
FRR: a Proportional and Worst-Case Fair Round
Robin Scheduler

Xin Yuan and Zhenhai Duan
Department of Computer Science

Florida State University
Tallahassee, FL 32306

Email: {xyuan, duan}@cs.fsu.edu

Abstract— In this paper, we propose an O(1) complexity
round robin scheduler, called Fair Round Robin (FRR), that
provides good fairness and delay properties. Unlike existing O(1)
complexity round robin schedulers that can only achieve long
term fairness, FRR not only provides proportional fairness, but
also maintains a constant normalized worst-case fair index as
defined in Bennett and Zhang’s work. This means that FRR
guarantees both short term and long term fairness among all
backlogged flows.

Index Terms— System design, Deterministic network calculus

I. INTRODUCTION

Packet scheduling has been extensively studied in the last
decade due to its importance in the provision of Quality of
Service (QoS) guarantees in data networks. An ideal packet
scheduler should have the following three properties. First, to
be used in high speed networks, the scheduler should have a
low complexity, preferably O(1). Second, the scheduler should
incur a bounded delay for each packet that reaches the head of
the queue for a flow in order for the scheduler to support QoS
guarantees. Last, the scheduler must provide fairness among
the flows competing for the shared link so that each flow can
get its fair share of the bandwidth.

While complexity and delay are well defined, the fairness of
a scheduler needs further elaboration. Detailed discussion on
this subject can be found in [8]. In this paper, we will use two
well established fairness criteria, the worst-case fairness that
was defined by Bennett and Zhang in [2] and the proportional
fairness that was defined by Golestani in [5]. A scheduler, s,
is worst-case fair to flow fi if and only if the delay of a packet
arriving at t on flow fi is bounded by Qi,s(t)

ri
+ Ci,s, where

Qi,s(t) is the queue size of fi at t, ri is the guaranteed rate of
fi, and Ci,s is a constant independent of the queues of other
flows. A scheduler is worst-case fair if it is worst-case fair to
all flows in the system. If a scheduler, s, is worst-case fair,
the fairness of the scheduler is measured by the normalized
worst-case fair index [2]. Let R be the total link bandwidth.
The normalized worst-case fair index for the scheduler, cs, is
defined as cs = maxi{

riCi,s

R
}.

Let Si,s(t1, t2) be the amount of data of flow fi sent during
time period [t1, t2). For any two flows fi and fj that are
backlogged during any time period [t1, t2), the proportional

This work is partially supported by NSF grants ANI-0106706, CCR-
0208892, and CCF-0342540.

fairness requires the difference between the normalized service
received by the two flows, |

Si,s(t1,t2)
ri

−
Sj,s(t1,t2)

rj
|, to be

bounded by a small constant.

Essentially, worst-case fairness requires the guaranteed rates
of all flows in the system to be enforced at all time within
a small error margin, while proportional fairness requires
bandwidths allocated to any two backlogged flows to be
proportional to their weights (guaranteed rates) at all time
within a small error margin. To achieve both long term and
short term fairness, a packet scheduler should provide both
worst-case fairness and proportional fairness.

Existing scheduling algorithms can be classified into two
types, timestamp based approaches [1], [2], [4], [5], [10] and
round-robin algorithms [6], [7], [11], [15]. Timestamp based
approaches have good bounded delay and fairness properties
with a relatively high complexity, O(log N), where N is the
number of flows in the system. The implementation of times-
tamp based algorithms in high speed networks is problematic
due to the logarithmic complexity. Round-robin algorithms
have an O(1) complexity, but in general do not have good
bounded delay and fairness properties. For example, none
of the existing round-robin schemes can achieve a constant
normalized worst-case fair index.

In this paper, we propose a new packet scheduling scheme,
called Fair Round-Robin (FRR). FRR combines the ideas
in timestamp based approaches and round-robin algorithms. It
maintains an O(1) per packet scheduling complexity in that
the complexity is independent of the number of flows in the
system. FRR has the desired properties of an ideal packet
scheduler: an O(1) per packet processing complexity, a strict
rate-proportional delay bound; and proportional and worst-case
fairness for flows that are continuously backlogged.

The rest of the paper is structured as follows. Section II
presents related work. Section III introduces the background of
this work. Section IV describes FRR. Section V discusses the
QoS properties of FRR. Section VI reports the results of the
simulation study of FRR. In the study, FRR is compared with
other representative packet scheduling algorithms including
Weighted Fair Queueing [10], Smoothed Round Robin [6], and
Stratified Round Robin [11]. Finally, Section VII concludes the
paper.

II. RELATED WORK

Packet scheduling has been studied extensively and many
scheduling algorithms have been proposed. Existing sched-
ulers either use a timestamp based approach [1], [2], [4], [5],
[10], [16], [19] or are round-robin algorithms [3], [6], [7],
[11], [15].

Some timestamp based schedulers, such as Weighted Fair
Queuing (WFQ) [10] and Worst-case Fair Weighted Fair
Queuing (WF 2Q) [1], [2], closely approximate the General-
ized Processor Sharing (GPS) [4], [10], which is an unrealistic
algorithm that achieves perfect fairness and isolation among all
flows. These schedulers compute a timestamp for each packet
by emulating the progress of a reference GPS server and
transmit packets in the increasing order of their timestamps.
Both WFQ and WF 2Q have an O(1) GPS-relative delay
[17], that is, for each packet p, F p

WFQ−F p
GPS ≤ c1 ∗

LM

R
and

F p

WF 2Q
−F p

GPS ≤ c2∗
LM

R
, where F p

s is the time when packet
p finishes service under scheduler s, LM is the maximum
packet size, R is the link bandwidth, and c1 and c2 are two
constants. It has been shown in [17] that the lower bound
computational complexity of any scheduling algorithm that
guarantees an O(1) GPS-relative delay bound is Ω(log N),
where N is the number of flows in the system. Fortunately,
having an O(1) GPS-relative delay is not necessary for a
scheduler to achieve worst-case and proportional fairness and,
as will be shown in this paper, designing an O(1) complexity
scheduler that is worst-case and proportional fair is possible.
Note that having an O(1) GPS-relative delay is not sufficient
for a scheduler to have a constant normalized worst-case fair
index. For example, as shown in [2], WFQ does not have a
constant normalized worst-case fair index.

Other timestamp based approaches, such as Self-Clocked
Fair Queuing (SCFQ) [5] and Virtual Clock [19], compute
timestamps without referring to a reference GPS server.
These methods still need to sort packets according to their
timestamps and still have an O(log N) per packet processing
complexity. The Leap Forward Virtual Clock [16] reduces the
sorting complexity by coarsening timestamp values and has an
O(loglog N) complexity. This scheme requires complex data
structures and is not suitable for hardware implementation.

Round-robin schedulers serve backlogged flows in some
kind of round-robin fashion and have an O(1) per packet pro-
cessing complexity. To achieve fairness with different packet
sizes, the Deficit Round Robin (DRR) scheme [15] augments
the traditional round robin algorithm with a deficit counter and
a quantum for each flow. A number of methods have recently
been proposed to improve delay and burstiness properties
of DRR [6], [7], [11]. The Smoothed Round Robin (SRR)
scheme [6] improves the delay and burstiness properties by
spreading the data of a flow to be transmitted in a round
over the entire round using a weight spread sequence. Aliquem
[7] allows the quantum of a flow to be scaled down, which
results in better delay and burstiness properties. Both SRR and
Aliquem improve the average packet delay over DRR, how-
ever, the worst-case single packet delay bound is proportional

N the number of flows in the system
n the number of classes in the system
R total link bandwidth
ri guaranteed bandwidth for flow fi

wi = ri
R

the weight associated with flow fi

lM maximum packet size
Si,s(t1 , t2) the amount of work received by session i

during [t1, t2) under the s server
Si,s(t) the amount of work received by session i

during [0, t) under the s server
F k

i,s
the departure time of the kth packet of
flow fi under the s server

F
p
s the departure time of packet p under

the s server
Qi,s(t) the queue size of flow fi at time t under

the s server
pk

i
the kth packet on flow fi

TABLE I

NOTATION USED IN THIS PAPER

to the number of flows in the system. Like SRR, the Stratified
Round Robin [11] scheme also tries to spread the data of a
flow by using a deadline based scheduling scheme to ensure
that all flows get their fair share of slots. Stratified Round
Robin enjoys a single packet delay bound that is related to the
guaranteed rate of the flow and is independent of the number
of flows in the system. Bin Sort Fair Queuing (BSFQ) [3] uses
an approximate bin sort mechanism to schedule packets. Each
packet is assigned a timestamp (deadline). Packets are roughly
sorted by placing them into bins according to their timestamps.
No sorting of packets is performed within each bin. The worst-
case single packet delay of BSFQ is proportional to the number
of flows. Hybrid scheduling schemes [12], [13] have also been
proposed, where the scheduling tasks are separated into two
levels. While the algorithm components of these schemes are
similar to those of FRR, the QoS properties of these schemes
are not clear.

None of existing round-robin schemes has a constant nor-
malized worst-cast fair index. To the best of our knowledge,
our proposed scheme, FRR, is the first O(1) time scheduler
that has a constant normalized worst-cast fair index.

III. PRELIMINARIES

Major notations used in this paper are summarized in
Table I. There are N flows f1, f2, ..., fN sharing a link of
bandwidth R. Each flow fi has a minimum guaranteed rate of
ri. We will assume that

∑N

i=1 ri ≤ R. The weight wi of flow
fi is defined as its guaranteed rate normalized with respect to
the total rate of the link, i.e.,

wi =
ri

R
.

Thus, we have
∑N

i=1 wi ≤ 1. A scheduler determines the
order of the packets to be served (transmitted), and thus, the
bandwidth allocation for each flow. For example, using GPS,
the bandwidth allocated to flow fi is wi∑

fj is backlogged
wj

R ≥ ri.

A. Deficit Round Robin

Since the proposed scheduler, FRR, is built over Deficit
Round Robin (DRR) [15], we will briefly describe DRR and
present some properties of DRR that are needed to understand
the properties of FRR.

Like the ordinary round robin scheme, DRR works in
rounds. Within each round, each backlogged flow has an
opportunity to send packets. Each flow fi is associated with
a quantity quantumi and a variable deficitcounteri. The
quantity quantumi is assigned based on the guaranteed rate
for fi and specifies the target amount of data that fi should
send in each round. However, since the scheduler operates in
a packet-by-packet fashion, fi may not be able to send exactly
quantumi bytes in a round. The variable deficitcounteri is
introduced to record the quantum that is not used in a round
so that the unused quantum can be passed to the next round.
To ensure that each flow can send at least one packet in a
round, in this paper, we will assume that quantumi is larger
than the maximum packet size, that is,

quantumi ≥ LM .

More details about DRR can be found in [15]. Some proper-
ties of DRR are summarized in the following lemmas. Due to
the page limit constraint, we omit the proofs of these lemmas
and some other lemmas and theorems in the later of this paper.
The proofs of all lemmas and theorems are available online in
the technical report version of this paper [18].
Lemma 1: Assuming that flow fi is continuously backlogged
during [t1, t2). Let X be the smallest number of continuous
DRR rounds that completely enclose [t1, t2). The service
received by fi during this period, Si,DRR(t1, t2), is given by

(X − 3)quantumi ≤ Si,DRR(t1, t2) ≤ (X + 1)quantumi.

Proof: See [18]. 2

Lemma 2: Let f1, ..., fN be the N flows in the system
with guaranteed rates r1, ...,rN .

∑N
i=1 ri ≤ R. Let rmin =

mini{ri} and rmax = maxi{ri}. Assume that there exists a
constant C such that rmax ≤ C ∗ rmin, and that DRR is
used to schedule the flows with quantumi = LM ∗ ri

rmin
. The

following statements are true.

1) Let packet p arrive at the head of the queue for fi at
time t. There exists a constant c1 such that packet p will
be serviced before t + c1 ×

LM

ri
.

2) The normalized worst-case fair index of DRR in such
a system is a constant.

3) Let fi and fj be continuously backlogged during any
given time period [t1, t2), there exists two constants c1

and c2 such that the normalized service received by the
two flows during this period is bounded by

|
Si,DRR(t1, t2)

ri

−
Sj,DRR(t1, t2)

rj

| ≤ c1
LM

ri

+ c2
LM

rj

Proof: See [18]. 2

Lemma 2 shows that when the weights of the flows in the
system are similar (within a constant factor), DRR has the

following three properties. First, the worst-case single packet
delay depends on the guaranteed rate for the flow and is inde-
pendent of the number of flows in the system. Second, DRR
has a constant normalized worst-case fair index, which means
that DRR can guarantee short term worst-case bandwidth to
all flows. Third, DRR provides proportional fairness. Thus,
DRR is an excellent scheduler when the weights of flows are
similar. The problem with DRR is that when the weights of
the flows differ significantly, which is common in practice, the
three properties do not hold simultaneously. In particular, with
DRR, flows with large weights can be significantly affected
by many flows with small weights both in terms of packet
delay and short term bandwidth allocation.

Fair Round Robin (FRR), our proposed scheduler, extends
DRR such that the three quality of service properties hold
for any weight distribution, while maintaining an O(1) com-
plexity. The basic idea is as follows. FRR groups flows with
similar weights into classes and uses a variation of DRR to
schedule packets within each class. As shown in Lemma 2,
DRR can achieve good QoS properties for flows in each class.
Thus, the challenge is to isolate the classes so that flows in
different classes, which are flows with significantly different
weights, do not affect each other too much. FRR uses a
timestamp based scheduler to isolate the classes. As a result,
FRR schedules packets in two levels, a timestamp based inter-
class scheduling and a DRR based intra-class scheduling.
Since multiple flows are grouped in each class, the weight
assigned to a class may change dynamically to reflect the
number of active flows in the class. Traditional timestamp
based approaches either cannot be directly applied or do
not support provable QoS properties when weights of flows
can change dynamically. A new timestamp based scheduler
is developed to closely approximate GPS with dynamically
changing weights.

IV. FRR: A FAIR ROUND ROBIN SCHEDULER

In this section, we will describe FRR, a proportional and
worst-case fair round robin scheduler. Like the stratified round
robin scheme [11], FRR groups flows into a number of classes
with each class containing flows with similar weights. For
k ≥ 1, class Fk is defined as

Fk = {fi :
1

Ck
≤ wi <

1

Ck−1
},

where C is a constant. Let r be the smallest unit of bandwidth
that can be allocated to a flow. The number of classes is
n = dlogC(R

r
)e. Consider an example where R = 1Tbps,

r = 1kbps, C = 8. n = dlog8(109)e = 10. Thus, only
10 classes are needed for this case. When C = 2, n =
dlog2(109)e = 30. These examples show that the number of
classes to be maintained is small in practical cases. In the rest
of this paper, we will assume that the number of classes, n, is
a small constant. Notice that n is related only to R, r, and C
and is independent of N . Thus, even in theory, n is an O(1)
constant with respect to N , the number of flows in system.

FRR has two scheduling components, an intra-class
scheduling that determines the order of the packets within each

class and the weight of the class, and an inter-class scheduling
that determines the class, and thus, the packet within the class,
to be transmitted over the link. Next, we will describe these
two components.

A. Inter-class scheduling

As discussed earlier, the inter-class scheduler, which is
designed to isolate classes, is a timestamp based scheduler.
Since multiple flows are grouped into each class, the rate
allocated to a class may need to be changed at different times
so that each flow within a class can have its fair share of
bandwidth. Thus, the inter-class scheduler should be able to
handle the dynamically changing weights and achieve fair
sharing of bandwidth in the presence of the dynamically
changing weights. Note that while GPS achieves fair sharing
of bandwidth when the weights of classes change dynamically,
none of the existing timestamp based schemes, which closely
approximate GPS when the weights of flows do not change,
can closely approximate GPS when the weights change
dynamically. We develop a new scheme called Dynamic
Weight Worst-case Fair weighted Fair Queuing (DW 2F 2Q).
DW 2F 2Q has the same scheduling result as WF 2Q [2] when
the weights do not change. Theorems presented later in this
section show that, when the number of classes is a small
constant, DW 2F 2Q closely approximates GPS with dynamic
weights. Next, we will first discuss how to keep track of
GPS progress when the weights change dynamically and then
describe how packets are scheduled by DW 2F 2Q.

Let us denote an event in the system the following: (1) the
arrival of a packet to the GPS server, (2) the departure of a
packet from the GPS server, and (3) the weight change of a
class. Let tj be the time at which the jth event occurs. Let the
time of the first arrival of a busy period be denoted as t1 = 0.
For each j = 2, 3, ..., the set of classes that are busy in the
interval [tj−1, tj) is denoted as Bj−1. Let us denote wi,j−1

the weight for class i during the interval [tj−1, tj), which is
a fixed value. The GPS progress of class i during the time
interval [tj−1, tj−1 + τ), where 0 < τ ≤ tj − tj−1, is

Si,GPS(t1) = 0

Si,GPS(tj−1 + τ) = Si,GPS(tj−1) +
wi,j−1∑

k∈Bj−1
wk,j−1

× R × τ

DW 2F 2Q keeps track of the GPS progress of all the classes
using the above formula. Notice that for each event, the GPS
progress of all classes may need to be updated. The per event
computational complexity is O(n), where n is the number of
classes, which is a small constant in FRR. Thus, assuming
that weight change is less frequent than packet arrival, which
is true in FRR, the per packet computational complexity for
maintaining GPS progress is O(n) = O(1). Since DW 2F 2Q
schedules packets only at packet boundaries (packet arrivals
and departures), it is sufficient to maintain accurate GPS
progress at packet boundaries.

In addition to keeping track of GPS progress, DW 2F 2Q
also records the amount of data of each class that have been
serviced. Assume that the server needs to decide the next
packet at time tj . Let sizei(tj) be the size of the packet at the

head of class i at time tj , Si,GPS(tj) be the amount of data
of session i served under GPS, and Si,DW 2F 2Q(tj) be the
amount of data session i actually served under DW 2F 2Q. The
head of class i is scheduled at tj if and only if the following
two conditions are met:

• Condition 1): Si,GPS(tj) ≥ Si,DW 2F 2Q(tj).
• Condition 2): Let nf(i) be the estimated GPS finishing

time of the head packet of class i, pk
i . For a backlogged

class i, nf(i) is computed as follows. If sizei(tj) +
Si,DW 2F 2Q(tj) > Si,GPS(tj),

nf(i) = tj +
sizei(tj) + Si,DW2F2Q(tj) − Si,GPS(tj)

R × wi,j

.

If sizei(tj) + Si,DW 2F 2Q(tj) ≤ Si,GPS(tj),

nf(i) = F k
i,GPS .

Class i has the smallest estimated GPS finishing time,
nf(i), among all backlogged classes. For classes with the
same nf(i), the class number can be used to break the
tie.

The first condition enforces that DW 2F 2Q does not sched-
ule a packet before the GPS starting time of the packet. This
ensures that DW 2F 2Q can be at most one packet ahead of
GPS. The second condition enforces that packets are ordered
based on the estimated GPS finishing time. The class whose
head packet has the smallest estimated GPS finishing time is
scheduled. In estimating the GPS finishing time, there are two
cases. The first case is when the packet has not departed under
GPS (sizei(tj)+Si,DW 2F 2Q(tj) > Si,GPS(tj)). In this case,
the finishing time is estimated using the current weight, wi,j .
R × wi,j is the GPS guaranteed rate for weight wi,j . Note
that since the weights of classes can change dynamically, this
estimated GPS finishing time of a packet may be inaccurate.
The second case is when the packet has departed under GPS
(sizei(tj) + Si,DW 2F 2Q(tj) ≤ Si,GPS(tj)). In this case,
the actual GPS departure time, which is the accurate GPS
finishing time, is used as the timestamp. Hence, DW 2F 2Q
uses accurate information to schedule packets that fall behind
GPS and may use inaccurate information to schedule packets
that are ahead of GPS. The complexity to schedule a packet
is O(n), where n is the number of classes, which is a
small constant in FRR. Thus, the per-packet computational
complexity of the inter-class scheduling is O(n) = O(1).
The following sequence of theorems shows some properties
of DW 2F 2Q.
Theorem 1: DW 2F 2Q is work conserving.
Proof: Since GPS is work-conserving, we will prove the the-
orem by showing that DW 2F 2Q has the same idle and busy
periods as GPS. Assuming that DW 2F 2Q and GPS have
different idle and busy periods. Let t be the first occurrence
when GPS and DW 2F 2Q are not in the same state. There
are two cases.

Case 1: GPS is idle and DW 2F 2Q is busy, serving packet
p. Since t is the first occurrence when GPS and DW 2F 2Q
are not in the same state, the amount of data served during
[0, t) must be the same for the two scheduling schemes. Since

p is currently being served under DW 2F 2Q, from condition
1), p must be started before t under GPS. Since GPS is idle
at time t, packet p must finish before t under GPS. Hence,
there must exist a packet q such that q has not been served
under GPS during [0, t) and has been served by DW 2F 2Q
during [0, t). Since GPS is idle at t, packet q should start after
t under GPS, which indicates that q cannot be served under
DW 2F 2Q during [0, t) since condition 1) does not hold. This
is the contradiction.

Case 2: GPS is busy and DW 2F 2Q is idle. Let packets
p1, p2, ..., pi be the packets departed under GPS during [0, t)
and packets cp1, ..., cpj be the packets currently in progress
under GPS. Since GPS is busy, at least one packet is being
serviced at time t. Since DW 2F 2Q is idle at t, all packets
satisfy condition 1) should have been served, that is, packets
p1, p2, ..., pi and cp1, ..., cpj are all served during [0, t) under
DW 2F 2Q. Thus, during [0, t), DW 2F 2Q sends more data
than GPS and t cannot be the first occurrence that GPS and
DW 2F 2Q are not in the same state. 2

Since both GPS and DW 2F 2Q are work-conserving dis-
ciplines, their busy periods coincide. In the rest of the section,
we will consider packet scheduling within one busy period.
Let F k

i,s be the departure time of the kth packet in class i
under server s.
Lemma 3: If F k

i,GPS ≤ F m
j,GPS , F k

i,DW 2F 2Q
< F m+1

j,DW 2F 2Q
.

Proof: Let pl
i be the packet at the head of class i at time t

when pm+1
j is at the head of class j and is eligible to be

transmitted. From Condition 1), t ≥ F m
j,GPS and the estimate

finishing time for packet pm+1
j,DW 2F 2Q

, nf(j) > F m
j,GPS .

If l > k, we have F k
i,DW 2F 2Q < F m+1

j,DW 2F 2Q
and the lemma

is proved. If l ≤ k,

F l
i,GPS < F l+1

i,GPS < ... < F k
i,GPS ≤ F m

j,GPS < nf(j).

Since packets pl
i, pl+1

i ,..., pk
i have departed before time t

under GPS, the actual GPS departing times of the packets
will be assigned as the estimated GPS finishing times of these
packets. Thus, all these packets will have a smaller estimated
GPS finishing time than packet pm+1

j . Since DW 2F 2Q
selects the class with the smallest estimated GPS finishing
time for transmission, all these packets will be transmitted
before pm+1

j . Thus, F k
i,DW 2F 2Q < F m+1

j,DW 2F 2Q
. 2

By allowing classes to change weights dynamically,
DW 2F 2Q may not be able to estimate the GPS departure
time accurately since it cannot predict the future weight
changes. However, Lemma 3 indicates that DW 2F 2Q can at
most introduce one packet difference between any two classes
in comparison to GPS. This leads to the following theory
that states relation of GPS departure time and DW 2F 2Q
departure time. Let F p

s be the time packet p departs under
server s.
Theorem 2: Let n be the number of classes in the system,

F p

DW 2F 2Q
− F p

GPS ≤ (n − 1)
LM

R
.

Proof: Consider any busy period and let the time that it begins
be time zero. Let pk be the kth packet of size sk in the busy

period to depart under GPS. We have

F pk

GPS ≥
s1 + s2 + ... + sk

R

Now consider the departure time of pk under DW 2F 2Q. From
Lemma 3, each class can have at most one packet whose
GPS finishing time is after packet pk and whose DW 2F 2Q
finishing time is before packet pk. Hence, there are at most
n−1 packets (from the n−1 other classes) that depart before
packet pk under DW 2F 2Q and have a GPS finishing time
after F pk

GPS . Let the n − 1 packets be e1, e2, ..., en−1 with
sizes se1, se2, ..., sen−1. All other packets depart before pk

under DW 2F 2Q must have GPS finishing times earlier than
F pk

GPS . We have

F pk

DW 2F 2Q
≤

s1 + ... + sk + se1 + ... + sen−1

R

Thus,

F pk

DW 2F 2Q
− F pk

GPS ≤ (n − 1)
LM

R
.

2

Theorem 2 gives the relative delay bound between GPS
and DW 2F 2Q. The bound is proportional to the number of
classes. Although this bound is in general not a good bound,
when the number of classes in the system is a constant, as
in FRR, this bound is sufficient: the packet departure times
under GPS and DW 2F 2Q differ by at most a constant
number of packets.
Theorem 3: For all time τ and class i,

Si,GPS(0, τ) − Si,DW 2F 2Q(0, τ) ≤ (n − 1) ∗ LM .

Proof: See [18]. 2

Theorem 4: For all time τ and class i,

Si,DW 2F 2Q(0, τ) − Si,GPS(0, τ) ≤ LM .

Proof: Straightforward from Condition 1) of the DW 2F 2Q
scheduling scheme. 2

These theorems establish that DW 2F 2Q closely approxi-
mates GPS for dynamic weights when the number of classes
is a constant: the difference between the total service given
to a particular class for the two scheduling schemes is within
a constant number of packets. Notice that one key point that
makes DW 2F 2Q work in FRR is that the number of classes
in FRR is a small constant.

B. Intra-class scheduling

Since the inter-classes scheduling scheme, DW 2F 2Q,
schedule packets based on the weights of the classes, and since
many flows are grouped into each class, intra-class scheduling
needs to decide (1) the weights used to send packets in a class,
and (2) the order of packets coming from different flows. Note
that intra-class scheduling does not decide the actual time a
packet is serviced. This function is performed by inter-class
scheduling.

As discussed earlier, DRR offers good QoS properties
when it is used to schedule flows with similar weights.
However, naively applying DRR in the intra-class scheduling

variable explanation
deficitcounti the deficit count for flow fi

remaindeficit the sum of quantum not used in
the DRR round

lastingflowlist the flows that last to the next frame
framesize the size of the frame
frameweight the weight for the frame
remainsize size of the part of a packet that

belongs to current frame

TABLE II

MAJOR VARIABLES USED IN THE FRAME CALCULATION ALGORITHM

does not yield a fair scheduler even assuming that the inter-
class scheduler is GPS. In order to obtain a fair scheduler,
the intra-class scheduler must be able to transfer the fairness at
the class level (provided by DW 2F 2Q) to the fairness at the
flow level. In FRR, intra-class scheduling uses a frame based
approach. The packet stream within a class is partitioned into
logical frames with packets in each frame being scheduled
using the same weight. The intra-class scheduling scheme is
called Lookahead Deficit Round Robin with Weight Adjustment
(LDRRWA), a variation of DRR. In LDRRWA, back-
logged flows are served in a round-robin fashion. To offset
the weight differences among the flows in a class, each flow
fi ∈ Fk = {fi : 1

Ck ≤ wi < 1
Ck−1 } is assigned a quantum of

quantumi = CkwiLM .

Since 1
Ck ≤ wi < 1

Ck−1 ,

LM ≤ quantumi < C × LM .

A LDRRWA frame is related to, but different from, a
DRR round. A LDRRWA frame is basically a DRR round
plus some packets that are in the next DRR round and are
moved into the current frame by the lookahead operation.
Each LDRRWA frame, together with its associated weight,
is computed using the algorithm shown in Fig. 1. The major
variables used in the algorithm are summarized in Table II.
Like DRR, variable deficitcounti is associated with flow fi

to maintain the credits to be passed over to the next DRR
round and decide the amount of data to be sent in one round.
After each DRR round, remaindeficit maintains the sum
of the quanta not used in the current DRR round, that is,
the quanta that cannot be used since the size of the next
backlogged packet is larger than the remaining quanta for a
flow. In traditional DRR, these unused quanta will be passed
to the next DRR round. In LDRRWA, in addition to passing
the unused quanta to the next DRR round, some packets that
would be sent in the next DRR round are placed in the current
LDRRWA frame so that at frame boundaries remaindeficit
is always equal to 0. This is the lookahead operation. As will
be shown later, this lookahead operation is the key to ensure
that each frame is properly sized such that long lasting flows
can get their fair share of the bandwidth. The lastingflowlist
contains the list of flows that are backlogged at the end of the
current DRR round. Flows in lastingflowlist are candidates

Algorithm for computing the next frame for class Fk

(1) remaindeficit = framesize = 0
(2) lastingflowlist = NULL
(3) if (remainsize > 0) then

/*The partial packet belongs to this frame */
(4) framesize = framesize + remainsize
(5) end if

/* forming the DRR round */
(6) for each active flow fi do
(7) deficitcounti = deficitcounti + quantumi

(8) while (deficitcounti > 0) and (fi not empty) do
(9) pktsize = size(head(fi))
(10) if (pktsize < deficitcounti) then
(11) remove head from fi and put it in the frame
(12) framesize = framesize + pktsize
(13) deficitcounti = deficitcounti − pktsize
(14) else break
(15) end if
(16) end while
(17) if (fi is empty) then
(18) deficitcounti = 0
(19) else
(20) remaindeficit = remaindeficit + deficitcounti

(21) insert fi to lastingflowlist
(22) end if
(23) end for

/* lookahead operation */
(24) fi = head(lastingflowlist)
(25) while (fi 6= NULL) and (remaindeficit > 0) do
(26) pktsize = size(head(fi))
(27) if (pktsize < remaindeficit) then
(28) remove head from fi and put it in the frame
(29) framesize = framesize + pktsize
(30) remaindeficit = remaindeficit − pktsize
(31) deficitcounti = deficitcounti − pktsize
(32) else break
(33) end if
(34) fi = nextflow(fi)
(35) end while
(36) if (fi 6= NULL) then
(37) pktsize = size(head(fi))
(38) remove head from fi and put it in the frame
(39) framesize = framesize + remaindeficit
(40) remainsize = pktsize − remaindeficit
(41) deficitcounti = deficitcounti − pktsize
(42) end if

/* computing the weight */
(43) weight = totalquantum = 0
(44) for each active flow fi in current frame do
(45) weight = weight + wi

(46) totalquantum = totalquantum + quantumi

(47) end for
(48) frameweight = weight ∗ framesize

totalquantum

(49) if (frameweight < 1

Ck) frameweight = 1

Ck

Fig. 1. The algorithm for computing the next frame for class Fk

to supply packets for the lookahead operation. Frameweight
is the weight to be used by inter-class scheduling for the
current frame. Variable framesize records the size of the
current frame. FRR needs this information to determine when
to invoke the frame computation algorithm to compute the next
frame (and thus, when to change weights for classes). Note
that frame boundaries may not align with packet boundaries
since FRR needs to enforce that remaindeficit = 0 at frame
boundaries. Thus, a packet may belong to two frames (in the
simulated GPS, weight change may happen within a packet).
Variable remainsize is the size of the part of the last packet
in the frame that belongs to the next frame, and thus, should
be counted in the framesize for the next frame. In FRR,
frame is a logical concept that affects only the progress of
the simulated GPS. Thus, not aligning frame boundaries with
packet boundaries does not cause problems in the actual packet
scheduling.

Let us now examine the algorithm in Fig. 1. In the ini-
tialization phase, line (1) to line (5), variables are initialized
and remainsize is added to framesize, which effectively
includes the partial packet in the frame to be computed. After
the initialization, there are three main components in the
algorithm: forming a DRR round, lookahead operation, and
weight calculation. In the first component, line (6) to line (23),
the algorithm puts all packets in the current DRR round that
have not been served into the current frame. In the second
component, line (24) to line (42), the algorithm performs
the lookahead operation by moving some packets in the next
DRR round into the current frame so that remaindeficit =
0 at the frame boundary. This is done by allowing some
flows to borrow credits from the next DRR round. Since
remaindeficit = 0, no credit is passed from one frame to the
next frame for the class that aggregates many flows. Notice that
each backlogged flow can contribute at most one packet in the
lookahead operation. Notice also that a class as a whole does
not pass credits between frames. However, for an individual
flow, credits may still pass from one frame to the next. As
a result, the deficitcounti variable may have a negative or
positive value at frame boundaries.

The last component in the algorithm, line (43) to line (49)
calculates the weight for the frame. As will be proved in the
following lemmas, the weights are assigned such that (1) the
weight for the frame is always less than or equal to the sum of
all weights of the active flows in the frame (Lemma 5) and (2)
the service time for each frame for class Fk is at most CkLM

R

(Lemma 6). Notice that CkLM

R
= Ck∗wi∗LM

wi∗R
= quantumi

ri
.

CkLM

R
is the “standard” time for a flow in Fk to send its

quantum using its guaranteed rate.

The complexity of the algorithm is O(M), where M is the
number of packets in a frame. Hence, the amortised per packet
complexity for frame construction is O(1). This algorithm
is invoked in two occasions: (1) when the class becomes
backlogged (when a packet arrives at an idle class), and (2)
when the current frame is finished under the simulated GPS.
To invoke the algorithm at the time when the current frame is

finished under the simulated GPS, a timer is associated with
each class. The timers record the estimated GPS finishing
times of the current frames. Every time a frame departs or
arrives under GPS, the timers for all classes are updated to
reflect the changing of the GPS progress and the changing
of weights. When a timer expires, the corresponding frame is
finished under GPS and the algorithm is invoked to compute
a new frame. Maintaining the timers results in O(n) = O(1)
per frame overhead. Next, we will prove a sequence of lemmas
that show the properties of LDDRWA.
Lemma 4: Assuming that flow fi is continuously backlogged
during [t1, t2). Let X be the smallest number of contin-
uous LDRRWA frames that completely enclose [t1, t2).
The service received by fi during this period, denoted as
Si,LDRRWA(t1, t2), is given by

(X − 4)quantumi ≤ Si,LDRRWA(t1, t2) ≤ (X + 2)quantumi.

Proof: The notation Si,LDRRWA(t1, t2) is abused in this
lemma since LDRRWA does not decide the actual timing
to service packets. In this lemma, Si,LDRRWA(t1, t2) denotes
the amount of data for a continuously backlogged flow fi in
X continuous LDRRWA frames (of a particular class) using
any inter-class scheduling scheme.

Since fi is continuously backlogged, it will try to send
as many packets as possible in each frame. Since X frames
enclose [t1, t2), flow fi will fully utilize at least X−2 frames
(all but the first frame and the last frame). In the X−2 frames,
(X − 2) × quantumi credits are generated for flow fi. The
lookahead operation in the frame prior to the X−2 frames may
borrow at most one packet, whose size is less than LM , from
fi in the first of the X−2 frames and flow fi in the last of the
X −2 frames may pass at most LM credits to the next frame.
Note that the lookahead operation borrows at most one packet
from each backlogged flow. Note also that, while frames for
a class do not pass credits between each other accumulatively
for all flows in the class, an individual flow may pass credits
across frame boundaries. Thus,

Si,LDRRWA(t1, t2) ≥ (X − 2) × quantumi − LM − LM .

Since quantumi ≥ LM ,

Si,LDRRWA(t1, t2) ≥ (X − 4) × quantumi.

On the other hand, fi will be serviced in at most all the X
frames, which produces X × quantumi credits for fi during
this period of time. Flow fi in the frame prior to the X frames
may have at most LM left-over credits and the lookahead
operation in the last of the X frames may borrow at most
LM credits from fi in the next frame. Thus,

Si,LDRRWA(t1, t2)≤ X × quantumi + LM + LM

≤ (X + 2)quantumi.

2

Comparing Lemma 4 and Lemma 1, we can see the similar-
ity between DRR and LDRRWA. However, as we will show
in the following lemmas, unlike DRR rounds, LDRRWA

frames are always properly sized so that continuously back-
logged flows can obtain their fair shares of the bandwidth.
Lemma 5: The weight for a frame is less than or equal to the
sum of the weights of the active flows in the frame.
Proof: Since no credit is passed between frames, the amount
of data that is allowed to send in one frame is at most the
total quanta of all active flows generated in that frame. Thus,
framesize ≤

∑
fi

quantumi. From line (48) in Figure 1,
frameweight =

∑
fi

wi ∗
framesize∑
fi

quantumi

≤
∑

fi
wi. If the

condition in line (49) is true, frameweight is assigned to
the minimum weight of a flow in the class and thus the same
conclusion holds. 2

For any given time, let cwi, 1 ≤ i ≤ n be the weights for the
n classes (cwi may change over time). Lemma 5 establishes
that

∑n

i=1 cwi ≤
∑N

i=1 wi ≤ 1. Thus, under GPS (with
dynamic weights), the bandwidth allocated to class i is given
by

cwi∑n

i=1 cwi

R ≥ R × cwi.

We will call R× cwi the GPS guaranteed rate since this rate
is guaranteed when the weight for a class is cwi regardless
how other classes change weights.
Lemma 6: Under GPS, the time to service each LDRRWA
frame in class Fk is at most Ck LM

R
.

Proof: Consider first that the condition in line (49) is not true
and the frame weight is computed in line (48) in Fig. 1. In
this case,

frameweight =
∑

fi
wi ∗

framesize∑
fi

quantumi

=
∑

fi
wi ∗

framesize∑
fi

CkwiLM

= framesize
CkLM

Thus, the GPS guaranteed rate for this class is R framesize
CkLM

and the total time to serve this frame is at most

framesize

R framesize

CkLM

=
CkLM

R
.

If the condition in line (49) is true, the weight for the frame
is increased and the conclusion still holds. 2

Lemma 7: Under GPS, the time to service X bytes of data
in the queue for class Fk is at most XCk

R
.

Proof: The minimum weight assigned to a backlogged class
Fk is 1

Ck . Thus, the GPS guaranteed rate for class Fk is at
least R

Ck . Thus, the time to serve a queue of size X bytes in

class Fk is at most X
R

Ck

= XCk

R
. 2

Lemma 8: For a class Fk frame of size no smaller than LM ,
the service time for the frame is exactly Ck LM

R
using the GPS

guaranteed rate.
Proof: When the frame is larger than LM , frameweight =
framesize

CkLM
≥ 1

Ck . Thus, the GPS guaranteed rate for the frame

is R framesize
CkLM

and the service time for the frame with the
guaranteed rate is

framesize

R framesize

CkLM

=
CkLM

R
.

2

Lemma 9: Let a class Fk frame contains packets of a
continuously backlogged flow fi, the size of frame is no
smaller than LM .
Proof: Straight-forward from the fact that no credit is passed
from the previous frame and to the next frame and that
quantumi ≥ LM . 2

Lemma 10: Let fi ∈ Fk and fj ∈ Fm be continuously
backlogged during [t1, t2). k ≥ m. Let Xk and Xm be
the smallest numbers of Fk and Fm frames that completely
enclose [t1, t2). Assume that classes Fk and Fm are serviced
with the GPS guaranteed rate.

(Xk − 1)Ck−m ≤ Xm ≤ XkCk−m + 1.

Proof: Since fi ∈ Fk and fj ∈ Fm are continuously
backlogged during [t1, t2), the sizes of all frames during this
period are no smaller than LM (Lemma 9). From Lemma 8,
using the GPS guaranteed rate, the time to service a class Fk

frame is exactly CkLM

R
and the time for a class Fm frame is

exactly CmLM

R
. Since Xk and Xm are the smallest numbers

of Fk and Fm frames that completely enclose [t1, t2), we have

t2 − t1 ≤ Xk

CkLM

R
≤ t2 − t1 +

CkLM

R

t2 − t1 ≤ Xm

CmLM

R
≤ t2 − t1 +

CmLM

R
.

Hence, (Xk − 1)Ck−m ≤ Xm ≤ XkCk−m + 1. 2

Lemma 11 relaxes the condition in Lemma 10 by not
requiring each class to be serviced with its GPS guaranteed
rate.
Lemma 11: Let fi ∈ Fk and fj ∈ Fm be continuously
backlogged during [t1, t2). k ≥ m. Let Xk and Xm be
the smallest numbers of Fk and Fm frames that completely
enclose [t1, t2). Assume that the inter-class scheduler is GPS.

(Xk − 1)Ck−m ≤ Xm ≤ XkCk−m + 1.

Proof: This lemma relaxes the condition in Lemma 10 by not
requiring each class to be serviced with its GPS guaranteed
rate. Since fi ∈ Fk and fj ∈ Fm be continuously backlogged
during [t1, t2), the sizes of all frames during this period are
no smaller than LM (Lemma 9). Let us partition the duration
[t1, t2) into smaller intervals [a1 = t1, b1), [a2 = b1, b2), ...,
[aY = bY −1, bY = t2) such that within each interval [ah, bh),
1 ≤ h ≤ Y , the weights of all classes are fixed. Let F1, ..., Fn

be the n classes in the system. Let class Fk have weight wh
k

during interval [ah, bh), 1 ≤ h ≤ Y (If Fk is not backlogged,
wh

k = 0). The amount of class Fk data sent during [ah, bh) is
thus,

wh
k∑n

i=1 wh
i

R ∗ (bh − ah).

Consider a reference scheduling system that contains three
classes RFk, RFm, and RFo. Let us use intervals [aa1 =
t1, bb1), [aa2 = bb1, bb2), ..., [aaY = bbY −1, bbY) to emulate
the behavior of classes Fk and Fm during intervals [a1 =
t1, b1), [a2 = b1, b2), ..., [aY = bY −1, bY) respectively. Let
rwh

k be the weight for class RFk during interval [aah, bbh),

1 ≤ h ≤ Y . Let rwh
m be the weight for class RFm during

interval [aah, bbh), 1 ≤ h ≤ Y . Let rwh
o be the weight for

class RFo during interval [aah, bbh), 1 ≤ h ≤ Y . The weights
and the duration of each interval are given as follows:

rwh
k = wh

k , rwh
m = wh

m, rwh
o = 1 − wh

k − wh
m, 1 ≤ h ≤ Y

and
bbh = aah +

bh − ah
∑n

i=1 wh
i

, 1 ≤ h ≤ Y.

It can be verified that the amount of classes RFk and RFm

data sent in an interval [aah, bbh), 1 ≤ h ≤ Y , is exactly
the same as the amount of classes Fk and Fm data sent in
an interval [ah, bh), 1 ≤ h ≤ Y , respectively. In an interval
[aah, bbh), 1 ≤ h ≤ Y , let us further assume that Class RFk

has exactly the same sequence of packets as Class Fk has
in interval [ah, bh) and that Class RFm has exactly the same
sequence of packets as Class Fm has in interval [ah, bh). The
progress of classes Fk and Fm during [t1, t2) is exactly the
same as the progress of class RFk and RFm during [aa1, bbY)

In the reference system, classes RFm and RFk are serviced
with the GPS guaranteed rate during [aa1, bbY). Let RXk and
RXm be the smallest numbers of RFk and RFm frames that
completely enclose [aa1, bbY). From Lemma 10,

(RXk − 1)Ck−m ≤ RXm ≤ RXkCk−m + 1.

Let Xk and Xm be the smallest number of Fk and Fm

frames that completely enclose [t1, t2). Since the progress of
classes Fk and Fm during [t1, t2) is exactly the same as the
progress of class RFk and RFm during [aa1, bbY), we have
Xk = RXk and Xm = RXm. Thus,

(Xk − 1)Ck−m ≤ Xm ≤ XkCk−m + 1.

2

weight=1/2

321

weight=1.01/4
1 2

2

1

Frames Frames

Class FClass F

Class F

Class F

4

321

3f
2f

1f

Fig. 2. An example

In the following, we will use an example to illustrate how
LDRRWA interacts with inter-class scheduling and how it
transfers the fairness at the class level to the flow level. To
simplify the discussion, we will assume that GPS is the inter-
class scheduling algorithm. Consider scheduling for a link with
4 units of bandwidth with the following settings. C = 2 and
there are two classes where F1 = {fi : 1

2 ≤ wi < 1} and
F2 = {fi : 1

4 ≤ wi < 1
2}. Three flows, f1, f2 and f3, with

rates r1 = 2 and r2 = r3 = 1 are in the system. w1 = 1/2,
w2 = 1/4, and w3 = 1/4. Thus, f1 is in F1, and f2 and f3

are in F2. Let L be the maximum packet size. The quantum
for each of the three flows is L. All packets in f1 are of size
L, all packets in f2 are of size 0.99L and all packets in f3

are of size 0.01L. Flows f1 and f2 are always backlogged.
Flow f3 is not always backlogged, its packets arrive in such
a way that exactly one packet arrives before a new frame is
to be formed. Thus, each F2 frame contains one packet from
f3. The example is depicted in Fig. 2. As shown in the figure,
each F1 frame contains exactly one packet from f1. For F2, the
lookahead operation always moves part of the f2 packet in the
next DRR round into the current frame, and thus, the frame
boundaries are not aligned with packet boundaries. Note that
frames from different classes are not aligned. We will shows
how worst-case and proportional fairness for flows f1 and f2

is achieved.
The weight for F1, which is computed using line (48) in

Fig. 1, is always 1/2. For F2, the lookahead operation ensures
that the size of f2 data in a frame is L, and thus, the size of
each F2 frame is L + 0.01L = 1.01L. The weight of F2

is computed using line (48) in Fig. 1. weight = (w2 + w3) ∗
framesize

quantum2+quantum3
= (1

4 + 1
4)∗ 1.01L

2L
= 1.01

4 . Hence, F1 (and

thus f1) is allocated a bandwidth of 4 ∗
1
2

1
2+ 1.01

4

= 8
3.01 > 2.

F2 is allocated a bandwidth of 4 ∗
1.01
4

1
2+ 1.01

4

. For each f2 frame
of size 1.01L, L belongs to f2. Thus, the rate allocated to f2

is 4 ∗
1.01
4

1
2+ 1.01

4

∗ L
1.01L

= 4
3.01 > 1. The rates allocated to f1

and f2 are larger than their guaranteed rates and the worst-
case fairness is honored. Furthermore, the ratio of the rates
allocated to f1 and f2 is equal to

8
3.01
4

3.01

= 2, which is equal
to the ratio of their weights. Thus, the proportional fairness is
also honored. In the next section, we will formally prove that
FRR has worst-case and proportional fairness.

V. PROPERTIES OF FRR

This session analyzes fairness and delay properties of FRR.
We will prove that the three statements in Lemma 2 hold for
FRR with an arbitrary weight distribution.
Theorem 5 (single packet delay bound): Let packet p arrives
at the head of flow fi ∈ Fk at time t. Using FRR, there exists
a constant c1 such that p will depart before t + c1 ∗

LM

ri
.

Proof: If class Fk is idle under GPS at time t, a new frame
that includes packet p will be formed at time t. From Lemma
6, under GPS, the frame will be serviced at most at time
t+Ck LM

R
≤ t+C LM

ri
. Hence, from Theorem 2, the frame will

be serviced under DW 2F 2Q before t+C LM

ri
+(n−1)LM

R
≤

t + (C + n − 1)LM

ri
, where n is the number of classes in the

system. Thus, there exists c1 = C + n − 1 such that packet
departs before t + c1 ∗

LM

ri
.

If class Fk is busy under GPS at time t, packet p will be
included in the frame that is computed the next time the frame
computation algorithm is invoked, which is at the end of the
current frame under consideration by GPS. From Lemma 6,
F p

GPS ≤ t+2∗LMCk

R
≤ t+ 2CLM

ri
. From Theorem 2, the frame

will be serviced under DW 2F 2Q before t + 2C LM

ri
+ (n −

1)LM

R
≤ t+(2C+n−1)LM

ri
. Thus, there exists c1 = 2C+n−1

such that packet p departs before t + c1 ∗
LM

ri
. 2

Theorem 5 shows that like the stratified round robin scheme
[11], FRR also has a worst-case single packet delay bound
that is only related to requested rate of the flow and is
independent of the number of flows in the system. Next, we
will consider the worst-case fairness property of FRR.
Theorem 6 (worst-case fairness): FRR has a constant
normalized worst-case fairness index.
Proof: Let a packet belonging to flow fi ∈ Fk arrive at
time t, creating a total backlog of qi bytes in fi’s queue.
Let packet p1 be the first packet in the backlog. From the
proof of Theorem 5, we have F p1

GPS ≤ t + 2C LM

ri
. After the

first packet is serviced under GPS, from Lemma 4, at most
d qi

quantumi
e + 4 ≤ qi

quantumi
+ 5 frames will be needed to

drain the queue. From Lemma 6, under GPS, servicing the
qi

quantumi
+ 5 frames will take at most

(qi

quantumi
+ 5) ∗ Ck LM

R
= qi

CkwiLM

CkLM

R
+ 5Ck LM

R

≤ qi

ri
+ 5C LM

ri

Thus, under GPS, the queue will be drained before t +
qi

ri
+ 2C LM

ri
+ 5C LM

ri
. From Theorem 2, under DW 2F 2Q,

the queue will be drained before t+ qi

ri
+7C LM

ri
+(n−1)LM

R
.

Thus, there exists a constant d = 7C+n−1 such that the queue
will be drained before t+ qi

ri
+dLM

ri
and the normalized worst-

case fair index for FRR is maxi{
ri∗d

LM
ri

R
} = dLM

R
, which is

a constant. 2

To the best of our knowledge, FRR is the first O(1)
complexity scheduling scheme that has a constant worst-case
fairness index. Next we will consider FRR’s proportional
fairness.
Lemma 12: Assuming that fi ∈ Fk and fj ∈ Fm are
continuously backlogged during [t1, t2), k ≥ m. Assume that
the inter-class scheduler is GPS and the intra-class scheduler
is LDRRWA. Let Si(t1, t2) be the services given to flow fi

during [t1, t2) and Sj(t1, t2) be the services given to flow fj

during [t1, t2). There exists two constants c1 and c2 such that

|
Si(t1, t2)

ri

−
Sj(t1, t2)

rj

| ≤
c1 ∗ LM

ri

+
c2 ∗ LM

rj

.

Proof: Let Xk and Xm be the smallest numbers of Fk and
Fm frames that completely enclose [t1, t2). Since fi and fj

are continuously backlogged during the [t1, t2) period, from
Lemma 4, the services given to fi and fj during this period
satisfy:

(Xk − 4)quantumi ≤ Si(t1, t2) ≤ (Xk + 2)quantumi

and

(Xm − 4)quantumj ≤ Sj(t1, t2) ≤ (Xm + 2)quantumj.

The conclusion follows by manipulating these in-equations
and applying Lemma 11, which gives the relation between Xk

and Xm,

(Xk − 1)Ck−m ≤ Xm ≤ XkCk−m + 1.

In the following, we will derive the bound for Si(t1,t2)
ri

−
Sj(t1,t2)

rj
. We will have the term CON to represent the general

term c1
LM

ri
+ c2

LM

rj
, where c1 and c2 are constants.

Si(t1,t2)
ri

−
Sj(t1,t2)

rj

≤ (Xk+2)quantumi

ri
−

(Xm−4)quantumj

rj

≤ quantumiXk

ri
−

quantumjXm

rj
+ CON

≤ quantumiXk

ri
−

quantumj (Xk−1)Ck−m

rj
+ CON

= quantumiXk

ri
−

quantumj (Xk)Ck−m

rj

+
quantumjCk−m

rj
+ CON

We have quantumjCk−m

rj
=

CmwjLMCk−m

wjR
≤ C∗LM

ri
and

quantumiXk

ri
−

quantumj (Xk)Ck−m

rj

= CkwiLMXk

wiR
−

CmwjLM XkCk−m

wjR
= 0

Thus, Si(t1,t2)
ri

−
Sj(t1,t2)

rj
≤ CON . The bound for Sj(t1,t2)

rj

−Si(t1,t2)
ri

can be derived in a similar fashion. 2

Lemma 12 shows that if GPS is used as the inter-
class scheduling algorithm, the scheduling algorithm provides
proportional fairness. Since DW 2F 2Q approximates GPS,
we will show in the next theorem that FRR, which uses
DW 2F 2Q as the inter-class scheduling algorithm, also sup-
ports proportional fairness.
Theorem 7 (proportional fairness): In any time period
[t1, t2) during which flows fi ∈ Fk and fj ∈ Fm are
continuously backlogged in FRR. There exists two constants
c1 and c2 such that

|
Si,FRR(t1, t2)

ri

−
Sj,FRR(t1, t2)

rj

| ≤
c1 ∗ LM

ri

+
c2 ∗ LM

rj

.

Proof: There are two cases. The first case is when flows fi

and fj are in the same class, that is, k = m. The second
case is when flows fi and fj are not in the same class, that
is, k 6= m. The proof of the first case is similar to the proof
of the statement 3 in Lemma 2. Here, we will focus on the
second case. Let us assume that k > m.

Let packets p1
k, p2

k, ..., pa
k be the sequence of class Fk pack-

ets sent under FRR during [t1, t2). Let packets p1
m, p2

m, ..., pb
m

be the sequence of class Fm packets sent under FRR during
[t1, t2). Since flows fi and fj are continuously backlogged
during [t1, t2), there exists a packet p0

k that departed before
p1

k and pa+1
k that will depart after pa

k. Under the simulated
GPS, there is no idle time between packet p0

k and packet p1
k

and between packet pa
k and packet pa+1

k . Packets p0
m and pb+1

m

are defined similarly.
Consider the progress of these packets under the simulated

GPS. Let Bp
GPS denote the beginning time of packet p

under GPS and F p
GPS denote the finishing time of packet

p under GPS. There are four cases: (1) B
p1

k

GPS ≥ B
p1

m

GPS and

F
pa

k

GPS < F
pb

m

GPS , (2) B
p1

k

GPS ≥ B
p1

m

GPS and F
pa

k

GPS ≥ F
pb

m

GPS , (3)

B
p1

k

GPS < B
p1

m

GPS and F
pa

k

GPS < F
pb

m

GPS , and (4) B
p1

k

GPS < B
p1

m

GPS

and F
pa

k

GPS ≥ F
pb

m

GPS .

S0 N1

S1 S2

R1

R0N2 N3

R2

Fig. 3. Simulated network.

0
10
20
30
40
50
60
70
80
90

0 50 100 150 200 250 300

av
er

ag
e

pa
ck

et
 d

el
ay

 (
m

s)
flow rate (Kbps)

SRR
Stratified RR

FRR
WFQ

Fig. 4. Average end-to-end delay.

 0

 100

 200

 300

 400

 500

 600

 700

 3000 3500 4000 4500 5000 5500 6000 6500 7000

th
ro

ug
hp

ut
 (

K
bp

s)

time (ms)

SRR
Stratified RR

FRR
WFQ

Fig. 5. Short-term throughput

In the next, we will prove case (1). Other three cases can
be proven in a similar fashion. Consider case (1) when

B
p1

k

GPS ≥ B
p1

m

GPS and F
pa

k

GPS < F
pb

m

GPS

Let tt0 = B
p1

m

GPS , tt1 = B
p1

k

GPS , tt2 = F
pa

k

GPS , and tt3 =

F
pb

m

GPS . We have tt0 ≤ tt1 ≤ tt2 ≤ tt3. Let Si,GPS(t1, t2) be
the services that flow fi received during time [t1, t2) in the
simulated GPS. We have

Si,F RR(t1, t2) = Si,GP S(tt1, tt2)

Sj,F RR(t1, t2) = Sj,GP S(tt0, tt1) + Sj,GP S(tt1, tt2) + Sj,GP S(tt2, tt3)

In the simulated GPS system, flows fi and fj are contin-
uously backlogged during [tt1, tt2). From Lemma 12, there
exist two constants cc1 and cc2 such that

|
Si,GP S(tt1, tt2)

ri

−
Sj,GP S(tt1, tt2)

rj

| ≤
cc1 ∗ LM

ri

+
cc2 ∗ LM

rj

.

Thus,

|
Si,F RR(t1,t2)

ri
−

Sj,F RR(t1,t2)

rj
|

≤ |
Si,GP S(tt1 ,tt2)

ri
−

Sj,GP S(tt1,tt2)

rj
| +

Sj,GP S(tt0 ,tt1)

rj
+

Sj,GP S(tt2 ,tt3)

rj

≤
cc1∗LM

ri
+

cc2∗LM
rj

+
Sj,GP S(tt2,tt3)

rj
+

Sj,GP S(tt0,tt1)

rj

Next, we will consider the two terms Sj,GP S(tt0,tt1)
rj

and
Sj,GP S(tt2,tt3)

rj
. First, consider class Fm packets serviced dur-

ing [tt0, tt1). Since all these packets are serviced after packet
p0

k under FRR (DW 2F 2Q as the inter-class scheduler), from
Lemma 3, at most one of the packets can have a GPS finishing
time before F

p0
k

GPS = B
p1

k

GPS = tt1. That is, there can be at
most one class Fm packet finishing during [tt0, tt1). Thus,
in the simulated GPS, at most two class Fm packets can be
serviced during [tt0, tt1) and

Sj,GP S(tt0, tt1)

rj

≤
2LM

rj

.

Now, consider class Fm packets serviced during [tt2, tt3).
Since all these packets are serviced under FRR before packet
pa+1

k , at most one of the packets can have a GPS finishing

time after F
p

a+1
k

GPS . From Lemma 7, the duration of packet pa+1
k

is less than CmLM

R
in the simulated GPS, which is less than

one frame whose size is larger than LM . Let X be the number
of frames for class Fm during this period when pa+1

k is in
progress under GPS. Since fj is continuously backlogged

during this period of time, from Lemma 11, X ≤ Ck−m∗1+1.
Thus, from Lemma 4, during the period that packet pa+1

k is
in progress under GPS, the amount of services given to flow
fj is at most (Ck−m + 1 + 2)quantumj .

Sj,GP S(tt2,tt3)

rj
≤

(Ck−m+1+2)quantumj +LM
rj

=
(Ck−m+3)wj CmLM+LM

wj R
≤

LM Ck

R
+

3LM Cm

R
+

LM
rj

≤ C
LM
ri

+ (3C + 1)
LM
rj

Thus, there exists two constants c1 = cc1 + C and c2 =
cc2 + 2 + 3C + 1 such that

|
Si,F RR(t1, t2)

ri

−
Sj,F RR(t1, t2)

rj

| ≤
c1 ∗ LM

ri

+
c2 ∗ LM

rj

.

2

VI. SIMULATION EXPERIMENTS

In this section, we report the results of our simulation
experiments. These experiments are designed to investigate
FRR properties in practical situations and to compare FRR
with other scheduling disciplines, including Weighted Fair
Queueing (WFQ) and two recently proposed deficit round
robin (DRR) based schemes, Smoothed Round Robin (SRR)
[6] and STratified Round Robin (STRR) [11]. All experiments
are performed using ns-2 [9], to which we added WFQ,
STRR, and FRR queuing classes. While we carried out
extensive simulations, we will only report the results of
two representative experiments, one for end-to-end delay and
the other one for short-term throughput. Fig. 3 shows the
network topology used in the experiments. All the links have
a bandwidth of 2 Mbps and a propagation delay of 1 ms.

The first experiment shows the end-to-end delay for flows
with different rates. In this experiment, there are 10 CBR
flows from S0 to R0 with average rates of 10Kbps, 20Kbps,
40Kbps, 60Kbps, 80Kbps, 100Kbps, 120Kbps, 160Kbps,
200Kbps, and 260Kbps. The packet delay of these ten CBR
flows are measured. In addition to the ten observed flows, the
background traffic in the system is as follows. There are five
exponential on/off flows from S1 to R1 with rates 60Kbps,
80Kbps, 100Kbps, 120Kbps, and 160Kbps. The on-time
and the off-time are 0.5 second. There are five Pareto on/off
flows from S2 to R2 with rates 60Kbps, 80Kbps, 100Kbps,

120Kbps, and 160Kbps. The on-time and the off-time are
0.5 second. The shape parameter of the Pareto flows is 1.5.
Two 7.8Kbps FTP flows with infinite traffic are also in the
system, one from S1 to R1 and the other one from S2 to R2.
CBR flows have a fixed packet size of 210 bytes, and all other
flows have a fixed packet size uniformly chosen between 128
bytes and 1024 bytes.

Fig. 4 shows the average end-to-end delays for the ten
CBR flows. From the figure we can see that FRR achieves
average end-to-end delays that are close to the ones that can
be provided by WFQ, especially for flows with large rates
(above 150 Kbps in the experiment). In FRR, the timestamp
based inter-class scheduling mechanism is added on top of
DRR so that flows with small rates do not significantly affect
flows with large rates. Thus, in a way, FRR gives preference
to flows with larger weights in comparison to other DRR
bases schemes. In this experiment, FRR results in smaller
average end-to-end delays than SRR and STRR when the
flow rate is larger than 10Kbps, while having a larger packet
delay for the 10Kbps flow.

The second experiment is designed to demonstrate that
FRR has a better short-term throughput property than existing
DRR based schemes. As discussed earlier, in all existing
DRR based schemes, the short-term throughput of a flow with
a large rate can be significantly affected by flows with small
rates. In this experiment, we observe one 300Kbps CBR flow
and one 600Kbps flow from S0 to R0. In addition, we have
50 10Kbps CBR flows from S0 and R0. The background
flows are the same as the previous experiment.

Fig. 5 shows the short-term thoughput of the 300 Kbps
flow with different scheduling schemes. The results for the
600 Kbps flow show a similar trend. Each point in the figure
represents the throughput in an interval of 100ms. As can
be seen from the figure, the short term throughputs for both
SRR and STRR exhibit heavy fluctuations. The flow may
significantly under–perform or over–perform for a period of
up to 400 ms. For example, SRR significantly under-performs
between 5800ms and 6200ms and STRR significantly over-
performs between 4700ms and 5100ms. On the other hand,
WFQ and FRR yield much better short term thoughputs:
within each interval of 100ms, the throughputs are always
close to the ideal rate. This experiment demonstrates that FRR
has a better short-term throughput property than SRR and
STRR and is immune to impacts of many low-speed flows
on the high-speed flows.

VII. CONCLUSION

In this paper, we have described a new scheduling algorithm,
Fair Round Robin (FRR). We demonstrate that FRR has the

desired properties of an ideal packet scheduler: an O(1) per
packet processing complexity, a strict rate-proportional delay
bound, and proportional and worst-case fairness. In particular,
FRR has much better short term fairness than other recently
proposed DRR based schemes including smoothed round
robin and stratified round robin. The constant factor in the
per packet processing complexity of FRR is fairly large. We
are currently investigating techniques to reduce the constant
factor.

REFERENCES

[1] J. Bennett and H. Zhang, “Hierarchical Packet Fair Queueing Algo-
rithms,” in ACM SIGCOMM’96 (1996).

[2] J. Bennett and H. Zhang, “WF 2Q: Worst Case Fair Weighted Fair
Queuing”, in IEEE INFOCOM’96 (1996), pages 120-128.

[3] S.Cheung and C. Pencea, “BSFQ: Bin Sort Fair Queuing,” in IEEE
INFOCOM’02 (2002).

[4] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a
Fair Queuing Algorithm,” in ACM SIGCOMM’89 (1989).

[5] S. Golestani, “A Self-clocked Fair Queueing Scheme for Broadband
Applications”, in IEEE INFOCOM’94, 1994.

[6] C. Guo, “SRR, an O(1) Time Complexity Packet Scheduler for Flows
in Multi-Service Packet Networks,” in ACM SIGCOMM’01 (2001).

[7] L Lenzini, E. Mingozzi, and G. Stea, “Aliquem: a Novel DRR Imple-
mentation to Achieve Better Latency and Fairness at O(1) Complexity,”
in IWQoS’02 (2002).

[8] L. Massouli and J. Roberts, “Bandwidth Sharing: Objectives and Algo-
rithms,” IEEE/ACM Trans. on Networking, Vol. 10, No. 3, pages 320-
328, June 2002.

[9] “The Network Simulator - ns-2,” available from
http://www.isi.edu/nsnam/ns.

[10] A. Parekh and R. Gallager, “A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks: the Single Node Case,”
IEEE/ACM Transaction on Networking, Vol. 1, No. 3, pages 344-357,
June 1993.

[11] S. Ramabhadran and J. Pasquale, “Stratified Round Robin: A Low
Complexity Packet Scheduler with Bandwidth Fairness and Bounded
Delay,” in ACM SIGCOMM’03 (2003), pages 239-249.

[12] J. Rexford and A. Greenberg and F. Bonomi, “Hardware-Efficient
Fair Queueing Architectures for High-Speed Networks,” IEEE INFO-
COM’96, 1996.

[13] J. L. Rexford, F. Bonomi, A. Greenberg, A. Wong, “A Scalable Archi-
tecture for Fair Leaky-Bucket Shaping,” in INFOCOM’97 (1997), pages
1056–1064.

[14] D. Stiliadis and A. Varma, “Design and Analysis of Frame-based Fair
Queueing: A New Traffic Scheduling Algorithm for Packet-Switched
Networks,” in ACM SIGMETRICS’96, (1996).

[15] M. Shreedhar and G. Varghese, “Efficient Fair Queuing using Deficit
Round Robin,” in ACM SIGCOMM’95 (1995), pages 231-242.

[16] S. Suri, G. Varghese, and G Chandranmenon, “Leap Forward Virtual
Clock: An O(loglog N) Queuing Scheme with Guaranteed Delays and
Throughput Fairness,” in IEEE INFOCOM’97 (1997).

[17] J. Xu and R. J. Lipton, “On Fundamental Tradeoffs between Delay
Bounds and Computational Complexity in Packet Scheduling Algo-
rithms,” in ACM SIGCOMM’02 (2002).

[18] X. Yuan and Z. Duan, “FRR: a Proportional and Worst-Case
Fair Round Robin Scheduler,” Technical Report TR-040201, De-
partment of Computer Science, Florida State Univerity, Feb. 2004.
http://www.cs.fsu.edu/∼xyuan/frrtr.pdf

[19] L. Zhang, “Virtual Clock: A New Traffic Control Scheme for Packet
Switching Networks”, in ACM SIGCOMM’90 (1990).

