 — (5, R10 =

S5 — (C6. The number in the parentheses following a route shows a link that the route
traverses in case there are multiple paths between the source and destination with the same

161

Table 8.3: Mesh-Tree Topology.

Link ID 2 6 11 | 18 | 19 | 21

pr | 1200 800 | 400 | 400 | 400 | 200
Balanced | ¢ | 0.22 | 0.23 | 0.26| 0.26| 0.26| 0.3

¢ | 1830| 1230| 630 | 630 | 630 | 325
p | 1350| 1100| 500 | 400 | 400 | 100
Unbalanced ¢ | 0.21 | 0.2 | 0.24| 0.26| 0.26| 0.41
¢ | 2042|1650 775 | 630 | 630 | 176

path length. Again for the balanced load case, all the routes have an average traffic demand
of 200; while for the unbalanced load case, the average demands for rButes R10

are 300, 250, 100, 150, 300, 250, 100, 150, 300, and 100 respectively. Table 8.3 shows the
results for six representative links: lirk6, 11, 18,19, and21. From the table we can see

that similar observations also hold for the mesh-tree topology.

In this section, we have studied the static bandwidth provisioning mode, where during
a relatively long period, the provisioned bandwidth on a link will not be changed. The

static bandwidth provisioning mode is simple in bandwidth management, but may result
in inefficient bandwidth usage facing traffic demand fluctuations. In the next section, we
will study the dynamic bandwidth provisioning mode, where the link bandwidth could be

dynamically adjusted according to the traffic demand fluctutions in relatively shorter time
intervals.

8.5 Dynamic Bandwidth Provisioning

In this section we study the dynamic bandwidth provisioning problem. As pointed out
in Section 8.2, to account for the potential higher cost in supporting dynamic bandwidth
provisioning, it is likely that the underlying network domains will charge the SON different
prices for statically provisioned and dynamically allocated bandwidth. Hence we assume
that for each linkl, the cost for reserving, amount of bandwidtlstatically is, as before,
®,(c;); while the cost of reserving the same amount of bandwilythamicallyis ®;(¢;),

where ®)(¢;) > ®,(¢;). Given this price differentiala key question for the SON is to
determine how much bandwidth should be reserved statically on eacl #indriori to

meet certain base traffic demands, while dynamically allocating bandwidth to meet the
additional traffic demands as needékthe objective is again to maximize the overall long-

162

term expected net income of the SON.

To focus on the dynamic bandwidth problem, we assume that the underlying network do-
mains possess abundant bandwidth that the dynamic requests for additional bandwidth from
the SON are always satisfied. In other words, no request is blocked. Under this assumption,
for a given traffic demand matrip, }, it is possible to compute the expected additional
bandwidth that needs to be dynamically allocated to meet the traffic demands. This can
be done, for example, using té/G /oo traffic demand model introduced in the previous
section. However such precise formulation is extremely complicated, and consequently the
corresponding optimization problem is unlikely to be tractable. In the following, we will
first describe an approximate model based on the marginal distributions of the traffic de-
mands on the links of the overlay network; and then present an adaptive heuristic algorithm
for dynamic bandwidth provisioning based onlinetraffic measurements.

8.5.1 Approximate Model

Suppose for each linke L, ¢; amount of bandwidth has been provisioned staticalbyi-
ori. Given a traffic demand matrij, }, we approximate thexpecteddditional bandwidth
that must be dynamically reserved to meet the traffic demands by the following expression:

+
Ay — {f’l _ q} , (8.14)
m

wherep; = >, p-. ThenAc; > 0if and only if p; > ;.

Using (8.14) we can write down tl@proximateoverall net income the SON generates for
the given traffic demand matrifp, } :

W({pr‘}) = Z ErPr — Z(I)l<cl) - Z (DE(ACI) (815)

reR leL leL

Integrating on both sides of (8.15) over the (joint) distributior f#, }, we have

EW)=> epr— Y Pilc) - Z/~/<I>2(Acl)d{pr}. (8.16)
reER leL leL
The dynamic bandwidth provisioning problem can now be formulated as the following
optimization problem:

r?a}x E(W). (8.17)
c

163

Note that unlike the static bandwidth provisioning problem, here we do not have any ex-
plicit QoS or target utilization constraints. This is because we implicitly assume that when-
ever the target utilization threshold is about to be exceeded, additional bandwidth is dy-
namically allocated on the link to meet the service QoS. We will refer to the optimization
problem (8.17) as thapproximate moddbr dynamic bandwidth provisioning. In the fol-
lowing, we will present an (approximate) solution to the approximate model of the dynamic
bandwidth provisioning problem. For the detailed analysis, we refer interested readers to
Appendix D.2.

Assume both bandwidth cost functions are linear, i.e., forlaay L, ®;(c;) = ¢;¢; and

D) (A¢)) = ¢jAc;, whereg, < ¢) for anyl. Let ¢, be such thatr{p, > n} = ¢/
Then the set of}’s is an (approximate) solution to the dynamic bandwidth provisioning
problem, i.e.c is the amount of bandwidth to be statically provisioned, while the portion
to be dynamically allocated on linkis given by (8.14), for a given traffic demand matrix

{or}.

An intuitive interpretation of the above results is that under the dynamic bandwidth allo-
cation model, we need to statically reserve at mpstmount of bandwidth on each link

[, where the probability that the (average) aggregate load onl lexceeds the statically
reserved link bandwidth equals the ratio of the two prices on the lihk); /#;. In the spe-

cial case that, = ¢;, i.e., the unit price of dynamically allocated bandwidth is the same
as that of the statically reserved one, we hgve 0. Hence in this case, no static capacity
needs to be reserved.

8.5.1.1 Numerical Examples

In this section we perform numerical studies to illustrate the properties of the dynamic
bandwidth provisioning model, and compare it with the static bandwidth provisioning
model. Unless otherwise stated, the per-unit bandwidth per-unit time eatniag 4,
and¢;, = 1, ¢; = 1.5. The target link utilization thresholg is 0.8.

In the first set of studies, we examine the effects of the per-unit bandwidthdjrioe dy-
namically allocated bandwidth on the amount of bandwidth provisioned statecahiyri

¢; and the approximate revenﬂéVT/). In these studies, we use the simple network setting:
a single route over a single link. The traffic demand modél/i&= /oo and the long term
average traffic demand on the route@. Figure 8.11 presents the bandwidth provisioned
staticallyc; (upper plot) and the approximate revenﬁll@/ff) (lower plot) as functions of;,

164

N
a
S

x10*

BN
o o 9
s & 38
T T T
N
o

a
S
T

1.4

Static initial bandwidth (cl)

o

L L L L L L L L L
11 12 13 1.4 15 16 1.7 18 19 2

N

N
T

Approximate revenue

EW)
o
g

@
£
©

T

o

®

—<— Dynamic bandwidth provisionin
—o- static g

@

£

>
T

@

£

i
T

Expected approximate revenue
2
]

@
£
S

. " 02 , ,
11 1.2 13 1.4 15 16 17 18 19 2 200 300 400 500 600 700 800 900 1000
New unit bandwidth price Expected traffic demand

b

Figure 8.11: Effects ob; onc, and E(W). Figure 8.12: Dynamiws. static bandwidth
provisioning.

respectively. From the figure we see that as the per-unit bandwidth price for dynamically
allocated bandwidth increases, more bandwidth needs to be provisioned statjwadiyi.
However, the increase in the amount of static bandwidth is not dramati¢ iasreases

from ¢; = 1.1 to ¢; = 2. On the other hand, as we increase the price for dynamically
allocated bandwidth, the approximate reverfi(é/’) decreases. This is partly due to the
fact that a SON needs to statically provision more bandwadbhiori on each link, besides

the fact that the SON needs to pay more for the dynamically allocated bandwidth.

In the next set of numerical studies, we compare the dynamic bandwidth provisioning
model with the static bandwidth provisioning model in terms of the approximate revenues
obtained, using thigeenetwork topology (see Figure 8.4.2(a)), with a similar setting as that

in Section 8.4.3. In particular, we use thalancedraffic load model and assume the traffic
demand on each route is governed by #i¢GG /oo model. For static bandwidth provision-

ing, . = 2. Figure 8.12 presents the approximate revenue as a function of the (long-term)
average traffic demands for dynamic and static bandwidth provisioning, respectively. From
the figure we see that, for both dynamic and static bandwidth provisioning models, the
approximate revenue increases as the average traffic demand increases, and the dynamic
bandwidth provisioning has a higher approximate revenue than that of the static bandwidth
provisioning. Moreover, as the average traffic demand increases, the difference between
the approximate revenues of the dynamic bandwidth provisioning and the staic bandwidth
provisioning becomes larger. This is possibly due to the fact that, as the average traffic
demand on a route increases, traffic along the route becomes more bursty (recall that the
marginal distribution of traffic demand on a route is Poisson), and the dynamic bandwidth
provisioning model works better than the static bandwidth provisioning in this case.

165

8.5.2 Adaptive Online Bandwidth Provisioning Algorithm

In developing the approximate dynamic bandwidth provisioning model, we have assumed
that the (average) traffic demands are knanpriori for determining the additional band-
width that must be dynmaically allocated to meet the traffic demands (see (8.14)). In this
section, we present aadaptive onlinebandwidth provisioning model (or simply online
dynamic model) that dynamically adjust the allocated bandwidth on a link according to the
measuremerndf the traffic demands on the links of the network.

As before, lep, denote the long-term average traffic demand on rowg@dp;, = >°,..c, pr,

the long-term average traffic demand on lihkBased on the measurement of the traffic
demands on the links, our target in this section is to determine the amount of bandwidth
that should be statically provision@dpriori to meet certain base traffic demands, and the
amount of bandwidti\ ¢, that should be allocated dynamically to accommodate the traffic
demand dynamics in the network.

Let¢ denote a fixed time interval. In the online dynamic model, the average traffic demand

pr» during each such time interval is calculated at the end of the time interval. Based on the
measured average traffic demands and the contracted service QoS, the bandwidth allocated
on each link will be adjusted accordingly at the end of the time interval. Moreover, the
resulted bandwidth will be kept constant during the next measurement time interval. In
other words, the allocated bandwidth is only adjusted at the end of each measurement time
interval. To reduce the frequency of allocating additional bandwidth or de-allocating extra
bandwidth caused by short-term traffic fluctuations, bandwidth will be allocated in units

of quota, which is a chunk of bandwidth [88] and normally much larger than one unit of
bandwidth. In the following, we will denote the size of a quotabgin unit of bandwidth).

Let ¢; denote the amount of bandwidth that has been provisioned statcptigri. In the
online dynamic model; is chosen in such a manner that, if the average traffic demand on
a link [does not exceef, the service QoS will be honored, i.e.,

pL
=|—1]0 8.18
Cl ’an@—| Y ()

note that, the initial static bandwidth is allocated in units of quota.

Next, we discuss the allocation of additional bandwidth and de-allocation of extra band-
width on an arbitrary link. To reduce the possibility that the service QoS is violated, the

166

5000

- Average traffic demand
— — Approximate dynamic model
— Online dynamic model

4500

4000

3500 -

it: 1Kb/s)

=
23000

Bandwidt!

25001 '
!
2000

1500

1000
o

Time (unit: 5 minutes)

Figure 8.13: Dynamic bandwidth provisioning with approximate model and online model.

online dynamic model will allocate the additional bandwidth (a new quota) when the aver-
age traffic demand is approaching the target link utilization level threshold, instead of until
the thresold is exceeded. Letdenote a positive number, ad¢ the current total band-
width on link [, i.e.,C; = ¢, + A¢;. Then an additional quota will be allocated onto link

if p, > Cim, — /. is called the forward threshold for allocating a new quota. Similarly, a
backward threshold for de-allocating an extra quota is defined as: (denotehlpositive
number)): an extra quota is released from lirdaly if p; < (C; — ©)n — (°.

Because the online dynamic model only adjusts bandwidth on the links at the end of the
each measurement interval, it is possible that the service QoS is violated during the course
of the measurement time interval. As in static bandwidth provisioning with penalty in
Section 8.4, certain penalty will apply in this case. ketdenote the average penalty
suffered by per unit of traffic demand per unit of time (the measurement time interval)
along router when the service QoS along routds violated Then the revenue of the
online dynamic model for a measurement time interval is,

V= Z ErPr — Z q)l(cl) - Z (I);(ACZ) - Z err]-{pl/Cl>m:l€r}7 (819)

re€R leL leL reR

where the indicator functiof,, ¢, >,y = 1if p;/C; > n; holds for any link/ on route
r, 0 otherwise.

In the following, we perform numerical studies to illustrate the bandwidth allocation be-
havior of the online dynamic model. The studies are carried out in the simple network
setting using thelay-time traffic demandsf the Auckland data tracgsee Fig. 8.7). The
following parameters are used. The base unit of bandwidth for the Auckland data trace is

167

1 Kb/s. The measurement time interval (i.e., unit time) iminutes. The per-unit band-
width per-unit time earning, = 4, and¢, = 1, ¢; = 1.5, m, = 2. The target utilization
thresholdr, = 0.8. The size of quota® = 0.60, whereo is the standard deviation of

the day-time traffic demands of the Auckland data trace (see Table 8.1). The forward and
backward threshold’ = .* = 0.30.

Figure 8.13 presents the average traffic demandsipenutes) and the corresponding
provisioned bandwidth in the online dynamic model. For the purpose of comparison,
we also include the bandwidth provisioning behavior of the approximate dynamic model.
From the figure we see that the online dynamic model is able to adjust the link bandwidth
according to the dynamics of the traffic demands on the link and meanwhile remains insen-
sitive to small short-time fluctuations in traffic demands (for example, see the provisioned
bandwidth at time24, 25 and 26). Because of the nature of the online dynamic model,
sometimes the bandwidth on a link could be less than the average traffic demand on the
link (for example, at time 4), where a penalty will apply. (A penalty may apply in other
cases.) Note also that, under this parameter setting, the approximate dynamic model has
a smaller initial static bandwidth than the online dynamic model. Moreover, the approxi-
mate dynamic model is more sensitive to the fluctuations in traffic demands than the online
dynamic model.

Table 8.4: Per-unit time average revenue.
Approximate model Online model
Average revenue 5468 4152

Table 8.4 gives the mean revenues (per-unit time) of the approximate dynamic model and
the online dynamic model, averaged over the whole duration of the day-time traffic de-
mands of the Auckland data trace. From the table we see that the approximate dynamic
model has a higher per-unit time average revenue than the online dynamic model. There
are possibly two reasons. First, under this parameter setting, the amount of initial static
bandwidth is larger than the approximate dynamic model, therefore causing more cost on
the overlay. Second, the online dynamic model is measurement-based and the bandwidth
on alinkis only adjusted at the end of the measurement time itnervals. Consequently, as we
discussed before, service QoS could be violated during a time interval and incurs penalty
on the overlay. However, the online dynamic model has the advantage that it does not make
any assumption about the (average) traffic demands (except the long-term average traffic
demand and its standard deviation).

168

8.6 Summary

In this chapter, we studied the bandwidth provisioning problem for the service overlay net-
works. We considered both the static and dynamic bandwidth provisioning models and our
study took into account various factors such as service QoS, traffic demand distributions,
and bandwidth costs.

The approximate optimal solution we presented to the static bandwidth provisioning prob-
lem is generic in the sense that it applies to different marginal distributions of the traffic
demands on the routes in a network, which makes the solution very attractive facing dif-
ferent traffic arrival behaviors. The static bandwidth provisioning model is simple in terms
of network resource management but may result in inefficient network resource usage if
the traffic demands are highly variable. In this kind of environments, the dynamic band-
width provisioning model outperforms the static bandwidth provisioning model, albeit with
more complex and frequent network resource managements. We investigated the effects of
various parameters like static and dynamic bandwidth costs on the revenue that a SON
can obtain, which provides useful guidelines on how a SON should be provisioned to stay
profitable.

169

Part IV

Conclusions and Future Work

170

Chapter 9

Conclusions and Future Work

9.1 Conclusions

This dissertation addressed the scalability issues in supporting QoS from two complemen-
tary aspects, namely the packet forwarding data plane and the network resource manage-
ment control plane. On the packet forwarding data plane, a virtual time framework was
proposed as a unifying packet scheduling framework to proseaéablesupport for guar-
anteed services in the Internet. In this framework, Internet core routers do not need to
maintain any per-flow state and do not perform any per-flow operations. Consequently,
they are able to handle a large number of simultaneous flows. The key notion in the vir-
tual time framework is avirtual timestamp which is initialized at network edge routers

and referred and/or updated by network core routers, depending on the service granularity
supported by the network. Several newre statelespacket scheduling algorithms were
designed and analyzed to illustrate how both aggregate and per-flow service guarantees can
be supported within this same framework. This is critical for the Internet to continue its
evolution. Moreover, we investigated the cost-performance trade-offs in supporting QoS in
the Internet by studying the QoS provisioning power of these packet scheduling algorithms.
Figure 9.1 summarizes the packet scheduling algorithms we have studied in this disserta-
tion and their trade-offs in supporting QoS in the Internet. Comparied to Figure 1.2 we see
that a whole scheduling spectrum, ranging from the current best-effort FIFO network to the
most advanced per-flow QoS provisioning scheme (VTRS), were studied.

On the network resource management control plane, two scalable bandwidth broker archi-
tectures were designed and investigated. The first one was a centralized bandwidth broker

171

-

VTRS

®
O

&

1]

g & DETF(0,1
S h* C (0,1)
T -

8 SETF(0)

FIFO Cost]

Figure 9.1: Cost-performance trade-offs in supporting QoS in the Internet

architecture, which is built upon the core stateless packet scheduling algorithms we de-
signed. By conducting admission controls on a per-path basis instead of on a “hop-by-hop”
basis, this bandwidth broker architecture significantly reduces the complexity of the admis-
sion control algorithm; therefore, it improves the scalability of existing bandwidth broker
architectures. To further improve its scalability, a hierarchical bandwidth broker architec-
ture was designed. In this architecture, multiple edge bandwidth brokers are deployed in a
network, along with the conventional centralized bandwidth broker. Edge bandwidth bro-
kers handle the flow admission control and resource management functionalities for certain
pre-defined paths. They interact with the centralized bandwidth broker for allocating and
de-allocating trunk bandwidth along the paths. In this way, the centralized bandwidth bro-
ker only needs to handle coarser time scale trunk bandwidth requests from edge bandwidth
brokers. Consequently, its scalability is greatly improved.

Finally, to provide real end-to-end QoS support and to facilitate the creation and deploy-
ment ofvalue-added servicesuch as VoIP, Video-on-Demand, and other emerging QoS-
sensitive services over the Internet, an architecture callecdsehace overlay network
(SON) was proposed. Special servers, called service gateways, are deployed at certain
strategically selected locations over the Internet to aid the data forwarding and resource
management. The bandwidth provisioning problem for a service overlay network was
mathematically formulated and investigated, taking into account various factors such as
SLA, QoS, traffic demand distributions, and bandwidth costs. Analytical models and ap-
proximate solutions were developed for both static and dynamic bandwidth provisioning,
which provide useful guidelines on how a SON should be provisioned to stay profitable.

172

9.2 Future Work

In the following we briefly discuss possible future research directions that we plan to ex-
plore.

9.2.1 Packet Forwarding Data Plane

So far, we have primarily focused on provididgterministicQoS guarantees in the virtual

time framework. The delay bounds reported in this dissertation arevdngt-casedelay
bounds. On the other hand, many real-time multimedia applications may be more interested
in averagedelay bounds. Therefore, it is of great interest and importance to study and
providestochastidQoS guarantees in the Internet.

In the aggregate packet scheduling schemes we have studied, all flows traversing a network
will receive the same degree of service guarantees from the network. In reality, it may be
desirable to support multiple service classes instead of a single service class. In this way,
users can choose different service classes depending on the requirements from different
applications.

In establishing the results of the Virtual Time Reference System, we have assumed a fine-
grained time granularity. However, we may only have finite bits to encode the packet state
in reality. We will study VTRS with a coarser-grained time granularity. Specifically, as in
the case of SETF and DETF, we will extend VTRS to a slotted-time environment, which
may greatly reduce the cost of VTRS, while still being able to provide per-flow service
guarantees.

9.2.2 Network Resource Management Control Plane

In the current bandwidth broker architecture design, we focused on the bandwidth alloca-
tion and management problemithin a single network domainHowever, the bandwidth
allocation problem can be different in a multiple domain environment, where different
network domains may belong to different administrations. Consequently, an end-to-end
bandwidth negotiation scheme may be desirable, be it on a per-flow basis or on a per-
organization basis.

IP Telephony is a promising service in the future Internet. However, it also imposes certain
unique challenges on the management of network resources. For example, it may be nec-
essary to conduct dynamic QoS control and management such as admission control and/or

173

resource provisioning at the time scale of flow arrival and departure. Therefore, an efficient
and scalable bandwidth allocation and management scheme is critical to the performance of
the IP networks in support of the IP Telephony service. Some initial results concerning the
network resource management for supporting IP Telephony in the Internet were reported
in [24]. Currently, we are investigating the feasibility of probabilistic admission control
schemes to better utilize network resources.

9.2.3 Service Overlay Networks

The bandwidth provisioning problem for service overlay networks was studied in this dis-
sertation. However, many issues regarding the design and implementation of the SON
architecture remain unanswered. For example, how many service gateways are needed
to construct a SON to maximize the revenue of a SON operator, while still being able

to provide certain degrees of QoS guarantees? Where should these service gateways be
placed? Furthermore, how should user traffic be routed within a SON to optimize its re-
source usages? All of these questions are important for a SON to stay profitable. We plan
to investigate these issues in the future work.

9.2.4 Inter-Domain Internet Routing

The Border Gateway Protocol (BGP) is the currdetfactolnternet inter-domain rout-

ing protocol that glues the whole Internet together [65]. Theoretically speaking, when the
network is stable, we should seldom see routing dynamics. However, significant routing
dynamics have been observed on the Internet from time to time [51, 52]. Internet routing
instability has an adverse impact on application performance. It manifests itself with in-
creased network latencies and packet losses [52, 62]. It is therefore important to understand
the underlying reasons for these routing dynamics, and then design proper apparatus to re-
duce the degree of routing dynamics. Specifically, we plan to investigate the characteristics
of routing dynamics observed at multiple vantage points, and understand the causes of and
relationships among the routing dynamics. We would also like to study the path explo-
ration behaviors associated with BGP, or more generally, path-vector routing protocols, to
enhance their stability [8, 56, 64]. Some initial results were reported in [23].

174

Bibliography

[1] D. G. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris. Resilient overlay
networks. InProc. 18th ACM SOSMBanff, Canada, October 2001.

[2] M. Andrews, B. Awerbuch, A. Fernandez, J. Kleinberg, T. Leighton, and Z. Liu.
Universal stability results for greedy contention-resolution protocol®réweedings
of the 37th Annual Symposium on Foundations Of Computer Scieages 380—-389,
Burlington, VT, October 1996.

[3] P. Aukia, M. Kodialam, P. Koppol, T. Lakshman, H. Sarin, and B. Suter. RATES: A
server for MPLS traffic engineerind£EE Network pages 34-41, March/April 2000.

[4] Y. Bernet, J. Binder, S. Blake, M. Carlson, B. E. Carpenter, S. Keshav, E. Davies,
B. Ohlman, D. Verma, Z. Wang, and W. Weiss. A framework for differentiated ser-
vices. Internet Draft, February 1999. Work in Progress.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture
for differentiated services. RFC 2475, December 1998.

[6] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architecture:
An overview. RFC 1633, June 1994.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation
protocol (RSVP) — version 1 functional specification. RFC 2205, September 1997.

[8] A. Bremler-Barr, Y. Afek, and S. Schwarz. Improved bgp convergence via ghost
flushing. InProc. IEEE INFOCOM San Francisco, CA, April 2003.

[9] R. Callon, P. Doolan, N. Feldman, A. Fredette, G. Swallow, and A. Viswanathan. A
framework for multiprotocol label switching. Internet Draft, September 1999. Work
in Progress.

175

[10] V. Cerf and R. Kahn. A protocol for packet network interconnecti®EE Transac-
tions on Communications Technolo@OM-22(5):627-641, May 1976.

[11] A. Charny and J.-Y. Le Boudec. Delay bounds in a network with aggregate schedul-
ing. In Proceedings of QoFlBerlin, Germany, October 2000.

[12] Y. Chawathe, S. Fink, S. McCanne, and E. Brewer. A proxy architecture for reli-
able multicast in heterogeneous environmentsPrioceedings of ACM Multimedia
Bristol, U.K., September 1998.

[13] D. Clark. Adding services discrimination to the Internet. Technical report, MIT,
August 1995.

[14] D. Clark, S. Shenker, and L. Zhang. Supporting real-time applications in an integrated
services packet network: architecture and mechanismPrdc. ACM SIGCOMM
August 1992.

[15] K. Coffman and A. Odlyzko. Internet growth: Is there a "Moore’s Law” for data
traffic? InHandbook of Massive Data Setduwer, 2001.

[16] Virtela Communications. http://www.virtele.com.
[17] Internap Network Services Corporation. http://www.internap.com.
[18] D. Cox and V. IshamPoint ProcessesChapman and Hall, 1980.

[19] Mark Crovella and Azer Bestavros. Self-similarity in world wide web traffic: Evi-
dence and causes. Rroc. ACM SIGMETRICSoages 160-169, Philadelphia, PA,
May 1996.

[20] R. Cruz. A calculus for network delay, Part I: Network elements in isolati&EE
Transactions on Information Theqr§7(1):114-131, January 1991.

[21] R. Cruz. Sced+: Efficient management of quality of service guaranteeBrom
IEEE INFOCOM San Francesco, CA, March 1998.

[22] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. InProc. ACM SIGCOMMpages 1-12, Austin, TX, September 1989.

[23] Z. Duan, J. Chandrashekar, J. Krasky, K. Xu, and Z.-L. Zhang. Damping BGP route
flaps. Submitted.

176

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Z. Duan and Z.-L. Zhang. A scalable bandwidth management architecture for sup-
porting VoIP applications using bandwidth broker. Iiith IEEE Workshop on Local
and Metropolitan Area Network8oulder, CO, March 2001.

Z. Duan, Z.-L. Zhang, and Y. T. Hou. Service overlay networks: SLAs, QoS and
bandwidth provisioningTo appear inACM/IEEE Transactions on Networking.

Z. Duan, Z.-L. Zhang, and Y. T. Hou. Bandwidth provisioning for service overlay
networks. InProceedings of SPIE ITCOM (Scalability and Traffic Control in IP Net-
works) 2002 Boston, MA, July 29 — August 1 2002.

Z. Duan, Z.-L. Zhang, and Y. T. Hou. Service overlay networks: SLAs, QoS and
bandwidth provisioning. IfProceedings of IEEE International Conference on Net-
work Protocols (ICNP)Paris, France, November 2002. Winner of Best Paper Award.

D. Ferrari, A. Banerjea, and H. Zhang. Network support for multimedia: A discussion
of the tenet approachComputer Networks and ISDN Systerd8:1267-1280, July
1994,

D. Ferrari and D. Verma. A scheme for real-time channel establishment in wide-area
networks. IEEE Journal on Selected Areas in Communicatjat868-379, April
1990.

N. Figueira and J. Pasquale. An upper bound on delay for the virtual clock service
discipline. IEEE/ACM Transactions on Networking(4):399-408, August 1995.

Sally Floyd and Van Jacobson. Random early detection gateways for congestion
avoidancelEEE/ACM Transactions on Networking(4):397-413, 1993.

Sally Floyd and Van Jacobson. Link-sharing and resource management models for
packet networks. [EEE/ACM Transactions on Networking(4):365-386, August
1995.

L. Georgiadis, R. Gérin, and A. Parekh. Optimal multiplexing on a single link:
Delay and buffer requirements. Rroc. IEEE INFOCOM pages 524-532, 1994.

L. Georgiadis, R. Gerin, V. Peris, and K. N. Sivarajan. Efficient network QoS pro-
visioning based on per node traffic shapiigEE/ACM Transactions on Networking
4(4):482-501, 1996.

177

[35] A. Girard.Routing and Dimentioning in Circuit-Switched NetwarAsldison-Wesley,
1990.

[36] S. Jamaloddin Golestani. Congestion-free transmission of real-time traffic in packet
networks. InProc. IEEE INFOCOM pages 527-536, San Francisco, CA, June 1990.

[37] S. Jamaloddin Golestani. A stop-and-go queueing framework for congestion man-
agement. Irsigcomm '90: Communication Architectures and Protocpégyes 8-18,
Philadelphia, PA, September 1990.

[38] L. Golubchik and J. Liu. A fast and accurate iterative solution of a multi-class
threshold-based queueing system with hysteresiBrdn. ACM SIGMETRICSSanta
Clara, CA, June 2000.

[39] R. Glerin, H. Ahmadi, and M. Naghshineh. Equivalent capacity and its application
to bandwidth allocation in high-speed networkEEE Journal on Selected Areas in
Communications9(7):968-981, September 1991.

[40] R. Guerin, S. Blake, and S. Herzog. Aggregating RSVP-based QoS requests. Internet
Draft, 1997. Work in Progress.

[41] R. Guerinand L. @in. A unified approach to bandwidth allocation and access control
in fast packet-switched networks. Rroc. IEEE INFOCOM volume 1, pages 1-12
(1A.1), Florence, Italy, May 1992.

[42] J. Hyman, A. Lazar, and G. Pacifici. MARS: The Magnet Il real-time scheduling al-
gorithm. InSigcomm 91 Conference: Communications Architectures and Protocols
pages 285-293,i#ich, Switzerland, September 1991.

[43] J. Hyman, A. Lazar, and G. Pacifici. Real-time scheduling with quality of service
constraints. IEEE Journal on Selected Areas in Communicatjd§):1052-1063,
September 1991.

[44] V. Jacobson, K. Nichols, and K. Poduri. An expedited forwarding PHB. RFC 2598,
June 1999.

[45] S. Jamin, P. Danzig, S. Shenker, and L. Zhang. A measurement-based call admission
control for integrated services packet networks. Phloc. ACM SIGCOMM pages
2-13, Cambridge, MA, August 1995.

178

[46] S. Jamin, S. Shenker, L. Zhang, and D. Clark. An Admission Control Algorithm for
Predictive Real-Time Service. Iroceedings of the 3rd International Workshop on
Network and Operating System Support for Digital Audio and Vigages 308-315.
IEEE Computer and Communication Societies, November 1992.

[47] C. Kalmanek, H. Kanakia, and S. Keshav. Rate controlled servers for very high-
speed networks. IRroc. IEEE GLOBECOMpages 12-20 (300.3), San Diego, CA,
December 1990.

[48] F. P. Kelly. Routing in circuit-switched networks: Optimization, shadow prices and
decentralizationAdvances in Applied Probabilif0:112-144, 1988.

[49] S. Keshav. An Engineering Approach to Computer Networkingddison-Wesley,
1997.

[50] J. Kurose. Open issues and challenges in providing quality-of-service guarantees in
high-speed networksComputer Communication Revie8(1), January 1993.

[51] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed internet routing conver-
gence. I'SIGCOMM pages 175-187, 2000.

[52] C. Labovitz, G. Malan, and F. Jahanian. Internet routing instabillgEE/ACM
Transactions on Networkin@(5):515-528, 1998.

[53] W. E. Leland, M. S. Taqqu, W. Willinger, and D. Wilson. On the self-similar nature
of ethernet trafficlEEE/ACM Transactions on Networking(1), 1994.

[54] J. Liebeherr and D. E. Wrege. A versatile packet multiplexer for quality-of-service
networks. InProc. 4th International Symposium on High Performance Distributed
Computing (HPDC-4)pages 148-155, August 1995.

[55] J. Liebeherr, D. E. Wrege, and D. Ferrari. Exact admission control for networks with a
bounded delay servicdEEE/ACM Transactions on Networkiyng(6):885-901, 1996.

[56] Z. Mao, R. Govindan, G. Varghese, and R. Katz. Route flap damping exacerbates In-
ternet routing convergence. Rroc. ACM SIGCOMMPiIttsburgh, PA, August 2002.

[57] R. Nagarajan and J. Kurose. On defining, computing and guaranteeing quality-of-
service in high-speed networks. Broc. IEEE INFOCOM volume 3, pages 2016—
2025 (8C.2), Florence, Italy, May 1992.

179

[58] K. Nichols, V. Jacobson, and L. Zhang. A two-bit differentiated services architecture
for the internet. RFC 2638, July 1999.

[59] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow
control in integrated services networks — the single node d&f&=/ACM Transac-
tions on Networkingl1(3):344—-357, 1993.

[60] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow
control in integrated services networks — the multiple node cl&eE/ACM Trans-
actions on Networking2(2):137-150, 1994.

[61] M. Parulekar and A. M. Markowski. M/Gé input processes: A versatile class of
models for network traffic. IfProc. IEEE INFOCOM pages 419-426, Kobe, Japan,
April 1997.

[62] V. Paxson. End-to-end routing behavior in the InternetPfac. ACM SIGCOMM
Stanford, CA, August 1996.

[63] V. Paxson and S. Floyd. Wide area traffic: The failure of poisson modelingrdo.
ACM SIGCOMM pages 257-268, August 1994.

[64] D. Pei, X. Zhao, L. Wang, D. Massey, A. Mankin, S. Wu, and L. Zhang. Improving
bgp convergence through consistency assertion®dNFOCOM 2002 New York, NY,
Jun 2002.

[65] Y. Rekhter and T. Li. A border gateway protocol 4 (BGP-4). RFC 1771, March 1995.

[66] E. C. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architec-
ture. Internet Draft, August 1999. Work in Progress.

[67] S. Savage, T. Anderson, and et al. Detour: a case for informed internet routing and
transport.IEEE Micro, 19(1):50-59, January 1999.

[68] S. Shenker. Fundamental design issues for the future intediEE Journal on
Selected Areas in Communicatiod8(7), September 1995.

[69] S.Shenker, C. Partridge, and R.&im. Specification of guaranteed quality of service.
RFC 2212, September 1997.

[70] D. Stiliadis. Traffic Scheduling in Packet-Switched Networks: Analysis, Design, and
Implementation PhD thesis, Computer Science and Engineering Department, Uni-
versity of California at Santa Cruz, June 1996.

180

[71] D. Stiliadis and A. Varma. Efficient fair queueing algorithms for packet-switched
networks.IEEE/ACM Transactions on Networkin§(2):175-185, 1998.

[72] D. Stiliadis and A. Varma. Latency-rate servers: A general model for analysis of
traffic scheduling algorithmsEEE/ACM Transactions on Networking(5):611-624,
1998.

[73] I. Stoica and H. Zhang. Providing guaranteed services without per flow management.
In Proc. ACM SIGCOMMBoston, MA, September 1999.

[74] 1. Stoica, H. Zhang, S. Shenker, R. Yavatkar, D. Stephens, A. Malis, Y. Bernet,
Z. Wang, F. Baker, J. Wroclawski, C. Song, and R. Wilder. Per hop behaviors based
on dynamic packet states. Internet Draft, February 1999. Work in Progress.

[75] A. Terzis, J. Ogawa, S. Tsui, L. Wang, and L. Zhang. A prototype implementation of
the two-tier architecture for differentiated servicesPhoceedings of IEEE RTAS'99
Vancouver, Canada, 1999.

[76] A. Terzis, L. Wang, J. Ogawa, and L. Zhang. A two-tier resource management model
for the internet. InGlobal Internet 99 December 1999.

[77] D. Towsley. Providing quality of service in broadband integrated services digital
networks. InPerformance Evaluation of Computer and Communication Systems
pages 560-586. Springer-Verlag, 1993.

[78] Auckland Data Trace. http://pma.nlanr.net/traces/long/auck2.html.

[79] L. Wang, A. Terzis, and L. Zhang. A new proposal of RSVP refreshe3rdoeedings
of IEEE ICNR Toronto, Canada, November 1999.

[80] L. Wang, A. Terzis, and L. Zhang. RSVP refresh overhead reduction by state com-
pression. Internet Draft, June 1999. Work in Progress.

[81] H.Zhang. Service disciplines for guaranteed performance service in packet-switching
networks.Proceedings of the IEEEDctober 1995.

[82] H. Zhang and D. Ferrari. Rate-controlled static-priority queueinglEEBE INFO-
COM’93, pages 227-236, April 1993.

[83] L. Zhang. Virtual clock: A new traffic control algorithm for packet switching net-
works. InProc. ACM SIGCOMMpages 19-29, September 1990.

181

[84] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A new resource
reservation protocollEEE Network pages 8-18, September 1993.

[85] Z.-L. Zhang, Z. Duan, L. Gao, and Y. T. Hou. Decoupling QoS control from core
routers: A novel bandwidth broker architecture for scalable support of guaranteed
services. IrlProc. ACM SIGCOMMSweden, August 2000.

[86] Z.-L. Zhang, Z. Duan, and Y. T. Hou. Virtual time reference system: A unifying
scheduling framework for scalable support of guaranteed seriE&E Journal on
Selected Areas in Communicati@pecial Issue on Internet QoS, December 2000.

[87] Z.-L. Zhang, Z. Duan, and Y. T. Hou. Fundamental trade-offs in aggregate packet
scheduling. InProceedings of IEEE International Conference on Network Protocols
(ICNP), Riverside, CA, November 2001.

[88] Z.-L.Zhang, Z. Duan, and Y. T. Hou. On scalable design of bandwidth brolaGE
Transaction on CommunicationS84-B(8), August 2001.

[89] Z.-L. Zhang, Z. Duan, and Y. T. Hou. On scalable network resource management
using bandwidth brokers. In To appear8th IEEE/IFIP Network Operations and
Management Symposium (NOMS 20@29rence, Italy, April 2002.

182

Part V

Appendices

183

Appendix A

Proofs Related to Chapter 3

A.1 Proofs Related to Networks of Static Earliest Time First Sched-
ulers

As we discussed in Section 3.4, the SETF(0) discipline is a special version of theIQETF(
discipline. Therefore in the following we will focus on the proofs for the general SEJTF(
schedulers, the lemmas and the theorem for SETF(0) will be given as corollaries.

First we will prove a useful lemma which can be applied to both SETF(0) and SBETF(
schedulers.

Lemma 9 Consider a packep at an SETF schedules; along the path.At time a?, let
p* be the last packet in the busy period which contains paeleeich that whep™* arrives
at the scheduler the releasing time (at the network edge) of any packethe queue
(including the one in service) satisfie% > a¥". Then for any packet” thatstarts service
during the time intervala?” ,], we have

#
P p
wy < wp-

Proof: If packetp is the packep*, the lemma holds trivially because the time interval
in consideration is empty. In the following we assume thas not p*. We will prove
the lemma by contradiction. Assume that there is at least one pgickétt starts being
serviced during the time intervé? ", a”] such that

wg# > Wi

184

Let ¢ denote the time that the scheduler starts to service packelt is easy to see that
a’" < t < a®. From the property of the SETF scheduler we know that at tinier any

)

packetp’ in the queue, if there is any, we must have

Wt > wg#.
Consider two cases. If no packet with a releasing time smallerdhanrives during the
time [¢, a”], then when packet arrives at the queue, it is the oldest packet in the queue.
Thereforep is the packep*, which contradicts our assumption thes notp*. On the other
hand, assume at least one packet with a releasing time smaller than or eduailrtees at
the scheduler during the time interyala’]. Letp” denote the first of such packets, then

aﬁ”” <dl <uwf< wg#.

Therefore, when packet’ arrives at the scheduler, all the packets in the scheduler have
a releasing time that is larger than thatpdf Thusp” satisfies the definition gf*. This
contradicts the condition that packétarrives during the intervak?”, a”].

This completes the proof. "

Proof of Lemma 5: Consider the scheduletS; on the path of packet. For the case
1 < i < h*, (3.17) follows naturally by noting that we can apply the same argument in
Section 3.3 for a network of FIFO schedulers. In the following, we assuméthat < h.

Denote M? the set of packets that are serviced betweén (’]. From the definition of

SETF, we know that the packets in the set should have a time stamp no greater than that of
the packep, and should have not stayed in the network longer ttfarFormally, for any
packetp’ belonging toM?, we have

wh <wpandd] > al — 77, (A1)

Then, we see that,

Q(af> < Z LP'+Lmaz
plemM?

< aCi{wl — (af — 1)} + BC; + L™
= aC{r" — (af —wf)} + C; + L™

]

< aC{r" — (af — ap.,)} + BC; + L. (A.2)

]

185

The last step is becaus. , ; > a7 + T > wf.

Note that when' = 0, we haveh* = 0. By settingh* = 0 in Lemma 5, we obtain
Lemma 3.

We now prove Theorem 3, which states the main properties of the $EEEeduler.

Proof of Theorem 3: The proof includes two parts. We first prove that for the given value
of 7%, (3.4) holds, i.e., no packets will experience a delay larger thdrefore reaching the
last hop. In the second part, we prove that the worst-case edge-to-edgéxiesaiyndeed
bounded.

Part 1. Let r* — SWte ' (BEM(_(1-0)"""71} ' \ne claim that for any packet which

(1—a)H*=h*=1_qp*

traverses a path with hops, the following relationship holds for any h,

al —al <717, (A.3)
First considet < h* + 1. From Lemma 2 we know that

B+ iA{1— (1 —a)f 1)
- (1 —)i =h"=1 — qp*

< B+ h*A{l — (1 — o)~ ~1}

- (1 —)i =h"=1 — qp* ’

A

al —adl < (i—1)(at™+pP)

(A.4)

From (3.21), we knowx (1 —)" ="~ > h*. Notice thatH* > h* + 1, we have
(1 —a)"=""=1 < 1. Thereforep™! > h*. Hence

W WAL~ (L—a)T
<7

p_ p
@ — a4 = (1 —a)f"=h"=1 — ah*

In the following we prove that (A.3) also holds for the case whiegre- 1 < ¢ < h by
contradiction. Not loss of generality, assume that for the first time in the system there is a
packetp* which violates the relationship at scheduier< h (without loss of generality,

we assumed here that the path that pagkdtaverses has hops), i.e.,af: — a{’* > T,
Therefore (A.3) holds for all packets before the tinfe, in particular, we have

186

From Lemma 6, we have

*

ali —ad <h (et + B+ {l-1—a) TR+ B+ A1 - (1 —a) "2

Therefore, we have

Q’E
*
AN

< (1 —a)af:_l +a(7‘*+af;+1)+/6+A,
< a +(1—-a){har*+08)+ (T +a {(B+AN{1—(1—a) "2
+ao{T* + R (aT*+ B+ B+ A

After some algebra, we get,

RB+a'(B+A){1-(1—a) M2 B A{(1—a)" M2 (1) P
(1 —a)H*—h"—1 _ qp*
ah*B+4 B+ A — ah*A(l — a)H " —h"~1
(1 —a)H"=h"=1 _ qp*
RB+at(B+A){1-(1-a)T "1} 4 (A —a !B+ AN{(L-a)" " (1) Py
(1 —)" —h*=1 _ qp*
Wp+a B+ A1 -(1-—a)T My
(1— a)H =" =1 _ gp =7

S
S
IN

(I-a)

Ajx — O7

IN

The last step comes from the fact thet < o~ as we derived earlier and the fact that
(1—a)" " — (1 —)"~""=1 > 0. Thus we arrive at a contradiction.

Part 2. In this part we prove the worst-case edge-to-edge delay is indeed bounded. Con-
sider an arbitrary packetwhich traverses a path withhops. From Lemma 6, we have

fF—ad < har+B)+7{1-(1-a)""}+a ' (B+A){1-(1—-a)" "}
Bhr+a ' (B+A{1-(1—a)""}+hA{(1—a)" —(1—a)T "}
(1 —)H =1 — ap*
B +a M (B+A{1 - (1-a)T "}
(1 —a)f =" =1 _ gp :

IN

(A.5)

Again, by settingx* = 0 in the above theorem, we obtain Theorem 2.

187

A.2 Proofs Related to A Network of DETF(0,1) schedulers

Consider an arbitrary packetthat traverses a path with hops. Recall that the packet
state of packep is updated according to (3.25) at each scheduler on the path of the packet.
Consider an arbitrary schedulgyon the path, we know that the virtual arrival time.s ,

and real arrival time ig?, moreover, the reality check condition (3.26) holds. Deffé¢o

be the set of flows traversing the scheduler.

First we prove thaf? < w? ; + f+ Afor0 < o < 1.

Lemma 10 For any network utilization level < « < 1, the departure time of an arbitrary
packetp at a schedulesS; is bounded by,

fl<wii+B8+A. (A.6)

Proof: Consider the scheduler busy period containing paek@étithout loss of generality,
assume that the scheduler busy period starts at @imeet = be the last time before the
arrival of packetp such that the schedulstartsservicing a packet whose virtual arrival
time is larger than that of packet(i.e.,w! ;). If such a packet does not exist, set 0,
the beginning of the scheduler busy period. Heige 7 < o < w! . Lett =w! | — 7.

It is easy to see that> 0 because)? | > af > 7.

For each flow; € F;, let S/ denote the set of packets of floithat are serviced after
but no later than packet (i.e., they are serviced during the time interval /’]). From
the definition ofr and S/, we see that for any packgt! ¢ S7, we haveafj’l > 7 and
W} < WP, hold. Notice the reality check condition, we know thdt, > o > 7.
Therefore, all the packets i must virtually arrive during the intervat, ¢ + 7|, hence
from Lemma 7

> > <G +aCit

JEF; pjvlesj

Note that packet is included in the left-hand side of the above inequation. Hence packet
must have departed from the scheduler when all the packgls.ip S’ have been serviced
by the scheduler. Furthermore, the packet which is being serviced at {iifneexists) has
size of at mostL.™**. Therefore, we have

[maz N Zjefi ij.,l

P <
fZ—T+ Cz C@

STHA+B+a(w ,—7)<(I-a)T+aw] ; +6+A

188

Notice thatr < af < w? ,, we have

ff<(l—awl+awl +B+A<w +5+A

Proof of Theorem 4: By assigning?* > g + A, we see that the reality check condition
holds at each scheduler. Moreover, From the above lemma, we have

<l +08+A=uwh+(h—1)d"+ 5+ A =d] + hd".

A.3 Proofs Related to A Network of DETF(",1) Schedulers

Following a similar procedure as in Appendix A.2, we can prove the following relation
holds, for any packet traversing a path with hops,

fr < wh + hd”,
whered* = [(al' + 3+ A)/T'|T. Note thatof < af + T, then we have

fP<a}+hd +T.

A.4 Proofs Related to A Network of DETF(, 2*) Schedulers

In the following we will prove the Theorem 6. First let us recall some notation. Consider
an arbitrary packep which traverses a path with hops. Leth* denote the number of
schedulers on each segment of the path (the last segment can have le&s tiogs),

and assume that there atesegments on the path, i.e:,= [;%]. Consider an arbitrary
segment: on the path. Recall that the virtual arrival time of packett the segment is
wy_,.Furthermore, the following reality check condition holds,

P D
Ste—1yne < @i,

where [l is defined as)j).

189

Definer* such that the following relation holds for any segmemind any packet,
e =y <7 (A7)

i.e., the delay for any packet to reach thigh hop (i.e., the last hop) within any segment is
bounded by-* compared with the virtual arrival time of the packet at the segment.

Our target is first to prove that,. < w; ; + T for a givenallowablenetwork utilization
and value ofl". Not loss of generality, let us assume thf8f. > w;_,. Otherwise, if for
any packep on all the segment of its patlfy,. > «; ; does not hold, then it is easy to see
that f; — wi < «I" and notice thab}, < o} 4+ T", Theorem 6 holds in this case trivially.

Now let us focus on the case whefg,. > w;_,. Let schedulesS;. be the scheduler in

a segment on the path where the following condition holdd, < ! ;, < f&L. Thatis,
starting from schedule$;. . (if it exists), the real arrival time of the packet at the scheduler
is no later than the virtual arrival time of the packet at the segment. In the following, we
will prove the theorem in two parts. First we will derive a bound/@nthen we develop a
recursive relation betweeff. and f} for i* < i < kh*.

Lemma 11 Let schedulesS;- be defined as above. Then,
fh<Wl i +alm+T)+ 5+ A. (A.8)

Proof: Consider the scheduler busy period containing paek@éfithout loss of generality,
assume that the scheduler busy period starts at@imeet 7 be the last time before the
arrival of packetp such that the schedulstartsservicing a packet whose virtual arrival
time is larger than that of packet(i.e.,w; ;). If such a packet does not exist, set 0,
the beginning of the scheduler busy period. Heheer < a}. < w}_,. Lett =w]_; — 7.

It is easy to see that> 0 because);_; > al. > 7.

For each flowj € F;« (F;- is defined as before: the set of flows traversing schedijl¢r

let S denote the set of packets of flosthat are serviced after but no later than packet
p (i.e., they are serviced during the time interyal f.]). From the definition of- and 57,

we see that for any packet! € S7, we haveaf;f’l > T amdcuzj_’l1 < wy_, hold (here for all
packets we used the subscrigfor simplicity even though the current scheduler may not in
the kth segment of that flow). Notice thaif’l < wﬁjfl +7* (A.7), we have,ufjjf1 > 7 =T

190

Therefore, all the packets i’ must virtually arrive during the intervdr — 7*,t + 7.
Hence from Lemma 7,

Z Z LPN S 501* + OéCZ'* (t + T* + F)

JEF; pijGSj

Note that packep is included in the left-hand side of the above inequation. Hence packet
p must have departed from the scheduler when all the packexs;in-. S7 have been
serviced by the scheduler. Furthermore, the packet which is being serviced at (iinte
exists) has size of at most"**. Therefore, we have

[mazx Zje.ﬁ* ij,l

L <
fir < 17+ . + -
< 7+ A+ B+l —T+7T+T)
< l—-a)r+aw, +a(m+D)+ 8+ A (A.9)

Notice thatr < af. < w}_,, we have

fA<(l—-a)wi i +awi +a(tT"+D)+0+A<w) j+a(m+T)+5+A

Next, we will build a relation between the departure time of papkedtm schedules;, f7

and the departure time of packefrom schedules;-, f%, for i* < i < kh*. First, we will
develop some helpful lemmas.

Lemma 12 Assume schedules; is on thekth segment of the path of a packetwhere
i* < i < kh*. LetC; be the capacity of the scheduler. DefiRéd!’) to be the amount of
traffic serviced by the scheduler during the time intefwél f7]. Then

Qal) < aCi(t* +T) + C; + L™ (A.10)

Proof: Attimea?, letp* be the last packet in the busy period which contains packeth
that whenp* arrives at schedule$; the virtual arrival time of any packet in the queue
(including the packet in service), satisfies

/ *

P P
12 W

Wi

191

Note that we can always find such a pagkeih the busy period because if all other packets

do not satisfy the condition, the packet that starts the current busy period certainly does.
Following a same argument as in the proof of Lemma 9, we can show that for any packet
p* thatstarts being serviceduring the time intervala?”, a”], we have

#
p p
W1 S We_g-

Therefore,

Q) < TAPE 1~ o+ D)+ = (@ —a)it L

JEF;

< aCi(wh ;- WZ*—1 +1)+6C; — (af — af*)C} + Lmer, (A.11)

The termL™** comes from the fact at most one packet is transmission at#mehich is
possilbly have a virtual arrival time that is larger thah .

Notice thatw! ; < fL < af, we show below that (A.10) holds.

Qla}) < aCifal = w2y +T) + AC; = (af —])Ci + L™
< (aC;—C))(a? —a”) + aCi(a? — WP, +T) + BC; + L™
< aCi(t"+T) + pBC; + L™,
where the last step is because< 1 anda?” — Wl | < 7*. .

Lemma 13 Consider a packet traversing thekth segment of the path. For simplicity we

assume that there are’ hops on the segment. Then, fee ¢* +1,7*+2,..., h*, we have
fF=wi_ | <i{a(t*+T)+ 8+ A} (A.12)
Proof: From Lemma 12, itis easy to see that, for=i* + 1,7* + 2, ..., 7, we have
fin = G + Q((;Lm) <am+a(t*+T)+ 6+ A.

m

192

Recursively applying the above equationmon= 7,7 — 1,...,i* + 1 we have

fi < fi+(i—i)falr"+ 1)+ 8+ A}
Notice the results in Lemma 11, we get for+ 1 < i < h*

fl—w <(i—iNHa(mT+D)++A+a(m"+T)+ 0+ A <i{a(t"+T)+ 5+ A},
the step comes from the fact that> 1. "

The following theorem states the delay bound within a segment of a path compared with
the virtual arrival time to the segment of the path.

Theorem 17 Let h* be the length of a segment of a path. If the utilation fact@atisfies

the conditionn < 51+, then we have that* < %. Moreover, compared with

the virtual arrival time of a packet to the segment, the maximum delay within the segment
D* is bounded above by

D < h*(al' + 5+ A)
- 1-(=1a

Proof: The proof includes two parts. We first prove that for the given valugp{A.7)
holds, i.e., no packets will experience a delay larger thiahefore reaching the last hop
compared to the virtual arrival time. In the second part, we prove that the delay of any
packet is indeed bounded compared to the virtual arrival time.

Partl. Letr* = %. We claim that for any packetwhich traverses a segment
k with h* hops, the following relationship holds for any< k£h* (note that theé:h*th hop
is the last hop on thith segment),

al —wyp_ <71 (A.13)
Otherwise, assume that for the first time in the system there is a peiclidtich violates
the relationship at scheduléf < kh* (without loss of generality, we assumed here that
the segment that packgt traverses is théth segment), i.eaf; — w{f_l > 7*. Therefore
(A.13) holds for all packets before the timlél, in particular, we have

*

p
Q.4

17—

p* *
| T W ST

193

From Lemma 13, we have

*

alf#fl — wi*_l < (2# —2{a(T"+ 1)+ [+ A}

)

Therefore,
ay =%, < di +a(T+TD)+B8+A
< W = 2{a(T + D)+ B+ A+ {a(r* + 1) + 8+ A}
< W+ (#F = D{a(r +T)+ 8+ A} (A.14)

After some algebra, we have

.) (h* =1)(al'+5+A)
aly —wp_y < e =7"

Thus we arrive at a contradition.

Part 2. In this part we prove that the maximum del@y within any segment com-

pared with the virtual arrival time to the entry of the segment is bounded above*by,

h*(al+B+A)
1-(h*—1)a *

Consider an arbitrary packgtwhich traverses the segment of the path. From Lemma 13,
we have

Sl h*(al' + 5+ A)
o —wh <h{a(t"+T)+ 0+ A} < e —
| |
h* (al'+5+A)

Proof of Theorem 6: By assigningl’ > T o1)a We see the reality check condi-
tion holds at the entry of each segment. Consider an arbitrary packed assume the it
traverses has hops, let = [X]. Then

fF<uwl 4T <wh+kl.
Notice thatw) < af + T, we complete the proof. .

194

Appendix B

Proofs Related to Chapter 4

B.1 Proof of Theorem 7

In this appendix, we will prove Theorem 7 in Section 4.3. This theorem states an important
recursive relation betweeA?* and A?*~!. The proof of the theorem is based on two

preliminary lemmas.

Lemma 14 below relates the cumulative queueing delay experiencgt lmp to server
(i.e., A’"), to either its queueing delay up to server1 (i.e., A7¥)), or the queueing delay
experienced by the previous packét—! up to servei (i.e., Ag’k‘l).

Lemma 14 Fori > 1 andk > 2,

. Lik=1 _ [k Lk
AP = maxc{ AP AP T T kel gk 2y (B.1)
rJ rJ

In the above, we have definéd* = 0 for all k's. =

Proof: First note that a L LJ ’ LJ 1, AJ 1 - = (for all 1, which is also
i z i
intuitively obvious.

For anyk > 2, we show (B.1) holds by induction an

Basis ¢ = 1). Note thatA}* = 0

— L
Ajk Jk (—|——) = max{ajl’k, fk 1}+7

L
_ Ji:k—1 J.k—1 0k
= max{al ; At +7rj + A7 }‘I'Tj (ar” + i)
- L[ok=1 _ [k . Lok
= max{0, A{’k - 4 ajk ! ajl’k +—1.
T] rJ

Inductive StepNow suppose (B.1) holds true up to servéor £ > 2. We show that it is
also true at server+ 1 for & > 2.
Jik g,k i,k

; L k14 L
ALy = f=lol"+i41)) = max{alyy, I = —lal+(+1) =

—1.(8.2)

Now we consider two cases according to the relationship between the arrival time of packet
p’* and the finish time of’*~! at the servef + 1.

Case L: aff, < f/7". Then by definition,

k=1 _ AgGik—1 j e—1 LA
Js J - JR—= :

[=A% +ar +(+1) g
Therefore, from (B.2), we have

Ve L3k)
AFF = AR (z+1)r—]+aj gt o

Note that, in this case, we have

j,k—1 . L k-1 i,k
AL i+)4+ —)+
o+] + T
Lik—1 Lik=1 _ ik Lk

-t J+ (i +1)

- 7;_;'_1 (11 _|_ (2 + 1)

Lok

rJ)

. Lk

> aly; — (af* +i=)
rd

rd)

i

i k—1
= z’J—O—l _(

, . Lik
= ' —(a}* +i

_ Adk
= A

Hence (B.1) holds.
196

CASE 2: alf, > f7". Then since

1

ik gk gk D
z+1 =7 =47 +ar +i .

we have

Bk ATE
Ay = Ay

Furthermore,
[Gk=1 _ [k A . LI+
k . Jk— k
A+)T T et
7,k—1 LJ k—1 _ 714,k Lj,k
= AT =lad" i+) |+ i+ 1) +ai" T — el + =
k-1 ik
= f2]+l ()
. ij
< agfl (af)
, . Lj,k
— Jvk _]’k y
- fz (0,1 +1 Tj)
Hence (B.1) also holds in this case. This completes the proof of Lemma 14. "

From the above proof, we observe thatfor 2 andk > 2, if «?* > f7*' we have

APF = ATF (B.3)
otherwise,
. . Lik=1 _ [k _ Lk
A = A i el e T (B.4)

Note also thatA,Jrl Af’“ represents the queueing delay experienced by pa¢keat

serveri + 1. The following lemma shows that as a packet goes through the servers in the
ideal reference system, the queueing delay it experiences at each individual server cannot
decrease.

197

Lemma 15 For: > 1 andk > 2,
ATE — AF > ATF - ATE
(Note thatA* = 0.) m

Proof: Proof by induction ork.

Basis¢ = 1). SinceA?! = 0, the inequality (B.5) holds trivially.

(B.5)

Inductive StepNow suppose (B.5) holds far— 1, £ > 2. We show it also holds fot.

A]:k Ajvk _ j7 1 L]k]»k
i — Ay = fz+1 lar™ + (1 +)] L = (a7
ij
= fil-fF-
j k-1 L7k
= (max{af;l, z]+1 }+—) (max{a

= max{aHl, ijl 1} max{aZ ,

We consider two cases.

CASE 1: a/* > f7*'. Under this condition, we have

ik
i1 TR = max{alﬂ, L T
) Jsk
> J k a]’k _ L
- Z+1 ’Fj .
Note that for; > 1,
Lik

ai” = fI% = A +ar + (i - 1)7

where asA{;’“ = 0, the last equality above also holds for 1.

On the other hand,

. e
alyi=f" = AP+l +im

198

1)

k—1
] b —

—i—zLik)]

fj,kfl
7
[k

ri

}+

Lk Lk
T
©6)
®7)

From (B.6) and (B.7), we have
ALE = AP > AP — ATY

CASE 2: a?* < f7*~1, Under this condition, we have

]7
gk ik Jok—1 k-1 L
Ai+1_Ai = max{alﬂ, i+l } Ve e
.77

7,k—1 J.k—1 L
Z f7,+1 f T] .

k—1 k—1 k—1 . Jik—1 j,k—1 j,k—1 j,k—1 . [Ik—1
Sincef = A+ a4 i+ DES— and 7 = AP b el i we
have

Lik=1 _ 3.k

A]’“_AJ’“ N AZ‘k71+ -
T

i+1 = 1+1

jk-1_ agk-1, LPETT—LIE inducti i
> A — AT+ — (from inductive hypothesis)
. Lik=1 _ ik . Lik . Lik=1 _ 3.k
k . k— k k—1
APF - (F————+a] ' oalt 4 =) - AN+ T (from (B4))
) - Lik=1 _ ik - . Lik
= AP (AP -)T T e)

ri
> AZ’“ — Agfl (from Lemma 14)

A direct consequence of Lemma 15 is that if for soimé < i < h, Am = A" then
AF = AP = AR = oo = APF = AJ® = 0. In other words, for any packet”,
eltherAg’“ =0fori=1,2,...,h (i.e., no queueing delay is experienced by the packet);
or there exists*, 1 < i* < h, such thatA?* = 0 fori = 1,...,7* — 1 andA* > 0
fori=4*7*+1,...,h (i.e., the packet starts experiencing queueing delay at séraed
onwards). Intuitively, the latter case happens because the packets precedingfdchet
eventually accumulated enough delay at seivéo affect packep’* (see Figure 4.4(b)).
Applying the above fact to Lemma 14, we see that Theorem 7 holds.

Another consequence of Lemma 15 is the following corollary.

Corollary 18 Foranyp < handk =1,2,..., we have

AZE AT
—r < Zh (B.8)
P h

199

Proof: Note that fork = 1, sinceAd! = A}'' = 0, (B.8) holds trivially. Fork > 2, let

ik Ajk ik _ ik e ik AdK ik
6)% = AJ¥ [p. ThenAJ® = pé2*. From Lemma 15, itis easy to see tIzibg A > 00
Furthermore, forany = p+1,..., h, we haveAf — AF | > AJF — A;;fl > 67%. Hence

A= X0 (AF = AL) + AP 2 (= p)a* £ p3t = het
1=p+1

Therefore (B.8) also holds for arky> 2. "

We now apply Theorem 7 to derive the following important corollary.

Corollary 19 Foranyk > 1,andi =1,2,...,h,

) Lj,k Lj,maac
AR < (B.9)

rd rl

where /™ s the maximum packet size of flgw

Proof: Since A" = 0, the inequality (B.9) holds trivially. Suppose (B.9) holds for
1,2,....k — 1, we show that it also holds fagt. Note that ing’k = 0, then (B.9) holds
trivially. Now consider the casa?* > 0. From Theorem 7, we have

K L k-1 . k-1 k .
AP b = AT i ay —df i
T T T T
jik—1 Lk
j,k—1 L j,k—1
= A i T a) T —dh e (B.10)
v rl rl

From (4.3) and the inductive hypothesis, we see that (B.9) also holds for

B.2 Virtual Shaping Lemma and Its Applications

An important consequence of the virtual spacing property of packet virtual time stamps
is the following Virtual Shaping Lemmalntuitively, it states that according to the virtual
time, the amount of flow traffic arriving at serveyj is “constrained” by its reserved rate

r7. This lemma is critical in designing delay-based core stateless scheduling algorithms that

200

can provide delay guaranteegthout explicit rate control or reshaping within the network
core

Lemma 16 (Virtual Shaping Lemma) Consider an arbitrary time intervalr, t]. LetT7
denote the set of the packets of flpwwhich virtually arrives during[r, t], i.e.,k € Ti if
and only ifr < @7* < t. Let Ai(r,t) = S e L be the corresponding amount of traffic
of flow arriving virtually between the time intervat, t]. Then

Aj(T, t) = Z LR < pi(t — 1) 4 LFmae

keTi

Proof: Let k, be the smallest indek of the packetg’* in A7 andk, be the largest index
k of the packetg’* in A7. Fromk = k; down toko, recursively applying the fact that
Ik > gik=1 4 %k we have

Jik1 ky ik ky Jik

rJ rJ - rJ

Hence,

k1
[lj(T, t) = Z Lk = Z LAk 4 [k < pi(t — 1) 4 LPFo < pd(t — 1) 4+ L™,

keTi k=ko+1

Using the Virtual Shaping Lemma, we now prove that the VT-EDF scheduling algorithm
we designed in Section 4.5 has the minimum error tém-gpr = L*"** /C (see Theo-
rem 11).

Proof of Theorem 11: Fix an arbitrary packep’* from a flow j. We show that (4.34)
holds.

Consider the system busy period containing pagkét Without loss of generality, assume
that the beginning of the system busy period starts at timeet 7 be the last time before
the arrival of packep’* such that the schedulstarts servicing a packet whose virtual
finish time is larger than that of * (i.e., 7). If such a packet does not exist, set= 0,
the beginning of the busy period. Hertel 7 < a/% < @3+,

201

Lett = @9* + &/ — 7. Sincex’* > /% > randd’ > d' > 0, we have that
t=0"* +d —7>d; >0. (B.11)

For each flown, m = 1,2..., N, let S™ denote the set of packets of flow that are
serviced afterr and but no later than packet* (i.e., they are serviced during the time
interval (7, £ *]). From the definition of andS™, we see that for any™! € S™, a™! > 1
andy™! < 9k hold. Sincev™! > g™t vl = o™ + d™ and?t = QIR + P =t + T,
we have

<ot <t47—dm (B.12)

From (B.12), it is clear that if™ > t = %% + &7 — 7, thenS™ = (). Therefore for anyn
such thatS™ # (), we must havel™ < t. Applying the Virtual Shaping Lemma to flom
over the time intervalr, t — d™ + 7], we have

Z Lm,l S [,vmazx +7“m(t . dm)
lesm

Summing over alin and using the schedulability condition (4.33), we have

N N
> (X L™ Lsmpny < 2L (= AL pzamy < C

m=1 [eS™

Note that packep’* € S7. Hence packep’* must have departed the scheduler when all
the packets inu)Y_, S™ have been serviced by the server. Furthermore, the packet which is
being serviced at time (if it exists) has a size of at mo&t~**. Therefore, we have

*,max N m,l

*,MaAT *,MaAT [xmaz

+t ="+ d + =k 4 .

St (B.13)

For a rate-based schedul8r an alternative form of the Virtual Shaping Lemma can be
established. Let’* be the virtual time stamp associated wijttf at the entry point of.

202

Define thevirtual eligibility time &7 of packetp’* to bee’* = &7F 4- §7%. Then the virtual
finish time of packep’* is equal to
. . ~ , LIk

= ok = = (B.14)

rJ

Using a similar proof as in the proof of (4.15) in Theorem 8, we can show that

gik > pik=t (B.15)
The intuitive meaning of’* can be interpreted as follows. Imagine that there were a
virtual rate controllerattached to the rate-based scheddlerPackety’* arriving at the
virtual time @7* would be held at the virtual rate controller f6t* amount of time and
released to the servérat the virtual eligible time’* = 7% + §7*. The packet were then

to finish its service at the schedul§rby the virtual finish timeZ/*. From (B.15), we see

that a packet were never released to be serviced at the sch&8dhd@are its previous packet
had finished its service. Using this observation, we establish the following alternative form
of the Virtual Shaping Lemma — thértual Rate Control Lemma

Lemma 17 (Virtual Rate Control Lemma) Consider an arbitrary time intervdr, t]. We
say that packep’* of flow j is virtually eligible for service during[r, t] if &* > 7 and
DIk = gk 4 Lk /ri < t. LetS7 denote the set of the packets of flpwhich are virtually
eligible for service in[r,t]. DefineWi(r,t) = 3, 5 L*. We refer toW7(r,t) as the
virtual eligible workof flow j over|r, t). Then

Wi(r,t) = Mo DR <t —1). (B.16)

keSi

Proof: Let k, be the smallest indek of the packetg” in S7 andk; be the largest index
k of the packetg’* in S7. Fromk = k; down tok,, recursively applying the fact that
ehk > pik=1 = ghk=1 4 [Jk=1/ri we have

j?kl kl]7k ~ . Juk
t>17j,k1:éj,k1+L>éj7ko+M>T+M_
- ri = ri - rJ

Hence (B.16) follows. "

203

The Virtual Rate Control Lemma states that the amount of virtual eligible work of a flow
over any time interval is always limited by its reserved rate. This lemma enables us to de-
sign rate-based core stateless scheduling algorithms that can support rate guaidimtees
out using explicit rate control within the network coi®ne such an example is tligVC
scheduling algorithm we designed in Section 4.5. We now prove that it has the minimum
error termV¢, o = L™ /C (see Theorem 9).

Proof of Theorem 9: Fix an arbitrary packet’* from any flow;j. We show that (4.31)
holds.

Consider the system busy period containing pa@lﬁet Without loss of generality, we
assume that the beginning of the system busy period starts at time ©bedhe last time
before the arrival of packe¥* such that the schedulstarts servicing a packet whose
virtual finish time is larger than that @f-*. (In other words, no packet queued at time
has a virtual finish time smaller thar*.) If such a packet does not exist, set= 0, the
beginning of the busy period. Henge< 7 < a7+,

For each flowm, m = 1,2..., N, let S denote the set of packets of flow that are
serviced by the scheduler afterbut no later thanf?*, i.e., they are serviced during the
time interval(r, f#*]. From the definition of-, we have that for any™! € S™, ¢™! > 7
andz™! < 7%, Now applying the Virtual Rate Control Lemma to flow over the time
interval [, /%], we have

Z Lt < Wj(T, ﬂj’k) < rm(ﬁj’k — 7).
lesm

Summing over alln and using the schedulability condition, we have

N N
Z Z Lt < (Z rm)(ﬁj’k —7) < C(Dj’k — 7).
m=1[]eSm m=1

Note that packep’* € S7. Hence packep’* must have departed the scheduler when all
the packets inv)Y_, S™ have been serviced by the server. Furthermore, the packet which is
being serviced at time (if it exists) has a size of at mogt-~"**. Therefore,

[*maz szl ZlESm Lm,l ik [Hmax
) m= < Js .
S C + C < v+ O

204

Theorem 10 in Section 4.5 can also be proved using the Virtual Rate Control Lemma.

Proof of Theorem 10: We prove that a slottedyVC scheduler has an error tefn; i ca—cyve =
L*ma® /C 4 . To proceed, consider an arbitrary packkt from a flow ;.

Consider the system busy period containing pagké&t Suppose that, < /% < 7,,4.
Without loss of generality, we assume that the system busy period starts dk tine¢

be the last time before the arrival of packét such that the scheduler starts servicing a
packet from a queue, such asr,, > 7,. If such a packet does not exist, set= 0, the
beginning of the busy period. HenBe< 7 < a/*. For each flown, m = 1,2..., N, let

S™ denote the set of packets of flowthat are serviced afterand no later than packgt”
(i.e., they are serviced during the time inter(/alffv’f]). From the definition of-, we see
that for anyp™! € 5™, o™ > a™! > 7 andv™! < 7,1 = 7, + . Applying the Virtual
Rate Control Lemma to flow: over the time intervalr, 7, + ¢], we have

Z < Wm(T, T, +) <r"(m, 41— T).
leSm

Summing over alln and using the schedulability condition, we have

SN LM< M+ e—T1) < Clrp+ 10— 7).

m=1[leS™m m=1

Note that packep’* < S7. Hence packep’* must depart the scheduler after all the
packets inUY_,S™ have been serviced by the server. Furthermore, the packet which is
being serviced at time (if it exists) has a size of at mogt-~"**. Therefore,

o [maz ZN— Z - Lm,l [*mazx } [max
Ik < m=1 Z.1leS < L < gk,
frrer+ C + C ST+t S + ¢+ C

B.3 An Alternative Definition of Latency-Rate Servers

In this appendix, we show that the alternative definition of latency-rate servers is indeed
equivalent to the one given in [70, 72].

205

Proof of Lemma 8: Consider the/" burst period of flow;j. Letp’!, p2, ..., p?™ denote
the first, the second, ..., and the last packet of ffaavriving during this burst period. Let
ail a2, ... ad™ and fi1, fi2 . f#™ denote the actual arrival and departure times of
these packets. By the definition of latency-rate server, we have that far ahy < ¢ <

i,
W (g ¢) > 7 (t — @t — @7). (B.17)

Fork =1,2,...,m, letv?* be given in (4.37). We show that (B.17) is equivalent to

£,k j ke Lt
<+l — 5 (B.18)
r

We first show that (B.17) implies (B.18). For ahy=1,2....m, lett = fi*¥ — ¢, where

0 <e< fik — fik=1 Since by time, the scheduler has not finished servicing pagké&t
yet, we have

k-1
W]7Q(d.]71’t) — W]’q<d.771’ f.]7k71> o Z Lj:l.
=1

From (B.17), we have

k—1
ST L > it — @t — ©Y). (B.19)
=1
Jk=1 15,
On the other handy*—1 — g7t = hli.Ll. Therefore

rl

. , . Lik .
t < k=1 +07 < ik _ - + e,
T

Lettinge — 0 yields (B.18).

We now show that (B.18) implies (B.17). For ahyf/*~! < t < f7* we have

k
— ZLj,l . Lj,k
=1

206

A .

LIk

> P - =) - I
T

= pI(fik — a0 — @) > it — Pt — ©9).

This completes the proof of Lemma 8.

207

Appendix C

Proofs Related to Chapter 6

C.1 Proofs of Theorem 14 and 15

We first establish Theorem 14.

Proof Theorem 14: Consider an arbitrary timg wheret > t*. Denote the queue size at

the edge conditioner atasQ(t). Clearly if at some point during the time intenat, ¢] the

gueue becomes empty, then the queueing delay of any packets of the current macroflow is
bounded b}dg“;ge. This is because the lingering effect of the old queue at timé&)(¢*),
vanishes whenever the queue becomes emptyafter

Now suppose that during the time interval, t] the queue never becomes empty. Then the
gueue size at the timesatisfies

Q1) < Q(t*) + A¥ (t*, 1) — r™e(t — t*), (C.1)

wherer™® is the reserved bandwidth for the new macroflow at tifmevhich includes the
contingency bandwidthir”. Rewrite the above equation as follows,

Q) < Qt) + A% (t*,t) — r™v(t — t*)

()
= Q")+ A%(t*t) + AV (t*,t) — (r(t —t*) + Y (t —t*) + Ar¥(t — t¥))
= Q)+ A¥(t",t) —r*(t — t*) + AV (t*,t) — (r"(t — ") + Ar”(t — t7))
< QU+ At t) —r*(t =)+ PVt — %) — (v (t — t*) + Ar¥(t — t*))C.2)
= Q)+ A¥(t",t) —r*(t —t*) + (P" —r¥ — Ar¥)(t — t¥) (C.3)

208

In (C.2), we used the fact that®(¢*,¢) < L»™** + P¥(t — t*). For ease of exposition,
we omitted the ternl.”™** in the subsequent derivation. The effect of this term can be
taken into account by accommodating it into the end-to-end formula (i.e., using
D>ree — [rmatinstead ofD*"¢? in the right hand side of (6.24)).

From (C.3), we see that #* — ¥ — Ar¥ < 0, Q(t) is bounded by the maximum queue
size in the old system. In other words, the edge queueing delay is boundggeby

Note that the rate to clear the old queue is at Iédast Hence by time* + QA(?, the linger-
ing effect of the old queue vanishes. After that time, the edge queueing delay is bounded

by that in the new system, namedzgg;;ge. This completes the proof of Theorem 14. =

Now we consider Theorem 15. Note that by having a contigency bandwigth> ",

the new system is serviced with a rate at least equal to the service rate in the old system.
Therefore, the queueing delay is bounded by the maximum queueing delay in the old sys-
tem before the lingering effect of the old queue vanishesAAS> rY, it is easy to see that

the lingering effect of the old queue will vanish aftér+ Lﬁ) Theorem 15 then follows
easily.

C.2 Proof of Theorem 16

Suppose that at time* the reserved rate of the macroflewis adjusted at the edge shaper
from r to r’. Let p*" be the last packet that leaves the edge conditioner before the rate
change at*, andp* *! be the first packet that leaves the edge conditioner after the rate
change at*.

To establish the virtual spacing and reality check properties for the macroflow after the rate
change at*, we first prove they hold for packgt *!. That is, the following two equations
hold for: = 1,2, ..., h, whereh is the length of pattP:

Dk > [y (C.4)
and

ak < QR (C.5)

209

From the definitions of¥ ™!, and&*”, we have

k*4+1

~k*+1 ~k*4+1 s ck*41 —1
of Tt=ay T +i(0" T+ ——) + Di,
T

and

* * Lk*
o = alf +Z(5k + 7) +Dtot)

7

whereD;},,! = HUZE)

] 1

Therefore, to establish (C.4) we only need to show

Ak +1+2(5k +1 7)2& <5k .)_'_ ")

Or, equivalently,

* * N Ak*41 Lk*+1
5k*+1 > 5k + Lk N Lk 1 + CL’f - alf * + r/
T ! 1

On the other hand, we have

* * * * A ¥ N k*+1

h — h r r! h

Sincei < h, we see that (C.4) holds.

Now we show that (C.5) also holds. Whee: 1, (C.5) follows trivially from the definition.
Fori > 2, we have

Ak*+1 _ PE*41 ~k* 41 k*+1
a; = fi{ +ma<v T+ +m0=0; (C.6)

For packev”, k = k* 4+ 2, k* + 3, .. ., the proof is similar to that of Theorem 2 in [86] and
we omit it here.

Now we prove the upper bound (6.23) on the delay a packet experiences inside a network
core after timer*. Note that if a packet does not catch up with any packet that is injected
into the network core before, then the delay it experiences is boundedzléy?ﬁ +DP..
Otherwise, itis bounded UyLP " + DF,. Combining these two cases, we obtain the delay
bound (6.23).

210

Appendix D

Proofs Related to Chapter 8

D.1 E(W) of the static bandwidth provisioning with penalty

From (8.4) and (8.5), it is easy to see that

SIS RIS IR / 70010 By (L, V) d{ o, (D.1)

reR leL r"eR

Moreover,

EE:R/ / s pre By ({07 Y d{ pr } Z / / o pr Ber ({pr 1) d{ o }
bX S L Bt hatnn)

r'eRr"eR,r" #r!

TGR/ //{({):)1 o B ({prd{pr}. (D.2)

As Br/({pr}) < Br’({ﬁr}) Whenﬂr < pr, V7,

//{ o pr B ({pr})dipr} < / / 7 o B ({pr })d{ pr} < 700 Byr ({pr}) 1 (D.3)

Notice B,»({p,}) < 1 and the definition of, we have (note” # ')

{o0} o0 o
/ / / 777« pr B ({pr })d{pr} S/ (/ T prrdpr) dpyn < 6 2
{O}R Pytt 0 Pr!

211

(D.4)

Similarly,

/ / /)Tt Pt Byt {pr})d{pr} < / T P Appr < 0. (D.5)
Pyt {O}R r!

Pyt

Substitute (D.3), (D.4), and (D.5) into (D.2), and then recursively into (D.1), we have

W) > Z €rPr — ZCD) Z 7 pr Br({pr}) — Z m0(1 + Z {37;) (D.6)

reR leL reR reRr rERr!#r T

D.2 Approximate Model of the Dynamic bandwidth Provisioning

The exact solution to the approximate model (8.17) is still difficult to solve. As in the case
of the static bandwidth provisioning problem, we will derive a lower bound@i’], and
solve the dynamic bandwidth provisioning problem with respect to the lower bound.

For simplicity of exposition, we consider the special case where the bandwidth cost func-
tions are linear, i.e., for anye L, ®,(¢;) = ¢, and®j(A¢;) = ¢;Ac;, whereg, < ¢ for

any!l. The analysis of this subsection can be extended to the more general bandwidth cost
functions.

Observe that
[[etaaitor = o [[aqdtor=c [[5 aiin)
= o[o) dePrinz e ©7)
Since

// Pafprt = // ZierPr) < / '/ElerpTd{pr} _ el (pg)
{p>mer} M . {pi>mer} m m m

we have

W= epr—> =y cszl;;”’” +Y daPrip = ma}. (D.9)
T l l l

Denote the right-hand side of (D.9) lBy. Given this lower bound’ on E[IV], we can
use the solution to the following optimization problem as an approximation to the original

212

optimization problem (8.17):

max U (D.10)
{a}

The necessary condition on the optimal solut{efi} to (D.10) is that the gradient df
with respect to{¢;} vanishes afc;}, i.e., VU = 0. Note that for any € L,

ou

, 0
?Cl = —¢+ ¢la—q{clPr{pz > met}

= —di+ @ {Pr{pz > mic} + Czaﬁcl{Pr{pz > mcl}}}

= =i+ o {Prip > na} —mad{p = ma}} (D.11)

where the last inequality follows from the fact that for a cumulative distribution function
F(x) with the probability density functiotf(z), i.e., F(x) = [* f(u)du, dF): f(z).

Hence we have the following necessary condition on the optimal sol{itjgn

o= a(Prip > mei} —megd{p = mci'}), (D.12)
for everyl € L. The equations (D.12) may be difficult to solve in practice. In the following

we derive an upper bound afi, which has a nice intuitive interpretation and leads to a
simple guideline for choosing the value for the statically reserved bandwidth on each link.

Let ¢, be such thaPr{p, > nic;} = ¢1/¢;. Then

Prip > mci} > Prip = mci }—mcid{py = mci} = ¢u/d; = Pri{p > mc;}.(D.13)
As Pr{p, > n,¢;} is a decreasing function af, we have

&< ¢ (D.14)

213

