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Abstract

In this paper we investigate the fundamental trade-offs in
aggregate packet scheduling for support of guaranteed de-
lay service. In our study, besides the simple FIFO packet
scheduling algorithm, we consider two new classes of aggre-
gate packet scheduling algorithms: the static earliest time first
(SETF) and dynamic earliest time first (DETF). Through these
two classes of aggregate packet scheduling, we show that,
with additional time stamp information encoded in the packet
header for scheduling purpose, we can significantly increase
the maximum allowable network utilization level, while at the
same time reducing the worst-case edge-to-edge delay bound.
Furthermore, we demonstrate how the number of the bits used
to encode the time stamp information affects the trade-off be-
tween the maximum allowable network utilization level and
the worst-case edge-to-edge delay bound. In addition, the
more complex DETF algorithms have far better performance
than the simpler SETF algorithms. These results illustrate the
fundamental trade-offs in aggregate packet scheduling algo-
rithms and shed light on their provisioning power in support
of guaranteed delay service.

I. INTRODUCTION

Because of its potential scalability in support of Internet
QoS guarantees, lately aggregate packet scheduling has at-
tracted a lot of attention in the networking community. For
instance, in the DiffServ framework [2], it is proposed that the
simple FIFO packet scheduling be used to support the EF (ex-
pedited forwarding) per-hop behavior (PHB) [6]. Namely, at
each router, EF packets from all users are queued at a single
FIFO buffer and serviced in the order of their arrival times at
the queue. Clearly, use of FIFO packet scheduling results in a
very simple implementation of the EF PHB. However, the abil-
ity of appropriately provisioning a network using FIFO packet
scheduling to provide guaranteed rate/delay service—as the
EF PHB is arguably intended to support [7]—has been ques-
tioned [1], [3].

In a recent work by Charny and Le Boudec [3], it is shown
that in order to provide guaranteed delay service using FIFO,
the overall network utilization level must be limited to a small
fraction of its link capacities. More specifically, in a network
of FIFO schedulers, the worst-case delay at each router is
bounded only when the network utilization level is limited to
a factor smaller than �����
	������� , where 	�� , referred to as the
network diameter, is the number of hops in the longest path of

the network. Furthermore, given the network utilization level��� ������	������� , the worst-case delay bound is inversely pro-
portional to �� � �
	������� . Hence as the network utilization
level � gets closer to the utilization bound ������	������� , the
worst-case delay bound approaches rapidly to infinity.

The elegant result of Charny and Le Boudec raises several
interesting and important questions regarding the design and
provisioning power of aggregate packet scheduling. In this pa-
per we will take a more theoretical perspective and attempt to
address the fundamental trade-offs in the design of aggregate
packet scheduling algorithms and their provisioning power in
support of (worst-case) guaranteed delay service. In particu-
lar, we study the relationships between the worst-case edge-
to-edge delay (i.e., the maximum delay experienced by any
packet across a network domain), the maximum allowable net-
work utilization level and the “sophistication/complexity” of
aggregate packet scheduling employed by a network. À la the
Internet DiffServ paradigm, we consider a framework where
user traffic is only conditioned (i.e., shaped) at the edge of
a network domain, whereas inside the network core, packets
are scheduled based solely on certain bits (referred to as the
packet state) carried in the packet header. In other words, the
aggregate packet scheduling algorithm employed inside the
network core maintains no per-flow/user information, thus it
is core-stateless.

In our framework, besides the conventional “TOS” bits, we
assume that additional control information may be carried in
the packet header for scheduling purpose. By encoding cer-
tain timing information in the packet header, we design two
new classes of aggregate packet scheduling algorithms: the
static earliest time first (SETF) and dynamic earliest time first
(DETF) algorithms. In the class of SETF packet scheduling
algorithms, packets are stamped with its entry time at the net-
work edge, and they are scheduled in the order of their time
stamps (i.e., their network entry times) inside the network
core; the class of DETF algorithms work in a similar fashion,
albeit with an important difference—the packet time stamps
are updated at certain routers (hence the term dynamic). In
both classes, the granularity of timing information encoded in
the packet state—as is determined by the number of bits used
for packet state encoding—is a critical factor that affects the
provisioning power of aggregate packet scheduling.

The objective of our study is to use these two new classes
(SETF and DETF) of aggregate packet scheduling algorithms,
in addition to the simple FIFO discipline, to illustrate the fun-
damental trade-offs in aggregate packet scheduling: 1) how



2with additional control information encoded in the packet
state, and with added “sophistication/complexity” in aggre-
gate packet scheduling, the worst-case edge-to-edge delay
bound and the maximum allowable network utilization bound
can be improved; and 2) how these performance bounds are
affected by the number of bits available for packet state en-
coding. Through analysis and numerical examples, we show
that when packet time stamps are encoded with the finest time
granularity, both the SETF and DETF packet scheduling al-
gorithms can attain an arbitrary network utilization level (i.e.,� can be arbitrarily close to 1). In other words, the maxi-
mum allowable network utilization bound is independent of
the network diameter 	 � . This is in contrast to the case of
FIFO, where the maximum utilization level is bounded by
��� �
	�� ���� . Furthermore, using the more complex DETF, the
worst-case edge-to-edge delay bound is linear in 	�� , whereas
using the simpler SETF, the worst-case edge-to-edge delay
bound is inversely proportional to � �  � � ��� . When packet
time stamps are encoded using coarser granularity (i.e., the
number of bits for packet state encoding is limited), the net-
work utilization level is constrained by the time granularity.
In addition, the worst-case edge-to-edge delay bound is in-
creased. With the same number of bits, the more complex
DETF packet scheduling algorithms have far superior perfor-
mance over the simpler SETF algorithms.

The remainder of the paper is organized as follows. In Sec-
tion II we present the basic model and assumptions for our
analysis. In Section III, we re-establish the result in [3] us-
ing our approach. The two new classes of aggregate packet
scheduling, SETF and DETF, are analyzed and the trade-offs
discussed in Section IV and Section V, respectively. We con-
clude the paper in Section VI.

II. NETWORK MODEL AND ASSUMPTIONS

Consider a single network domain, as shown in Figure 1,
where all traffic entering the network is shaped at the edge
traffic conditioner before releasing into the network. No traf-
fic shaping or re-shaping is performed inside the network
core. We assume that all routers employ the same aggregate
packet scheduling algorithm (e.g., FIFO) that performs packet
scheduling using only certain bits (the packet state) carried in
the packet header. No other scheduling information is used or
stored at core routers. We refer to the scheduling mechanism
employed at an outgoing link of a router as a scheduler. Let

�
be the capacity of the corresponding outgoing link of a sched-
uler � . We will also refer to

�
as the capacity of the sched-

uler � . We denote the MTU (maximum transmission unit)
of the link by �����
	 , then �����
	 � � is the transmission time
of an MTU-sized packet. Define �������� all ������� �����
	 � ��� ,
i.e., � is the maximum transmission time of any packet in the
network. We assume that the path of any user flow is pre-
determined, and fixed throughout its duration. Let 	�� be the
maximum number of hops in the paths that any user flow may
traverse in the network. We refer to 	�� as the network diam-
eter.

Consider an arbitrary flow � traversing the network. The
traffic of the flow is shaped at the network edge in such a man-

ner that it conforms to a token bucket regulated arrival curve
�! #"%$'&�"�� [4]: Let (�" �!)
$*),+.- � denote the amount of the flow �
traffic released into the network during a time interval / )
$*)0+1-32 ,
where )�465 , -7485 ; then (�" �!)
$*)�+9- ��:; #"<+7&�"=- . We control
the overall network utilization level by imposing a utilization
factor � on each link as follows. Consider an arbitrary sched-
uler � with capacity

�
. Let > denote the set of user flows

traversing � . Then the following condition holds:

?
"0@�A

& " : � �CB (1)

Clearly, 5 � � : � . We will also refer to the utilization factor� as the network utilization level of a network domain. In
addition to the link utilization factor � , we will also impose
an overall bound DE4F5 (in units of time) on the “burstiness”
of flows traversing any scheduler � : G "0@�A  #"H:ID

�
. As we

will see later, this burstiness factor D plays a less critical role
in our analysis than the network utilization level � .

From the above edge shaping and network utilization con-
straints, we can obtain an important bound on the amount of
traffic going through a given scheduler that is injected at the
network edge during any time interval. Consider an arbitrary
scheduler � with capacity

�
. For any time interval / -J$*)K2 , let

Å � �!-J$*) � denote the amount of traffic injected into the network
during the time interval / -J$')K2 that will traverse � (at perhaps
some later time). Here we use Å to emphasize that Å � �!-J$*) �
is not the traffic traversing � during the time interval / -J$')K2 ,
but injected into the network at the network edge during / -J$*)K2 .
Using the facts that (L" �M)
$')�+N- �O:P #"Q+R&�"=- for all flows,G "0@�A &�"Q: �

�
and G "0@�A  #"1:.D

�
, it is easy to show that

Å � �M-J$') ��: � � �M) S- �T+UD �CB (2)

We refer to this bound as the edge traffic provisioning con-
dition for scheduler � . As we will see later, the edge traffic
provisioning condition is critical to our analysis of aggregate
packet scheduling algorithms.

Now consider a packet V (of any flow) that traverses a path
with WS:�	�� hops. For X� �Y$[ZJ$ B\B=B $[W , denote the scheduler
at the X th hop on the path of packet V as �,] (see Figure 2).
Let ^Y_ ] and `a_] represent, respectively, the time that packet V
arrives at and departsfrom scheduler � ] . For ease of expo-
sition, throughout this paper we assume that the propagation
delay from one scheduler to another scheduler is zero. Hence^ _ ]cbTd N` _] .

Note that ^Y_ d is the time packet V is released into the network
(after going through the edge traffic conditioner), and `<_e is the
time packet V leaves the network. Hence `f_e g^Y_ d is the cumu-
lative delay that packet V experiences along its path, and is
referred to as the edge-to-edge delay experienced by packet V .
(Note that the delay experienced by a packet at the edge traffic
conditioner is excluded from the edge-to-edge delay.) Defineh � to be the worst-case edge-to-edge delay experienced by
any packet in the network, i.e.,

h � I�H���
all _ ’s

� `a_e i^�_ d � $ (3)
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where in the above definition W is the number of hops on the
path of packet V .

The key questions we will address in the remainder of the
paper are: 1) given an aggregate scheduling algorithm, under
what network utilization level � does an upper bound on

h �
exist? 2) how does this bound depend on the utilization level� and network diameter 	�� ? and 3) how these relationships
are affected by the number of bits available for packet state
encoding as well as the added “sophistication/complexity” in
aggregate packet scheduling?

III. NETWORK OF FIFO SCHEDULERS

In this section we re-establish the result of Charny and Le
Boudec [3] for a network of FIFO schedulers using a different
approach. Unlike [3] which uses an argument based on the
worst-case per-hop delay analysis, in our approach we attempt
to obtain a recursive relation for ^ _ ] ’s (or equivalently, ` _] ’s)
for any packet V . From this recursive relation we then derive
an upper bound on the worst-case edge-to-edge delay

h � . As
we will see later, this argument is quite general and powerful,
and forms the basis of all the analyses in this paper.

A key step in our analysis is to obtain an upper bound on
the amount of traffic that is serviced by a scheduler between
the arrival and departure of any packet V at the scheduler. This
bound will allow us to establish a recursive relation between^Y_ ]�b d and ^Y_ ] . For this purpose, we introduce an important no-
tation, - � , which is the maximum time it takes for any packet
to reach its last hop. Formally,

- � 6�����
all _ ’s

� ^Y_ e S^Y_ d �%B (4)

Now consider a FIFO scheduler � of capacity
�

. Let ^3_ �
denote the time a packet V arrives at � , and `f_� the time packetV departs from � . Define

� �!^%_ � � to be the amount of traffic
serviced by the scheduler � between / ^�_ � $ `a_� 2 . Note that since� is a FIFO scheduler,

� �!^ _ � � is exactly the amount of traffic
queued at � at the arrival time of packet V (with packet V itself
included). We have the following bound on

� � ^�_ � � :
Lemma 1: For a FIFO scheduler � of capacity

�
, we have

� � ^�_ � ��: � � - � + D �CB (5)
Proof: Let V�� be the last packet before packet V (it-

self inclusive) that when packet V � arrives at scheduler � any
packet V�� in the queue (including the one in service) satisfies

the following condition:

^Y_ �d 48^Y_ �d B (6)

In other words, when packet V � arrives at scheduler � , it is the
“oldest” packet in the queue: namely, all other packets cur-
rently in the queue entered the network no early than packetV � . We note that such a packet always exists—if no other
packets satisfy (6), the packet that starts the current busy pe-
riod certainly does. Let ^%_ �� denote the time packet V � ar-
rived at scheduler � . By the definition of V � , any packet
that was either queued at scheduler � at time ^�_ �� or arrived

at scheduler � between ^%_ �� and ^Y_ � must have entered the

network during the time interval / ^�_ �d $'^Y_ � 2 . From (2), the
amount of traffic carried by these packets is bounded above
by � � � ^Y_ � 8^Y_ �d ��+6D � . Furthermore, since scheduler � is

always busy during / ^%_ �� $[^Y_ � 2 , we have
� �!^Y_ � ��: � � �!^Y_ � i^Y_ �d �,+UD �  �!^Y_ � i^Y_ �� � �CB (7)

As ^Y_ � U^�_ �d  ^�_ � U^Y_ �� +;^Y_ �� 8^�_ �d and ^Y_ �� .^Y_ �d : - � ,
from (7) we see that (5) follows easily.
There is an intuitive explanation of the result in Lemma 1.
Note that a FIFO scheduler services packets in the order of
their arrival times at the scheduler, regardless of when they
are released into the network. In particular, packets entering
the network later than packet V can potentially be serviced ear-
lier than packet V . Intuitively, packets that are queued at the
time packet V arrives at scheduler � must have entered the
network between / ^%_ �  - ��$'^Y_ � 2 and arrived at scheduler � be-
fore packet V . By the edge traffic provisioning condition (2),
the amount of traffic carried by these packets is bounded by� � - ��+8D � . This intuitive argument is made rigorous in the
proof of Lemma 1.

We now use Lemma 1 to derive a recursive relation for ^3_ ] ’s.
Consider a packet V which traverses a path with W hops. The
capacity of the X th scheduler on the path is denoted by

� ] .
Then by the definition of

� � ^%_ ] � , we have

^Y_ ]cbTd R`a_] I^Y_ ] + � �!^Y_ ] � � � ] :;^Y_ ] + � - � +UD B (8)

Recursively applying (8) and using the relation ` _] I^�_ ]cbTd , we
have the following lemma.

Lemma 2: Consider a packet V which traverses a path withW hops. Then, for X  �Y$[ZJ$ B\B=B $ W , we have,

`a_] i^Y_ d :.X � � - � + D�� B (9)



4Using Lemma 2, we can establish the following main results
for a network of FIFO schedulers1.

Theorem 3: Given a network of FIFO schedulers with a
network diameter 	�� , if the network utilization level � sat-
isfies the condition � � d� � � d , then - � : � ��� � d����d � � � � � d���� . Fur-
thermore, the worst-case edge-to-edge delay

h � is bounded
above by h � : 	��
D

�� �
	 �  ��� �
B

(10)

Theorem 3 illustrates the provisioning power of a network
of FIFO schedulers for support of guaranteed delay service:
in order to provide a provable worst-case edge-to-edge delay
bound, the maximum network utilization level must be lim-
ited below ������	������� . (We will refer to this bound as the
maximum allowable network utilization bound.) For example,
with 	��C	� (a “small” network), the maximum network uti-
lization must be kept below 
�5�� of all link capacities; with
	��S � � (a relatively “large” network), the maximum net-
work utilization must be kept below �\5�� of all link capaci-
ties. Furthermore, as the network utilization level gets closer
to ������	 �  ��� , the worst-case edge-to-edge delay bound ap-
proaches infinity.

IV. NETWORK OF STATIC EARLIEST TIME FIRST

SCHEDULERS

In this section we will design and analyze a new class of
aggregate packet scheduling algorithms—the class of static
earliest time first (SETF) algorithms. Using this class of ag-
gregate packet scheduling algorithms, we will demonstrate
how by adding some “sophistication/complexity” in aggre-
gate packet scheduling—in particular, by encoding additional
control information in the packet header, we can improve the
maximum allowable utilization bound, and reduce the prov-
able worst-case edge-to-edge delay bound. Furthermore, we
will discuss the performance trade-offs of SETF packet algo-
rithms when a limited number of bits is used for packet state
encoding.

The additional control information used by the class of
SETF schedulers is a (static) time stamp carried in the packet
header of a packet that records the time the packet is released
into the network (after going through the edge traffic condi-
tioner) at the network edge. Here we assume that all edge de-
vices that time-stamp the packets use a global clock (in other
words, the clocks at the edge devices are synchronized). We
denote the time stamp of a packet V by  _� . An SETF sched-
uler inside the network core schedules packets in the order of
their time stamps,  _� . Note that in the case of SETF, the time
stamp of a packet is never modified by any SETF scheduler,
thus the term static.

Depending on the time granularity used to represent the
packet time stamps, we can design a class of SETF sched-
ulers with different performance/complexity trade-offs. We
use SETF( � ) to denote the SETF packet scheduling algorithm
where packet time stamps are represented with time granu-

�
The proof of this theorem and the proofs of other results in the remainder

of this paper can be found in [11].

larity � . In particular, SETF(0) denotes the SETF schedul-
ing algorithm where packet time stamps are represented with
the finest time granularity, namely, packets are time-stamped
with the precise time they are released into the network. For-
mally, for any packet V , we have  _�  ^Y_ d . For a more gen-
eral SETF( � ) scheduling algorithm where ��� 5 , we divide
the time into slots of � time units each (see Figure 3): )�� / ���  ������$������
$��g �Y$[ZJ$ B\B=B . Packets released into the network
are time-stamped with the corresponding time slot number � .
Therefore, packets that are released into the network within
the same time slot (say, the time slot )��E / ���� ����� $���� � )
carry the same time stamp value, i.e.,  _� �� . Therefore,
packets released into the network during the same time slot at
the network edge are indistinguishable by an SETF( � ) sched-
uler inside the network core, and are serviced by the scheduler
in a FIFO manner. In the following we will analyze SETF(0)
first, since its analysis is easier to present and follow. The
general SETF( � ) will be studied afterwards in Section IV-B.

A. SETF with Finest Time Granularity: SETF(0)

In this section we first establish performance bounds for
SETF(0) and then discuss the packet state encoding issue.

A.1 Network Utilization Level and Edge-to-Edge Delay
Bounds

We follow the same approach to establish performance
bounds for a network of SETF(0) schedulers, as is employed
for a network of FIFO schedulers in Section III.

Consider an arbitrary SETF(0) scheduler � of capacity
�

.
As in Section III, let ^%_ � and `a_� denote, respectively, the time
packet V arrives at and departs from � , and

� � ^�_ � � denote
the amount of traffic serviced by the scheduler � between/ ^Y_ � $[`a_� 2 . Note that unlike a FIFO scheduler,

� � ^�_ � � may not
be equal to the amount of traffic queued at � at the arrival time
of packet V . This is because a packet V � in the queue of sched-
uler � at the time of packet V arrival may have a time stamp
 _ �� �� _� . In addition, a packet V � arriving at � later than

packet V (but before `#_� ) may have a time stamp  _ �� �  _� ,
thus beginning service before packet V . Nonetheless, we can
apply a similar argument as used in Lemma 1 to establish the
following bound on

� �!^�_ � � .
Lemma 4: For an SETF(0) scheduler � of capacity

�
, we

have

� �!^Y_ � ��: � � � - �  �!^Y_ � S^Y_ d � � +UD � +U� ���
	 B (11)
Comparing Lemma 4 with Lemma 1, we see that the up-
per bound on

� �!^%_ � � for an SETF(0) scheduler is reduced by� � � ^�_ � .^Y_ d � amount from that for an FIFO scheduler. This
is not surprising, since any packet that is released into the net-
work after ^%_ d � _� will not take any service away from packetV at an SETF(0) scheduler (see Figure 4).

Lemma 5: Consider a packet V which traverses a path withW hops. Then for X  �Y$[ZJ$ B\B=B $[W , we have,

` _]  ^ _ d :8- � � �� � �� � � ] � + � � d �MD�+�� � � �� � �� � � ] ��B (12)
Using Lemma 5, we can establish the following main results

for a network of SETF(0) schedulers.



5Theorem 6: Consider a network of SETF(0) schedulers
with a network diameter 	�� . For 5 � � � � , we have

- � : � � � � �%b�� ��� d � � d � � ��� � � �	�� d � � � � � � � . Moreover, the worst-case
edge-to-edge delay

h � is bounded above by,

h � : � � d �MD +8� � � �� � �� � � ��� �
� �  � � � � � d

B
(13)

Comparing with a network of FIFO schedulers, we see that in
a network of SETF(0) schedulers, the network utilization level
can be kept as high (i.e., as close to 1) as desired: unlike FIFO,
there is no limit on the maximum allowable network utiliza-
tion level. However, since the worst-case edge-to-edge delay
bound is inversely proportional to � �  � � ��� � d , it increases
exponentially as ��
 � . The worst-case edge-to-edge bounds
for a FIFO network and an SETF(0) network (with 	���� )
are shown (among other bounds) in Figure 5 as a function of
the network utilization level � . In this example we assume
that the capacity of all links is � 5���� ��� , and all packets have
the same size �6 �\5%5Y5 bytes. We set the network burstiness
factor D in a similar manner as in [3]: we assume that the to-
ken bucket size of each flow is bounded in such a way that " :8D � & " , where D � (measured in units of time) is a constant
for all flows. For a given network utilization level � , we then
set D  � D � . In all the numerical studies presented in this pa-
per, we choose D � NZ 
���� . From Figure 5, it is clear that for
a given network utilization level, the worst-case edge-to-edge
delay bound for an SETF(0) network is much better than that
for a FIFO network.

A.2 Time Stamp Encoding and Performance Trade-offs

In this section we discuss the implication of the worst-case
edge-to-edge delay bound on the number of bits needed to en-
code the time stamp information. Suppose that

� � is the max-
imum link capacity of the network. Then it is sufficient to have
a time granularity of �� ��� � � to mark the precise time each
bit of data enters the network2. We now investigate the prob-
lem of how many bits are needed to encode the packet time
stamps.

Suppose that � bits are sufficient to encode the packet time
stamps precisely. Then the time-stamp bit string wraps around
every Z���� units of time. Given that the worst-case edge-to-
edge delay of a packet in the network is bounded above by

h � ,
we must have Z h �C:6ZY��� so as to enable any SETF(0) sched-
uler to correctly distinguish and compare the time stamps of
two different packets (see [11] for more discussions on this).
From Theorem 6, we have

� 4������ � �
� � d �MD +8� � � �� � �  � � � � �

� � �� � � � � � d �	�
� + � B (14)

From (14), we see that to achieve a meaningful network uti-
lization level, an SETF(0) network requires a large number of
bits for packet time stamp encoding, thus incurring significant
control overhead.
!
Although theoretically speaking the finest time granularity "$#&% , it is

obvious that in practice '(#*)	+-,�. is sufficient, as no two bits can arrive at
any link within ' units of time.

B. SETF with Coarser Time Granularity: SETF( � )

In this section we analyze the SETF( � ) packet scheduling
algorithm with coarser time granularity, i.e., � �65 , and illus-
trate how the time granularity affects the performance trade-
offs of an SETF network. In particular, we demonstrate that
using a coarser time granularity can potentially reduce the
number of bits needed to encode the packet time stamps, albeit
at the expenses of sacrificing the maximum allowable network
utilization.

Consider a network of SETF( � ) schedulers. Recall that un-
der SETF( � ), the time is divided into time slots and packets
released into the network during the same time slot carry the
same time stamp value (i.e., the time slot number). Clearly
the coarser the time granularity � is, the more packets will be
time-stamped with the same time slot number. In particular, if
� is larger than the worst-case edge-to-edge delay of the net-
work, then a network of SETF( � ) schedulers degenerates to a
network of FIFO schedulers. In the following we will employ
the same approach as before to derive performance bounds for
a network of SETF( � ) schedulers.

We first introduce a new notation W � : for a given � , defineW �Q+ � to be the minimum number of hops that any packet
can reach within � units of time after it is released into the
network. Mathematically, W � is the smallest W such that the
following relation holds for all packets:

�0/�1
all _ ’s

� ^Y_ e � b d S^Y_ d � 4 � B (15)

Note that if W��U 5 , we must have �  5 . This gives us
SETF(0). On the other hand, if � is large enough such thatW �L 	��  � , SETF( � ) becomes FIFO. Hence, without loss of
generality, in the rest of this section we assume that �Q:6W � �
	 �  � . Given this definition of W � , we have the following
bound on

� �!^%_ � � , where the notations used in the lemma are
defined as before:

Lemma 7: Consider an SETF( � ) scheduler � with capacity�
. Suppose � is the X th hop on the path of a packet V . Then

� � ^Y_ � ��: � � - � +UD � , if �Q:.X�:6W ��$ (16)

and if W � � X�:6W
� � ^�_ � � : � � � - �  �!^Y_ � i^Y_ e � b d � � +UD � +8� ���
	 $ (17)

where ^Y_ e � bTd is the time packet V reaches its ( W �<+�� )th hop on
its path.

Lemma 8: Consider a packet V which traverses a path withW hops. Then for X  �Y$[ZJ$ B\B=B $[W � ,
` _] i^ _ d :.X � � - � + D��-2 (18)

and for X NW � + �Y$ B\B=B $ W ,

`a_] i^Y_ d : W � � � - � +UD �,+U- � � �� � �� � � ] � e�� �
+ � � d �MD9+8� � � �  � �� � � ] � e � �%B (19)

Applying Lemma 8, we obtain the following performance
bounds for a network of SETF( � ) schedulers.
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affect the scheduling time of packet p at the i-th server. 

Time1
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SETF(0): Only traffic released within this range at the network edge could  

FIFO: Traffic released within this range at the network edge could  
affect the scheduling time of packet p at the i-th server.

Fig. 4. Illustration of the different behaviors of FIFO
and SETF(0).
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Theorem 9: Consider a network of SETF( � ) schedulers
with a network diameter 	�� . If the network utilization level �
satisfies the following condition,

� �� � � ��� � e � � d � � W � $ (20)

then

- � : DTW ��+ � � d �!D +.� � � �� � �  � � � � � e � � d �
� �  � � � � � e � � d  � W �

B
(21)

Furthermore, the worst-case edge-to-edge delay is bounded
above by,

h � : DTW ��+ � � d �!D +.� � � �� � �  � � � � � e � �
� �� � � � � � e � � d  � W �

B
(22)

Note first that in Theorem 9, setting W �U 5 yields the re-
sults for a network of SETF(0) schedulers, whereas settingW �C 	��� � yields the results for a network of FIFO sched-
ulers (with a difference of �d � � � � � d���� caused by the extra care
taken by the analysis of an SETF network to accout for the
non-preemptive property of an SETF scheduler). Hence The-
orem 6 and Theorem 3 can be considered as two special cases
of Theorem 9. In general, Theorem 9 states that with a coarser
time granularity � � 5 (which determines W � ), we can no
longer set the network utilization level at any arbitrary level,
as in the case of SETF(0), while still having a finite worst-case
edge-to-edge delay bound.

B.1 Time Stamp Encoding and Performance Trade-offs

In this section we show that using coarser time granularity
can potentially reduce the number of bits needed for packet
time stamp encoding. We also illustrate through numerical
examples how time granularity affects the performance trade-
offs of SETF( � ) networks.

We first consider the problem of packet time stamp encod-
ing. Using the same argument as in Section IV-A.2, for a given
time granularity � and network utilization level � , the number
of bits � needed for packet time stamp encoding must satisfy
the following condition:

� 4 ����� � � DTW ��+
� � d �MD +8� � � �� � �� � � ��� � e � �
� � �� � � � � � e � � d  � W � ���

� + � B
(23)

From Theorem 9, (23) and the definition of W � (15), it is not
too hard to see that given a network with diameter 	�� , we can
essentially divide the time granularity � into 	�� granularity
levels: each granularity level corresponds to one value of W �L5J$ �%$ B\B=B $ 	��  � . The finest granularity level corresponds toW �LR5 , and the coarsest granularity level to W �L 	��  � . For
this reason, in the following numerical studies, we will use W �
to indicate the time granularity used in an SETF( � ) network.
In all these studies, except for the network diameter 	�� all
other system parameters (link capacity, packet size, D ) are the
same as specified in Section IV-A.1.

Figure 5 shows the effect of time granularity on the worst-
case edge-to-edge delay bound for an SETF( � ) network with
	��H� . For comparison, we also include the results for the
corresponding FIFO network. From the figure it is clear that
coarser time granularity (i.e., larger W � ) yields poorer worst-
case edge-to-edge delay bound. As the time granularity gets
coarser (i.e., W�� increases), the worst-case edge-to-edge delay
bound quickly approaches to that of the FIFO network.

Next, we demonstrate how the number of bits available for
packet time stamp encoding affects the maximum allowable
network utilization so as to support a given target worst-case
edge-to-edge delay bound for SETF networks. The results
are shown in Figure 6, where networks with a combination
of the network diameters 	��g � and 	��g � Z and delay
bounds

h �  �\5%5 � � and
h � 	
Y5Y5 ��� are used. As we can

see from the figure that for a given number of bits for packet
time stamp encoding, as the network diameter increases, the
maximum allowable network utilization decreases. Note also
that when the number of bits for packet time stamp encod-
ing is small (e.g., less than 15 for a network with parameters
	��  � and

h �  �\5%5 ��� ), the packet time stamp does no
enhance the performance of a SETF( � $[W � ) network, and the
SETF( ��$[W � ) network behaves essentially as a FIFO network
with a maximum network utilization level around 0.11. Be-
yond this threshold, as the number of bits used increases, the
maximum allowable network utilization also increases. How-
ever, as the figure shows, further increasing the number of bits
beyond a certain value (e.g., 26 for a network with parameters
	��L � and

h �  �\5Y5�� � ) for encoding will not improve the
maximum allowable network utilization.



7V. NETWORK OF DYNAMIC EARLIEST TIME FIRST

SCHEDULERS

So far we have seen that by including additional con-
trol information in the packet header and adding sophisti-
cation/complexity at network schedulers, the class of SETF
packet scheduling algorithms improve upon the maximum al-
lowable network utilization and worst-case edge-to-edge de-
lay bounds of the simple FIFO packet scheduling algorithm.
This performance improvement comes essentially from the
ability of an SETF scheduler to limit the effect of “newer”
packets on “older” packets. However, the provisioning power
of SETF packet scheduling algorithms is still rather limited
as shown earlier. In this section we devise another class of
aggregate packet scheduling algorithms—the class of DETF
algorithms—which, with further “sophistication/complexity”
added at the schedulers, achieve far superior performance.

In the general definition of a DETF packet scheduling algo-
rithm, we use two parameters: the time granularity � and the
(packet) time stamp increment hop count W � . Note that unlike
SETF where W � is determined by � , here W � is independent of
� . Hence we denote a DETF scheduler by DETF( � $[W � ). In
the following, we will present the definition of DETF( 5J$ W � )
first, i.e., DETF with the finest time granularity. The general
definition of DETF( ��$[W�� ) will be given afterwards.

As in the case of SETF(0), the time stamp of a packet in
a network of DETF( 5J$[W�� ) schedulers is represented precisely.
In particular, it is initialized at the network edge with the time
the packet is released into the network. Unlike SETF(0), how-
ever, the time stamp of the packet will be updated every W �
hops (see Figure 7). Formally, suppose packet V traverses a
path of W hops. Let  _� denote the time stamp of packet V as
it is released into the network, i.e., �_�  ^�_ d . Let �  � ee ��� .
For �� �Y$[ZJ$ B\B=B $ � �� , the time stamp of packet V is updated
after it has traversed the �JW�� th hop on its path (or as it enters
the ���JW � + ��� th hop on its path). Let  _ � denote the packet time
stamp of packet V after its � th update. The packet time stamp
 _� is updated using the following update rule:

 _ ���   _� � d +
	 � $ �� �%$ B\B=B $ �  � , (24)

where the parameter 	 � � 5 is referred as the (packet) time
stamp increment. We impose the following condition on 	 �
that relates the packet time stamp �_� to the actual time packetV departs the �JW�� th hop: for �� �Y$ B=B=B $ �  � ,

`a_� e � :  _ � $ and `#_e :  _ � �   _� � d +�	 � B (25)

This condition on 	 � is referred to as the reality check condi-
tion. Intuitively, we can think of the path of packet V being
partitioned into � segments of W � hops each (except for the
last segment, which may be shorter than W � hops). The reality
check condition (25) ensures that the packet time stamp car-
ried by packet V after it has traversed � segments is not smaller
that the actual time it takes to traverse those segments. In the
next section we will see that the reality check condition (25)
and the packet time stamp update rule (24) are essential in
establishing the performance bounds for a network of DETF
schedulers.

We now present the definition for the general DETF( ��$[W � )
packet scheduling algorithm with a (coarser) time granular-
ity � � 5 . As in the case of SETF( � ), in a network of
DETF( ��$[W � ) schedulers, the time is divided into time slots
of � units: / ���  ������$���� �0$��  �%$[ZJ$ B=B\B , and all packet
time stamps are represented using the time slots. In partic-
ular, if packet V is released into the network in the time slot/ ���  ����� $���� � , then  _� ���� . We also require that the packet
time stamp increment 	 � be a multiple of � . Hence the packet
time stamp  _� is always a multiple of � . In practice, we can
encode  _� as the corresponding time slot number (as in the
case of SETF( � )).

A. Performance Bounds for a Network of DETF Schedulers

In this section we establish performance bounds for a
network of DETF schedulers. Consider a network of
DETF( ��$[W � ) schedulers, where �i4;5 and �Q:EW��C: 	�� . We
first establish an important lemma which bounds the amount
of traffic carried by packets at a DETF( � $[W � ) scheduler whose
time stamp values fall within a given time interval. Consider
a DETF( � $[W�� ) scheduler � . Given a time interval / -J$*)K2 , let

be the set of packets that traverse � at some time whose
time stamp values fall within / -a$*)K2 . Namely, V��  if and
only if for some �g �Y$[ZJ$ B\B=B $ � $ , � is on the � th segment of
packet V ’s path, and -i:	 _ � � d :N) . For any V
�  , we say

that packet V virtually arrives at � during / -J$*)K2 . Let �( � �!-J$*) �
denote the total amount of traffic virtually arriving at � dur-
ing / -a$*)K2 , i.e., total amount of traffic carried by packets in


.

Then we have the following bound on �( � �M-J$') � .
Lemma 10: Consider an arbitrary scheduler � with capac-

ity
�

in a network of DETF( ��$[W � ) schedulers. For any time
interval / -J$')K2 , let �( �!-J$*) � be defined as above. Then

�( �!-J$*) � :;D � + � � �!)�S- + ��� B (26)
Note that if �I�5 , the bound on �( �M-a$*) � is exactly the same
as the edge traffic provisioning condition (2). Intuitively, (26)
means that using the (dynamic) packet time stamp with the
finest time granularity, the amount of traffic virtually arriving
at � during / -J$*)K2 is bounded in a manner as if the traffic were
re-shaped at � using (2). In the general case where a coarser
time granularity � �65 is used, an extra � � � amount of traffic
may (virtually) arrive at � , as opposed to (2) at the network
edge.

From Lemma 10, we can derive a recursive relation for  _ � ’s
using a similar argument as used before. Based on this re-
cursive relation, we can establish performance bounds for a
network of DETF( � $[W�� ) schedulers. The general results are
somewhat “messy” to state. For brevity, in the following we
present results for two special but representative cases—a net-
work of DETF(0,1) schedulers and a network of DETF( � $ � ).
For the networks of DETF( ��$[W � ), � �85J$ W � � � , see [11].

Theorem 11 (A Network of DETF(0,1) Schedulers) Con-
sider a network of DETF(0,1) schedulers3 with a network di-
�
Note that a DETF(0,1) scheduler is a special case of the Virtual-

Time Earliest-Deadline-First (VT-EDF) packet scheduling algorithm pro-
posed in [10] under the virtual time reference system framework, where the
delay parameter for all flows is set to � . . In general, regarding the per-hop
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Fig. 7. Updating packet time
stamps inside the network
core.
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ameter 	 � . Let 	 � �DO+E� , then the reality condition (25)
holds. Furthermore, for any 5 � � � � , the worst-case
edge-to-edge delay

h � is bounded above by
h � : 	�� 	 ��

	�� �MD +8� � .
Theorem 12 (A Network of DETF( � $ � ) Schedulers) Con-

sider a network of DETF( � $ � ) schedulers with a network di-
ameter 	�� , where � � 5 . Let 	 �7 � � � � +ID +R� � � � � � ,
then the reality condition (25) holds. Furthermore, for any5 � ��� � , the worst-case edge-to-edge delay

h � is bounded
above by

h �Q: 	�� 	 ��+ � .
From Theorem 11 and Theorem 12, we see that with W � 

� , the worst-case edge-to-edge delay bound is linear in the net-
work diameter 	�� . Furthermore, with the finest time granular-
ity, the worst-case edge-to-edge delay bound is independent of
the network utilization level � . This is because the per-hop de-
lay is bounded by 	 � ID�+�� . With a coarser time granularity
� �65 , per-hop delay is bounded by 	 �L � � � ��+QD�+�� � � � � � ,
where the network utilization level determines the “additional
delay” ( � � ) that a packet may experience at each hop.

B. Packet State Encoding

First consider a network of DETF(0,1) schedulers with a
network diameter 	�� . As in the case of SETF(0), we use �
to denote the finest time granularity necessary to represent the
packet time stamps, i.e., �, ��� � � , where

� � is the maximum
link capacity of the network. From Theorem 11, we see that
the number of bits � that is needed to encode the (dynamic)
packet time stamps precisely must satisfy the following con-
dition:

Z � � d � 4 	 � �!D +.� �
$ or

� 4 ����� � 	 � + ����� �Y/ �MD +8� � ���M2 + � B
Now consider a network of DETF( ��$ � ) with a coarser time
granularity � �;5 . From Theorem 12, for a given network uti-
lization level � , we see that the number of bits � that is needed
to encode the (dynamic) packet time stamps must satisfy the
following condition:

Z � � d � 4 	 � �
� � +UD +.�

� � � + � $ or

scheduling behavior, DETF is close to a special case of SCED+ by Cruz [5].
However, SCED+ only considers discrete time and does not study the effect
of number of bits available for packet state encoding on the performance of a
network.

� 4 � � � � � 	 � �
� � + D +8�

� � + � � + � B (27)

Hence for a given network utilization level � , coarser time
granularity (i.e., larger � ) in general leads to fewer bits needed
to encode the dynamic packet time stamps. However, due to
the ceiling operation in (27), at least ����� � � 	��a+�� � +�� bits are
needed. This effectively places a bound on the range of time
granularities that should be used, i.e., � � / 5J$��MD +Q� � ��� �  � � 2 .
Any coarser time granularity � � �!DO+6� � � � �  � � will not
reduce the minimum number of bits, ����� � � 	���+ � � + � , needed
for packet time stamp encoding.

C. Performance Trade-offs and Provisioning Power of Aggre-
gate Packet Scheduling

In this section we use numerical examples to demonstrate
the performance trade-offs in the design of DETF networks.
By comparing the performance of FIFO, SETF and DETF net-
works, we also illustrate the provisioning power of the aggre-
gate scheduling algorithms in support of guaranteed delay ser-
vice. Lastly, we briefly touch on the issue of complexity/cost
in implementing the aggregate scheduling algorithms. The
network setting for all the studies is the same as before. The
network diameter 	�� and the network utilization level � will
be varied in different studies.

In the first set of numerical examples, we illustrate the rela-
tionship between the network utilization level � and the worst-
case edge-to-edge delay bound for networks employing vari-
ous aggregate packet scheduling algorithms. The results are
shown in Figure 8, where 	�� *� is used for all the networks.
For the SETF( � ) network, we choose �. ZY�  5 B �	� � (i.e.,W �U Z ). For the DETF( � $ � ) network, we set �  
���� .
From the figure we see that the DETF(0,1) network has the
best worst-case edge-to-edge delay bound. Despite a relatively
coarser time granularity, the delay bound for the DETF( � $ � )
network is fairly close to that of the DETF(0,1) network. In
addition, when the network utilization level is larger than 0.2,
the DETF( � $ � ) network also has a better delay bound than
the rest of the networks. The delay bound of the DETF( � $ Z )
network is worse than that of the SETF(0) network (with the
finest time granularity), but is considerably better than those
of the SETF( � ) and FIFO networks. From this example, we
see that the DETF networks in general have far better delay
performance than those of SETF and FIFO networks.



9In the next set of numerical examples, we compare the pro-
visioning power of the various aggregate packet scheduling
algorithms. In particular, we consider the following provision-
ing problem: given a network employing a certain aggregate
packet scheduling algorithm, what is the maximum allowable
network utilization level we can attain in order to meet a tar-
get worst-case edge-to-edge delay bound? In this study, we
allow networks employing different aggregate packet schedul-
ing algorithms to use different number bits for packet state
encoding. More specifically, the FIFO network needs no addi-
tional bits. The SETF( � ) network (where � is chosen such thatW �  � ) uses ZY5 additional bits for time stamp encoding. The
number of additional bits used by the DETF( ��$[Z ) network is 5.
For the DETF( � $ ��� networks, we consider two cases: one uses�

additional bits, while the other uses � bits. All the networks
used in these studies have the same diameter 	�� *� . Figure 9
shows the maximum allowable network utilization level as a
function of the target worst-case edge-to-edge delay bound for
the various networks. The results clearly demonstrate the per-
formance advantage of the DETF networks. In particular, with
a few number of bits needed for packet state encoding, the
DETF( � $ � ) networks can attain much higher network utiliza-
tion level, while supporting the same worst-case edge-to-edge
delay bound.

In the last set of numerical examples, we focus on the
DETF( � $ � ) networks only. In this study, we investigate the
design and performance trade-offs in employing DETF( � $ � )
networks to support guaranteed delay service. In Figure 10 we
show, for a network of diameter 	 �  � , how the number of
bits available for packet state encoding affects the maximum
network utilization level so as to support a given target worst-
case edge-to-edge delay bound. From these results we see
that with relatively a few number of bits, a DETF network can
achieve fairly decent or good network utilization while meet-
ing the target worst-case edge-to-edge delay bound. In par-
ticular, with the target worst-case edge-to-edge delay boundsZ�5%5 ��� and 
�5%5 � � , we can achieve more than 
Y5 � (and up
to �\5Y5�� ) network utilization level using only 6 to 7 additional
bits.

We conclude this section by briefly touching on the is-
sue of cost/complexity in implementing the aggregate packet
scheduling algorithms. Besides the fact that additional bits are
needed for packet state encoding, both the SETF and DETF
packet scheduling algorithms require comparing packet time
stamps and sorting packets accordingly. With the finest time
granularity, this sorting operation can be expensive. How-
ever, with only a few bits used for packet time stamp en-
coding, sorting can be avoided by implementing a “calen-
dar queue” (or rotating priority queue [8]) with a number of
FIFO queues. This particularly favors the DETF( � $ � ) packet
scheduling algorithms, since the number of bits needed for
time stamp encoding can be kept small. However, compared to
SETF, DETF( � $ � ) packet scheduling algorithms require up-
dating packet time stamps at every router, and thus 	 � must be
configured at each router. Lastly, in terms of finding additional
bits for packet state encoding, we can re-use certain bits in the
IP header [9]. This is the case in our prototype implementa-

tion using the IP-IP tunneling technique, where we re-use the
IP identification field (16 bits) in the encapsulating IP header
to encode the packet time stamp.

VI. CONCLUSIONS

In this paper we investigated the fundamental trade-offs in
aggregate packet scheduling for support of (worst-case) guar-
anteed delay service. Based on a novel analytic approach
that focuses on network-wide performance issues, we stud-
ied the relationships between the worst-case edge-to-edge de-
lay, the maximum allowable network utilization level and
the “sophistication/complexity” of aggregate packet schedul-
ing employed by a network. We designed two new classes
of aggregate packet scheduling algorithms—the static earli-
est time first (SETF) and dynamic earliest time first (DETF)
algorithms—both of which employ additional timing informa-
tion carried in the packet header for packet scheduling, but dif-
fer in their manipulation of the packet time stamps. Using the
SETF and DETF as well as the simple FIFO packet schedul-
ing algorithms, we demonstrated that with additional control
information carried in the packet header and added “sophisti-
cation/complexity” at network schedulers, both the maximum
allowable network utilization level and the worst-case edge-
to-edge delay bound can be significantly improved. We fur-
ther investigated the impact of the number of bits available for
packet state encoding on the performance trade-offs as well as
the provisioning power of these aggregate packet scheduling
algorithms.
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