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Abstract— Slow convergence in the Internet can be directly
attributed to the “path exploration” phenomenon, inherent in
all path vector protocols. The root cause for path exploration is
the dependency among paths propagated through the network.
Addressing this problem in BGP is particularly difficult as the AS
paths exchanged between BGP routers are highly summarized. In
this paper, we describe why path exploration cannot be countered
effectively within the existing BGP framework, and propose
a simple, novel mechanism—forward edge sequence numbers—
to annotate the AS paths with additional “path dependency”
information. We then develop an enhanced path vector algorithm,
EPIC, shown to limit path exploration and lead to faster
convergence. In contrast to other solutions, ours is shown to
be correct on a very general model of Internet topology and
BGP operation. Using theoretical analysis and simulations, we
demonstrate that EPIC can achieve a dramatic improvement
in routing convergence, compared to BGP and other existing
solutions.

I. INTRODUCTION

The Internet is a collection of independently administered
Autonomous Systems (ASes) glued together by the Border
Gateway Protocol (BGP) [1], the de facto inter-domain routing
protocol in the Internet. BGP is a path vector routing protocol
where the list of ASes along the path to a destination (AS
path) is carried in the BGP routing messages. Using these
“path vectors”, BGP can avoid the looping problems associated
with traditional distance vector protocols. However, BGP may
still take relatively long time to converge following a network
failure. Experimental studies show that, in practice, BGP can
take up to fifteen minutes to converge after a failure [2].
The root cause of this slow convergence is the dependency
among paths announced through the network, leading to path
exploration: when a previously announced path is withdrawn,
other paths that depend on the withdrawn path (now invalid)
may still be chosen and announced, only to be removed later
one by one. During path exploration, the network as a whole
may explore a large number of (valid and invalid) routes
before arriving at a stable state. Theoretically, in the worst
case, a path vector routing protocol can explore as many
as
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alternative routes before converging. Addressing
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path exploration within the framework of BGP is particularly
challenging: AS paths carried in BGP route advertisements are
highly summarized, making it difficult to capture dependencies
between different paths and to correctly distinguish between
valid and invalid paths.

Path exploration has several undesirable side effects. First,
it takes several minutes for the network to converge after a
failure. In this time, a large number of packets are lost or
delayed, adversely affecting the performance of applications
such as VoIP, streaming video, online gaming, etc. Second,
the additional protocol activity increases load on routers,
which are forced to process updates for transient routes.
In severe cases, this additional load can cause routers to
“tip over”, leading to cascaded network failures [3]. Third,
normal path exploration may be incorrectly identified as in-
stability (i.e., flapping routes), triggering damping mechanisms
at routers [4]. Lastly, it complicates the task of identifying
the root-causes of routing updates, essential in understanding
inter-domain routing dynamics [5].

In this paper, we propose a simple and novel mechanism—
forward edge sequence numbers—to annotate routing updates
with path dependency information, so as to effectively address
the path exploration problem. Using this mechanism, we de-
velop an enhanced path vector routing protocol, EPIC, which
limits path exploration and thereby leads to faster protocol
convergence after network failure and repair events.

Our solution has the following properties: 1) it considerably
improves convergence after a failure; convergence time follow-
ing a link/router failure is reduced to
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, where



is the

“diameter” of the Internet AS graph; 2) in contrast to previous
solutions which assume a simplified setting, our solution is
based on a more general and realistic model of BGP operation
and AS topology: ASes may contain internal routers and share
multiple edges with neighboring ASes; 3) it does not require
ASes to expose detailed connectivity information; 4) it can be
implemented with fairly modest communication and memory
overhead

The remainder of this paper is structured as follows: Sec. II
briefly reviews BGP operation and illustrates the path explo-
ration problem. In Sec. III we introduce the proposed novel
mechanism for embedding path dependency, i.e., forward edge
sequence numbers and use examples to show how they are
used. A detailed description of EPIC is presented in Sec. IV,



along with correctness results. Sec. V lists some analytical
results for EPIC and simulation results are presented in
Sec. VI. Finally, we review some related work in Sec. VIII
and conclude in Sec. IX.

II. PATH EXPLORATION

In this section, we briefly review the operation in BGP and
subsequently discuss the path exploration phenomenon. In par-
ticular, we show that path exploration is an inherent property
of all path vector protocols (not just BGP) and describe why
it is particularly hard to address, in the context of BGP.

A. Border Gateway Protocol
BGP is used between ASes to exchange network reacha-

bility information. Each AS has one or more border routers
that connect to routers in neighboring ASes, and possibly a
number of internal BGP routers. BGP sessions between routers
in neighboring ASes are called eBGP (external BGP) sessions,
while those between routers in the same AS are called iBGP
(internal BGP) sessions. Note that adjacent ASes may have
more than one eBGP session. We now briefly describe the
relevant operation at a BGP router (see [1] for the complete
specification).

BGP routers distribute “reachability” information about des-
tinations by sending route updates, containing announcements
or withdrawals, to their neighbors. In the rest of this paper,
we implicitly assume a fixed destination, say  (in ����� ).

A route announcement contains a destination and a set of
route attributes, including the AS path attribute, which is a se-
quence of AS numbers that enumerates all the ASes traversed
by the route. We denote an AS path as � ���������������� ! � ����#"%$ ,
where �#" is the origin AS to which  belongs. In contrast,
route withdrawals only contain the destination and implicitly
tell the receiver to invalidate (or remove) the route previously
announced by the sender.

When a router receives a route announcement, it first applies
a filtering process (using some import policies). If accepted,
the route is stored in the local routing table. The collection of
routes received from all neighbors (external and internal) is
the set of candidate routes (for that destination). Subsequently,
the BGP router invokes a route selection process — guided
by locally defined policies — to select a single “best” route
from this set [6]. After this, the selected best route is subjected
to some export policies and then announced to all the router’s
neighbors. Importantly, prior to being announced to an external
neighbor, but not to an internal neighbor in the same AS, the
AS path carried in the announcement is prepended with the
ASN of the local AS.

B. Path Exploration
Vectoring protocols are inherently associated with path

dependencies: the path selected by a router depends on paths
learned by its neighbors which, in turn is influenced by the
paths selected at the neighbors’ peers, and so on. This natural
property leads to the so-called path exploration phenomenon
that prolongs protocol convergence. Note that in path vector
protocols, the path vectors are used to prevent routing loops,
but they cannot avoid path exploration. As a path vector
protocol, BGP exhibits path exploration. More significantly,
it introduces additional complexity that makes it particularly
difficult to address this problem. In the rest of this section, we

illustrate the path exploration phenomenon by an example,
then describe why, in general, it is impossible to avoid it by
solely relying on the AS paths associated with BGP routes.

Fig. 1. BGP and Path Exploration. Solid lines represent eBGP sessions,
while dashed lines indicate iBGP sessions.

Consider the topology in Fig. 1. Now suppose ����� an-
nounces a path to destination  . This announcement is received
at its neighbors and propagated hop by hop. Finally, when the
network converges, ���'& knows three paths to reach  , i.e.� (*)�+!�,$ , � -.)�+��,$ , and � /*0�+!�1$ (preferred in that order)..

Now consider what happens when the link between �����
and ���#+ fails, making  unreachable at ���#+ . This fail-
ure triggers the following sequence of events: ���#+ sends
withdrawals to ���') and ���'0 . In turn, each of them sends
withdrawals to their own neighbors. Eventually, ���'& will
receive withdrawals from each of ���'( , ���2- and ���3/ (in
some order). Suppose the first one was from ���'( ; then ���'&
removes the path � (*)�+!�,$ , selects � -.)�+��,$ as the “best path” and
sends it to its (other) neighbors. However, if the withdrawal
from ���2- arrives next, then this “best route” is invalidated
and ���'& selects (and announces) � /*04+!�,$ . Finally, after ���'&
receives the withdrawal from ���3/ , it invalidates the path
announced earlier and sends a withdrawal.

This cycle of selecting and propagating (invalid) paths is
termed path exploration. Clearly, the cycle stops after all the
obsolete routes have been explored and invalidated.

Path exploration significantly prolongs the protocol con-
vergence after a network failure or repair event. Previously,
Labovitz et.al. showed that, in the worst case, as many as�	�����5�

alternate paths may be explored after a failure [7].
In practice however, in todays Internet, such a worst-case
scenario is rare: common routing policies reduce the number of
available routes, and protocol timers limit how fast updates can
be sent — both of which have a beneficial effect. Nonetheless,
path exploration can still adversely impact performance. It
is quite common for Internet convergence to take several
minutes, and even a relatively short convergence delay can
cause pronounced packet loss. This is most severe in the
Internet core, with very high link speeds and rich connectivity.

Having discussed why addressing path exploration is im-
portant, we now explain why BGP-specific details make it
especially hard to solve this problem, and argue that a new
augmented mechanism is necessary.

First, we introduce some notions that will be useful in the
rest of the paper. We call a network event (e.g., link failure
or repair, router crash, BGP session reset, etc.) that affects an
eBGP session as an external event, and that which affects an
iBGP session between two internal routers an internal event.
We also distinguish a network event from a routing event,
which refers to the generation of a route update by a BGP



router. Note that there is not a one-to-one correspondence
between network and routing events. For instance, a network
event such as a physical link failure or router crash may
affect many BGP sessions, trigerring multiple routing events.
Using this notion of routing events, we could also distinguish
between the (routing) event originator and event propagator,
and correspondingly, primary (routing) events and secondary
(routing) events. The (routing) event originator is the router
which, upon detecting an (external) event — BGP session
failures (or recovery), etc., — generates a new route update.
Thus, the generation of this new route update is the primary
(routing) event. A router receiving a route update may further
propagate the “event” by generating a subsequent route update,
i.e., a secondary event; thus we will refer to it as an event
propagator. For clarity, we will refer to the (eBGP or iBGP)
sessions between routers as (external or internal) edges. Thus,687 �:9<; represents a BGP session between routers

7
and 9 .

When the context is clear, we also use the same notation
to denote an edge between adjacent ASes (for example, if
there is a single router in each of ���#+ and ���') , there is
no confusion if we write

6 +*�=)>; ). Neighboring ASes may have
multiple eBGP sessions between them; in such cases we call
these minor edges.

C. Path Exploration and BGP Complexity

Addressing path exploration in BGP is hard. The crux of
this matter is that it is impossible to accurately detect (or even
describe) the path dependencies based solely on the AS path
information carried in BGP announcements. The AS path is a
very high level summary of the actual router level paths, and
does not reflect the (often) complicated internal AS topologies
and interconnections.1 The devil being in the details, this
summarization conceals information that would have made
it possible to detect path dependencies. In the following,
revisiting the topology in Fig. 1, we illustrate how different
failure events can generate the same updates, complicating the
task of detecting path dependency in BGP.

When the network is in a stable state, ���'& knows of three
routes to  , i.e. � (>)4+!�,$ , � -?)�+!�,$ and � /*0�+!�1$ . Now suppose that
some external event causes the edge between ���#+ and ���') to
fail. Due to this failure, which is detected by router ). @+ , can no
longer reach  . Thus it is the event originator and generates a
withdrawal to invalidate the route �5+��,$ . This primary event will
cause both routers )4 A) and ). �( to withdraw the route(s), � )�+��,$
previously announced to ���'( and ���2- . Note that this primary
event should affect both routes that ���'& learned earlier from���'( and ���2- (i.e. � (*)�+!�,$ and � -.)�+��,$ respectively).

Now consider a different failure event, this time affecting
the internal edge between )4 B+ and )4 A) , but not the edge6 ). @+*�C)4 �(>; . In this case router )4 A) detects the event and is the
event originator. Correspondingly, it will generate a withdrawal
invalidating the route � )�+!�,$ sent to ���'( earlier. When the
withdrawal is forwarded to ���'& from ���'( , the only route
that should be invalidated in the routing table (at ���'& ) is� (>)�+!�1$ .

In both these distinct scenarios, ���'( will send a withdrawal
to ���'& , (implicitly) invalidating the same route, i.e., � )�+!�,$ .

1For instance, large ISPs peer with each other at many locations and the
same AS path may be announced at each location. Although these correspond
to distinct routes, this is not reflected in the actual AS paths.

How can ���'& know that in the first case, the withdrawal from���'( should cause two routes to be invalidated, and only one in
the second case? By simply inspecting the AS path information
in the route updates, ���'& cannot distinguish between these
two scenarios.

Now consider a third, more complicated scenario: the
internal edge between router 0. @+ and router 04 A) fails. This
may cause router 0. �) (the event originator) to withdraw the
route � 0�+!�1$ announced earlier. In turn, router /. B+ will send the
withdrawal of � 0�+!�,$ to router /. �( . Compare this scenario with
that where the edge between ����� and ���#+ fails, which also
causes /? @+ to send the withdrawal for � 04+!�,$ to /. A( . Can router/. A( tell that in the former case it can still reach  via router/. A) , but not in the latter? Again, by simply inspecting the AS
path information in the route updates, it cannot!

Furthermore, multiple events may occur close in time. Due
to the general complexity of AS topology and the varied
propagation delays along different paths, updates for events
may arrive at routers in a different order from which the events
occurred. As an example, consider the situation when the
edge between ����� and ���#+ fails, causing ���#+ to withdraw
the previously announced path �5+��,$ . But now, suppose this
is a transient failure, and the edge comes back up quickly;
causing ���#+ to re-announce ��+!�,$ . Now, suppose the delays
in the network are such that the withdrawal and subsequent
re-announcement arrive at ���'& through ���'( faster than the
(first) withdrawal travelling along the path � -.)4+!�,$ . When ���'&
receives this “duplicate” withdrawal from ���2- , it will treat
it as a withdrawal for the route � (>)�+!�,$ , instead of simply
discarding it.

These examples clearly illustrate that the AS paths, carried
with BGP routes, do not contain sufficient information to
correctly distinguish valid and invalid paths, which is a critical
requirement to suppress the exploration of obsoleted paths.
Clearly, to address this effectively, we need to incorporate
additional information into route updates that will correctly
capture the dependencies between invalidated paths, and also
allow route updates corresponding to newer events to be
distinguished from older ones. In addition, such a mechanism
should not require an AS to expose detailed (or internal)
connectivity information, nor impose undue processing, mem-
ory or communication overheads on a router. In the next
section we introduce the notion of forward edge sequence
numbers, which satisfies these requirements. Using this AS
path “annotation”, routers can identify all routes that are
rendered obsolete by some failure event, and invalidate them
all at once, significantly improving the protocol convergence
time.

III. FORWARD EDGE SEQUENCE NUMBERS

As discussed previously, the AS path route attribute is
insufficient to correctly distinguish invalid paths from those
that are valid.

This is because a router makes no distinction between AS
paths it exports to different neighbors. In other words, the
outgoing (or forward) edge is not embedded in the announced
AS path. In this section, we describe how the “forward edge”
captures the (missing) information that will enable a router
to identify paths obsoleted by a failure event. Our solution
uses forward edge sequence numbers (or fesns) to capture the
“state” of a forward edge. There are two different types of



Fig. 2. AS level topology. Each (internal) router is labelled DFE?G�H I5J!K�L�MCI N O . Numbers along edges represent the fesn values. The routing table at PRQTS is
shown in the table.

fesn’s used in our scheme: major and minor. The former is
defined uniquely for a pair of adjacent ASes and is shared
across all the minor edges between them. The latter is used to
distinguish between routes learned over distinct minor edges
(from the same neighbor AS).

Formally, at any AS, say U , corresponding to each neighbor,
say ���WV , we associate a major fesn (specific to each desti-
nation). We use the notation (X:Y,n) to describe the major
fesn for the forward edge from ���2X to ���WV , which has
the integer sequence number

�
. Note that

�
is incremented

when
6 UY��Z[; is restored (after a failure). Importantly, it is

not incremented when the edge fails. Note that (X:Y,n) is
”managed” by ���2X , i.e., ���2X is responsible for incrementing
the sequence number.2

When ���2X sends a route announcement to neighbor ���WV ,
it attaches (more precisely, prepends) the corresponding major
fesn, i.e., (X:Y,n), to the route.3 The same operation is per-
formed at every router along the way and consequently, a route
contains an ordered list of major fesns, called the fesnList of
the route. Importantly, ���2X may send the same route update
(with the exact same AS path) to neighbors ���WV and ���3\ ,
but the attached fesn’s are different, i.e., (X:Y,n) and (X:Z,m)
respectively. In other words, though the AS paths carried in
the route updates are identical, the corresponding fesnList’s
are different! More generally, the fesnList’s sent to different
neighbors are always distinct. This simple property allows us
to capture the complex dependencies in AS paths.

When there are multiple minor edges between neighboring
ASes, they are all associated with the same major fesn. In or-
der to distinguish between routes learned from different routers
in the same AS neighbor, a minor fesn, specific to each router
level peering session, is used. Given router-router edges, say68]_^ ��` ^ ; and

68]_^ ^ �:` ^ ^ ; , between ���2X and ���WV , we associate
them (uniquely) with distinct minor fesn’s, i.e.

� ] ^�a ` ^ �=b ^ � and� ]_^ ^ a ` ^ ^ �=b ^ ^ � . However, they are both associated with the same
AS level major fesn. Importantly, minor and major fesns are
incremented the same way—when the corresponding edge is
restored. A key difference is that minor fesns are only carried
in internal routing updates and between the corresponding
neighbors, but never exported to a different AS. For example,
in Fig. 2, when 04 A) and 04 �( send announcements over the
forward edges to routers /. B+ and /. �) , the corresponding minor
fesn’s, i.e. for

6 04 A)4�%/? @+1; and
6 04 �(4�=/. A)?; , are attached. These

2However, in a few special cases, to force consistency, we also requireP�QFc to independently increment the fesn.
3Hence the designation “forward edge” sequence number. When the

announcement is from PRQ�d to PRQFc , we can consider egf�h�i�j as the forward
edge.

are preserved when /. B+ and /. �) forward the announcements
to internal neighbors, but stripped out from any updates sent
to a different AS, such as when router /. A( propagates the route
to ���'& .

In the rest of this section, using examples, we describe how
the fesnlist is constructed, and how network events i.e., failures
and repairs, are handled. A detailed algorithmic description is
presented in the next section.

Consider the topology in Fig. 2: the (major) fesns for each
forward edge are indicated along the edge (the numbers in
parenthesis are minor fesn values). For simplicity, we abstract
consider only the relevant parts of the update message ex-
changed between routers and denote it [ASPATH] k fesnList l ;
this captures the AS path as well as the associated fesnList.
Thus, the route advertised by ����� to ���#+ , with ASPATH=[0]
and fesnList= k (0:1,3) l is written as [0] k (0:1,3) l . When ���#+
propagates this route to ���') and ���'0 , the announcements
received at routers )4 @+ and 04 @+ are [10] k (1:2,2) (0:1,3) l and
[10] k (1:6,1)(0:1,3) l respectively. Note that the AS path is
identical in the updates, but the fesnList’s are distinct.

When routes are advertised internally, the fesnlist is carried
unchanged. Hence both )4 �) and ). �( will receive identical
route announcements, i.e. [10] k (1:2,2)(0:1,3) l . When these
routers, in turn, propagate the route to their own neigh-
bors, the announcements received at ���'( and ���2- are
[210] k (2:3,1)(1:2,2)(0:1,3) l and [210] k (2:4,2)(1:2,2)(0:1,3) l
respectively. Again notice that the fesnlist’s are distinct. Fi-
nally, when the route announcements have been processed
everywhere and propagated through the network, the routing
table at ���'& is as shown in the table in Fig. 2.

Following a failure, when an event originator generates
(initiates) a route withdrawal, it will insert the fesnList of the
invalid route into the withdrawal. When a neighbor (an event
propagator) receives this and generates a subsequent routing
update, it attaches the (original) withdrawal without change.
In other words, an event propagator will forward an exact
copy of the withdrawn fesnList it receives. If the propagator
selects a new best route after processing the withdrawal,4
the original withdrawal is “piggybacked” onto the (resulting)
route announcement. Thus, every router that receives an update
after the failure will see the original fesnList inserted by the
originator. However, the invalid (or withdrawn) route may not
directly correspond to an AS path announced by a router.
To make this distinction clear, we shall call the actual path
described in the fesnList as a “path-stem”since, intuitively, all
the invalid paths are essentially “branches” from this stem.

4This is the case when other alternate, valid paths exist.



In the rest of this section, we revisit the failure scenarios
described in section II-B and illustrate how the fesnlist attribute
can be used to identify the obsolete routes following a failure,
avoiding the previously described difficulties (in Sec. II-B).

External edge
6 +,�=)?; fails: This is detected by router ). @+ which

originates a route withdrawal, sent to its internal peers )4 A) and). �( . Following previous notation, we describe a withdrawal
message as W:[AS PATH] k fesnList l . Then the with-
drawal sent by )4 B+ is W:[10] k (1:2,2) (0:1,3) l .5 Subsequently,). �) and )4 A( will “propagate” the failure event by forwarding
the withdrawal to their respective (external) neighbors in ���'(
and ���2- , and they in turn send the withdrawal(s) to ���'& .
Note that in each case, the contents of the withdrawal are
identical.

When it receives a withdrawal message, perhaps attached
to a route announcement, a router checks the routes in its
routing table and invalidates those that depend on the with-
drawn “path-stem”. In other words, the router invalidates every
route for which the fesnList attribute contains the withdrawn
fesnList.

So when the (first) withdrawal reaches ���'& , the router
searches its routing table to identify routes whose fesnList
contains k (1:2,2) (0:1,3) l . Notice that the first two routes in���'& ’s routing table (in Fig. 2) match, and will be removed.
However, note that the third route, corresponding to AS path
[7610], does not match and will be retained in the routing
table. Thus, the first withdrawal received at ���'& will at once
invalidate routes learned through ���'( and ���2- , both of which
depend on the failed edge. This is in contrast to BGP, where
each withdrawal message will invalidate a single route, i.e.,
the route previously announced by the sender.

Now suppose that
6 +*�=)>; is repaired; then the router in���#+ will increment the fesn for the edge. The repair also

triggers a primary routing event, i.e., the route announcement
[10] k (1:2,3)(0:1,3) l , sent to router )4 @+ . At )4 @+ , this new route6

is installed in the routing table. The route is then exported to). �) and ). �( , which in turn forward the route to ���'( and ���2- .
Note that a new route announcement will always overwrite an
older route from the same neighbor.

Internal edge
6 )4 B+*�=). �)?; fails: Notice that this failure will only

affect the AS-level path [210] announced earlier by )4 �) to���'( , but not the (same!) AS-level path � )�+��,$ announced by
router )4 �( to ���2- . Since only AS-level paths are announced
and withdrawn, router )4 A) will withdraw � )�+!�,$ , which it
previously announced to ���'( . When ���'( forwards this to���'& , there are two routes that contain the AS path � )�+��,$ ,
learned from ���'( and ���2- . Clearly, this withdrawal should
not cause the path learned from ���2- to be invalidated. This
is hard to know without any additional information; the utility
of the fesn concept becomes clear in this example. Note that
fesnList’s announced by )4 A) to ���'( and ���2- , with the same
AS path, i.e., � )�+��,$ , are distinct: the former contains the fesn
for

6 )4�C(?; , while the latter does not (and instead contains the
fesn for

6 )4�:-4; ). This ensures that the router at ���'& can easily
differentiate the same AS path announced by )4 �) to different

5As a technical detail, the withdrawal will not explicitly contain the AS
Path, which is embedded in the fesnList itself. We include it in the description
to make the examples easier to follow.

6Notice the incremented value for the fesn corresponding to the edge e�m=hon=j .

neighbors. Thus, the router correctly remove the affected (now
invalid) and still retains the valid route.

Thus, in response to
6 )4 @+,�=)4 A)?; failing, router ). �) sends

a withdrawal message to ���'( containing [210] k (2:3,1)
(1:2,3)(0:1,3) l , which in turn is forwarded to ���'& . When this
reaches ���'& , only the first route (through ���'( ) depends on
the withdrawn path-stem and is invalidated, while the other
two routes are still valid.
External edge

6 0. �)4�=/. @+p; fails: Here, the failure only affects
the AS-level path announced by /. @+ to /. A( , but not the route
announced by /. A) , associated with the same AS path, � 04+!�,$ .
Thus, when /. A( receives the withdrawal from /. B+ , the route
learned from /. A) should not be invalidated. While both the
AS path and fesnLists are common, note that that minor fesn
attribute is different for routes learned over the two edges.

Thus, after
6 04 A)4�%/? @+1; fails, /. @+ (the originator)

sends withdrawals to /. �) and /? �( containing
[610] k (6:7,1)(1:6,1)(0:1,3) l (6.2:7.1,6). Note that the minor
fesn for the failed edge is attached at the end. At /. �( , both
fesnList and minor fesn, present in the withdrawal, are used
to identify invalid routes. In the present example, only the
route learned from /. @+ matches both the fesnList and minor
fesn. Thus, /. A( will invalidate the route from /. @+ , but not that
learned from /. A) , which does not match the withdrawn minor
fesn.

Subsequently, if /. A( selects the route from /. A) as its
best route, note that the AS path has not changed, and
no subsequent route update is required. Alternatively, if it
selects a route with a different AS path, it is required to
generate a subsequent route announcement to indicate this to
its downstream neighbors.

The above examples shows that by embedding forward edge
information into route updates, we can correctly detect path
dependancies without having to include any information about
the internal connectivity in an AS.

IV. EPIC – DETAILED DESCRIPTION

In this section, we describe EPIC in detail. EPIC is an
enhanced path vector protocol which supports the new fesnList
route attribute that we defined previously. A central notion in
our solution is the distinction between how event originators
and propagators operate. In this section, we describe the
operation of each entity. Subsequently, we establish some
correctness properties of our path vector protocol and discuss
the additional overhead required at routers to support it.

To begin with, we establish some notation that is used in
the following discussion. By q?r , we mean the “best route”
selected at router

7
. Recall that when

7
announces this route

to an external neighbor 9 , it prepends the AS path and fesnList
with the corresponding values. To make this distinction clear,
by � 7�s 9>$ , we mean the actual route announced by

7
to9 . Following this notation, we reference the ASPATH and

fesnList attributes associated with each route as q.r, Atpu�v,t!w=x ,� 7ys 9>$z Atpu�v,t!w=x , q>r, {}|!u%~4�.� u�w and � 7�s 9?$� {8|�u%~4�.� u�w . In the fol-
lowing, we discuss the detailed operation at event originators
and event propagators in response to failure and repair events.
In order to present the main concepts clearly, we make two
simplyfying assumptions: 1) all internal routers within an AS
are fully meshed, and 2) there is at most a single edge (peering



(a) External Failure (b) Internal Failure
Fig. 3. Intuition for selecting fesnList after failure. Path-stems that are
rendered invalid are different for internal and external failures. In each figure,
the shaded segment describes the “path stem” after the corresponding edge
has failed.

session) between two adjacent ASes. However, in reality, one
of both of these may not hold. In a longer version of this
paper, we remove these restrictions and present a complete
solution [8].

Event Originator: A router becomes an event originator if
a failure or repair is detected on an adjacent edge. First, we
discuss the operation after failure and subsequently the repair
scenario. Importantly, in either case, a router will generate a
route update (initiate a routing event) only if the event causes
a change in the best route.7

Failure: When edge
687 �:9<; fails, the originator, which is node9 , does the following: first, it invalidates the route previously

learned from
7

and selects a new best route; then it generates
a new routing event if the best route has changed. If no
other alternate route exists, this will be a route withdrawal,
otherwise a route announcement. Importantly, in the latter
case, a withdrawal is attached to the announcement that is
sent by the router. In either case, the withdrawal contains the
fesnList of the invalidated route. The detailed algorithm after a
failure is presented8 in Alg. 1. The remaining issue is how the
invalid path-stem (or fesnList) is identified, and this depends on
whether the (failed) edge is internal or external. We consider
each case separately in the following.

First, consider the case where the failed edge, i.e.,
687 �:9<; , is

external. The intuition behind selecting the fesnList is shown
in Fig. 3(a). As shown in the figure, when

687 �:9<; fails, all
routes that depend on the shaded path-stem, which includes687 �:9<; , become invalid. Now, this “shaded path-stem” is exactly
described in the fesnList associated with the route announced
by

7
to 9 , i.e., � 7�s 9>$z {8|�u�~.�.� u�w . Also, all of 9 ’s neighbors

previously received the same AS path and fesnList (in other
words, the exact same route). Thus, when an external edge
fails, a single (failure) routing event is generated: 9 will
generate a withdrawal containing � 7�s 9>$z {}|!u%~4�.� u�w and send
the same to every neighbor.

The situation is somewhat different if
687 �:9<; , the failed edge,

is internal. Note that the “edge”
687 ��9�; is not embedded in any

AS path or fesnList. However, the concept of “forward edges”
can address this, and the mechanism can be explained using
Fig. 3(b): here, when the internal edge

687 �:9<; fails, the affected
path-stem, shown by the shaded area, includes the forward
edge

6 9_�:�y; . Recall that the fesnList in the route sent from 9
7So for example, if the best route used by the router was not learned over

the failed edge, or if a new route learned over the repaired edge does not
become the best route, then no new event is originated.

8We abstract the actual decision process at a router into the SE-
LECT BEST PATH() procedure.

to � includes the fesn for this edge. Thus, � 9 s �3$z {}|!u%~4�.� u�w
describes an affected path-stem. When 9 has multiple external
neighbors, the routes announced to each are distinct, as the
fesnLists are different. Thus, the failure of the internal edge687 �:9<; invalidates each of the (distinct) routes announced by 9
to its neighbors. In other words, different (withdrawal) routing
events are initiated for the affected path-stems. To correctly
handle the situation, 9 originates a (failure) routing event for
each external neighbor: if � is an external neighbor, then 9
will generates a withdrawal containing � 9 s ��$z {8|�u�~.�.� u�w and
send it to � . Note that this is possibly attached to a route
announcement if � selects an alternate route following the
failure.

Algorithm 1 FAILURE(
687 �:9<; )

@ router 9 : k notation means “do the following at router7
” l

remove � 7<s 9?$ from routing table9�r = SELECT BEST ROUTE( )
if 9 r has changed then

ANN = 9<r
if
687 �:9<; is external then k generate single routing event l
WDRAW  {}|!u%~4�.� u�w2��� 7<s 9?$� {}|!u%~4�.� u�w
for all ��������������� ����� 9 � do

send (ANN,WDRAW) to �
end for

else k generate (distinct) multiple (failure) events l
for all ��������������� ����� 9 � do

WDRAW  {8|�u�~.�.� u�wW��� 9 s ��$z {8|�u�~.�.� u�w
send (ANN,WDRAW) to �

end for
end if

end if

Repair: Recall that repair events also trigger route updates
and the corresponding operation is described in Alg. 2. In
contrast to the failure scenario, when

687 �:9<; is repaired, the
identity of the event originator depends on whether the edge
is internal or external. In either case,

7
will send a route

announcement to 9 , i.e., its best route, but the event originator
is the that which “exports” the event out of the AS.

If
687 �:9<; is external, then

7
is the event originator. Upon

detecting the repair event, it immediately increments the fesn
for

687 ��9�; . Subsequently, it generates a new routing event, i.e.,
a route announcement, and sends it to 9 . Note that the fesnList
carried in the announcement reflects the incremented fesn.

Alternatively, if
687 �:9<; is internal, then 9 is the originator.

If the new route learned from
7

replaces its current best route,9 will originate route announcements to send its neighbors.
Importantly, 9 will increment the fesn for each of the forward
edges prior to sending the announcement. At each of 9 ’s neigh-
bors, the route announcement overwrites any route previously
learned from 9 .

Event Propagator: When a router receives a route update
from a neighbor, it acts as an event propagator. In other
words, it processes the event captured in the update and
may generate a secondary routing update to tell its own
neighbors about the event. When a route update is received at



Algorithm 2 REPAIR(
687 ��9�; )

if
687 ��9�; is external then k 7 is the originator l
@ router

7
:

increment �F�1� ��� 687 �:9<; �
ANN = 9�r
send (ANN) to 9

else k internal edge repair; 9 is the originator l
@ router 9 :
include � 7<s 9?$ in candidate set9�r = SELECT BEST ROUTE( )
if 9�r has changed then

ANN = 9<r
for all ���������4�y��� ���[� 9 � do

increment �F�1� ��� 6 9_�:�y; �
ANN = 9<r
send (ANN) to �

end for
end if

end if

an event propagator, it is processed as follows: if the update
contains a withdrawal, then all routes in the routing table
which depend on the fesnList—carried in the withdrawal—
are marked invalid; then, any new route announcement is
included in the router’s candidate set (older routes from the
same neighbor are overwritten). Subsequently, a new best route
is selected. If the best route has changed after this operation,
then a (secondary) route announcement is generated by the
propagator. On the other hand, if no other routes exist, then
the secondary update contains only the (original) withdrawal.
Importantly, if a route announcement is generated, the original
withdrawal is attached. The important point here is that a
withdrawal received by the propagator, if it causes a route
change, is forwarded without modification. Thus, every router
that learns of the failure event uses the exact same fesnList,
generated by the originator, to invalidate routes.

The crucial step in processing a withdrawal is to correctly
identify the subset of routes that depend on the withdrawn
path-stem. Here, the structure of the fesnList attribute makes
it easy to identify dependent routes.

Let �?� � 6 ��� � a=� �!� � � � �! � ! ����� aC� � � ���>� ; be the
fesnList contained in the withdrawal, and �>� �6 ��� ^ � a=��^ � � � ^ � � �� ! � ��� ^  zaC�C^  � � ^   � ; be the fesnList of any route
in the candidate set, with b�¡£¢ . Then, we can state that the�1� depends on �?� , the withdrawn path-stem, if and only if���.¤ � � ^¤ �T¥�� � ¤ � � ^¤ ��¥����¦¤R§¨� ^¤ �ª© ��+*�� � ! ��%b
Note that the comparison is performed fesn by fesn. Two
fesns are comparable if they correspond to the same edge.
The last conjunction follows because the fesn value for an
edge is monotonic; hence larger fesn values indicate “newer”
information. Thus, any routes in the candidate set that satisfy
the predicate are invalid and will be excluded from the
subsequent decision process.

Before we conclude this section, we briefly touch upon
some of the issues that arise when either of the assumptions
made at the beginning fails, i.e., when the internal routers in an
AS are organized into a hierarchy using Route reflection [9],

or when there are multiple peering sessions between adjacent
ASes. When either of these assumptions fails, there is a “loss
of visibility” within the AS. For instance, suppose there are
multiple peering sessions between two ASes and one of them
is repaired (following a failure). To manage the major fesn
correctly, the router (adjacent to the affected edge) needs
to know the status of all other sessions between the same
neighbors.9 Additional mechanisms are required to ensure that
the major fesns are consistent even with this loss of visibility.
For example, the concept of minor fesns is used to handle
adjacent ASes with multiple peering sessions. Due to a lack
of space, we only discuss the more straightforward setting in
this paper. A complete specification can be found in a longer
version [?].

A. Correctness

In this section, we establish some theoretical properties of
our enhanced path vector protocol (EPIC). In particular, we
show that following a single failure (routing) event, no router
in the network will select (and subsequently propagate) an
invalid route, i.e., a route that depends on a failed edge.

Lemma 1: At an event originator, upon a failure event, the
withdrawal contains the invalid path stem.

Proof: When
687 ��9�; fails, all routes that depend on

687 ��9�;
are invalid. In other words, any route that was announced from7

to 9 are invalid. When the external edge
687 �:9<; fails, the

withdrawal contains � 73s 9>$z {}|!u%~4�.� u�w . This explicitly embeds
information for the

687 �:9<; , and the result follows.
Now, if

687 �:9<; is internal, then � 7<s 9>$z {}|!u%~4�.� u�w does not con-
tain the failed edge. However, if � is any (external) neighbor
of 9 , the withdrawal sent to � contains � 9 s ��$� {8|�u%~4�.� u�w . Also,
the route � 9 s �3$ does not depend on any other internal edge in
the same AS as 9 . Thus, when

687 ��9�; fails, � 9 s ��$ is rendered
invalid, and the result follows.

Lemma 2: After a withdrawal is processed at an event
propagator, all routes that depend on the invalidated path
are excluded from the decision process (to select an alternate
route). Also, no valid route is invalidated.

Proof: It is trivial to show that all invalid routes are
removed when a withdrawal is processed.

Now suppose that a valid route, say «1¬ , associated with
an fesnList, «!¬4 ����1� �TR© �%®¯� 6 ��� ^ � aC� ^ � � � ^ � � �� ! � �� ��� ^ � aC� ^ � � � ^ � � ;
is invalidated when a withdrawal, «p° , associated with«!°2 5�F�1� �T�© ��®�� 6 ��� � a=� �!� � � � �� � ! �� ����� a=� � � ���>� ; is received at
the event propagator. Clearly, b±¡²¢ and

6 ��¤ � � ¤ ;�� 6 � ^¤ � � ^¤ ; , for© ��+*�� � ! ��=b as otherwise, «p¬ would not have been invalidated.
Now, if the withdrawal was originated due an external

(failure) event, then
6 �<� � � � ; must have failed and «p¬ cannot

be valid.
On the other hand, suppose that the withdrawal was due

to an internal event, in which case,
6 � � ���%� ��� ; has failed.

Since the route «p¬ was invalidated, we have
6 � ^ � ��� � � ^ � ��� ;��6 ��� ���%� � � ���=; and

6 � ^ � � �C^ � ;R� 6 ��� � � � ;
It follows that «!¬ was announced over the failed edge6 � � ����� �4� ; , and cannot be a valid route after the failure.
Theorem 3: In EPIC, following a single failure event, no

router selects (and propagates) an invalid path.

9Recall that the major fesn will be incremented only if all the minor edges
had failed and the particular link was restored subsequently.



Core Router Campus Router
Prefixes 128735 123632
Routes 5284198 393230
Number of AS paths 731853 64287
Memory used for AS paths 6877.13 kB 788.54 kB
Memory for fesnList 14872.44 kB 1652.59 kB

TABLE I
ADDITIONAL MEMORY REQUIREMENTS TO STORE THE fesnlist ATTRIBUTE.

Proof: Suppose that the edge
687 �:9<; fails and a single

(failure) routing event is originated. Without loss of generality,
we can assume that the failure affects the best route at 9
(the event originator), forcing router 9 to send a route update.
Otherwise, no new routing event is generated.

First, note that the event originator will not announce a route
that depends on the failed edge (from lemma 1). Suppose that
router � is the earliest router that, in response to a route update,
announces an invalid route that depends on the failed edge. We
show that this leads to a contradiction.

Since the failed edge affects the best route at 9 , the
new route update sent by to its neighbors must either be a
withdrawal or a new route announcement piggy-backed with
a withdrawal (containing the appropriate fesnList). Then, if
the withdrawal reaches � , which is an event propagator, it
will invalidate any existing route that depends on the failed
edge (by lemma 2). Hence route � cannot possibly announce
a new route update that depends on the failed edge. The only
scenario in which this could happen is if none of the route
updates received at � contain a withdrawal.

Now consider the invalid route announced by router � . Since
it depends on the failed edge, we must have a “propagation
chain”, �*� © ��� © �����!�� ! � �� © �!��9.³ , where ³ is the previous best
route at 9 (now being withdrawn), and

©z´
, µ¶�·+*�� ! � �� � ,

are propagators that “forwarded” the route updates to � .
Since 9 generates a withdrawal, all the nodes in the chain© �!�� ! � �� © � will propagate the withdrawal. Thus � will receive
the withdrawal originated at 9 . This contradicts the earlier
statement that none of the route updates received at � contains
a withdrawal.

B. Overhead
In this section, we briefly discuss the additional overhead in-

troduced by EPIC, in memory and communication. Recall that
the main component of our scheme is the additional fesnList
attribute that is carried in route updates and withdrawals.

In the following, we estimate the additional memory re-
quired at a router to store the new route attribute. For any
given route, the length of the fesnList is at most the AS path
length. Thus, any fesnList contains at most


fesns, where

is the longest AS (policy permitted) path length.10 Also, a
router receives at most one route (to a destination) from each
of its neighbors. Thus, a router with degree  , will have to
store

���   ³ � fesns, where ³ is the the number of routed
prefixes in the Internet. In practice however, most AS paths in
the Internet tend to be much shorter than


.11 Furthermore,

route aggregation tends to reduce number of prefixes, so we
expect the actual overhead to be lower.

10Note that this is not the same as the “diameter”. In BGP, locally defined
policy can force a router to chose a longer paths.

11In a recent snapshot of the routing table taken from Route-Views, we
computed ¸�¹�m�n , while the median AS Path length was 4.

In our description so far, the fesns explicitly listed the
associated edge. However, correct operation only requires that
fesns be distinct, i.e., that fesn for an edge

6 UY��Z[; is unique.
Correspondingly, it is possible to use a “compressed” fesn
representation. For example, using U �}º,».¼�� Z to “encode” the
edge, and 2 bytes for the sequence number, each fesn can be
described with only - bytes. In fact, there may be other, more
effective compression schemes that can reduce this further.
However, a detailed discussion of such schemes is outside the
scope of this paper.

Table I lists the estimated memory requirements to store
the fesnList attribute. Note that pre-pended ASes have been
removed (since they don’t affect the length of the fesnList).
Also, the estimates assume that each fesn is encoded with 4
bytes. The data for the “core router” was obtained from Route-
Views [10], and data for the campus router is taken from the
border router at the University of Minnesota which has four
upstream providers.

In addition to storing the fesnList attribute in the routing
table, a router needs to keep track of major (and minor) fesns
associated with adjacent “forward edges” or BGP sessions.
Since only the fesn values are stored, an additional

�	� -?.³ �
bytes of memory is required.

With respect to the communication overhead, first note that
EPIC will not generate any more routing updates than BGP.
Also, every EPIC routing announcement and withdrawal carry
the additional fesnList attribute, which slightly increases the
size of update messages. However, the benefit of using this
additional information is that invalid paths are not explored
and there is less protocol traffic. Thus, the cost of carrying the
additional information is offset by the reduced protocol traffic
during convergence. However, we do not explicitly investigate
this tradeoff in this paper.

V. PERFORMANCE ANALYSIS

In this section, we derive upper bounds for the time and
communication complexity of EPIC and contrast it with the
performance of BGP and Ghost Flushing [11]. The latter is a
path vector protocol variant that attempts to speed convergence
by aggressively distributing withdrawals in the network after
a failure.½

The abstract AS level graph ( ¾¿hÁÀ )¾ The set of AS nodes.À The set of AS-AS edges.Â
Size of the graph i.e.

Â ¹ÄÃ ¾�ÃÅ�Æ
The “best path” selected at node Ç , with length Ã Å¿Æ ÃÈ
Diameter of

½
i.e.
È ¹�É'Ê=Ë Æ�Ì,Í�Î Ã Å Æ Ã Ï¸ Length of a longest simple path in

½
Ð

Hold timer for path announcementsÑ
Processing delay at a node

TABLE IV
NOTATION USED IN THE ANALYSIS.

In order to make the analysis tractable, we use the discrete-
time synchronized model described in [7]: in each time step,
a node processes all of the messages received in the last
stage and selects a single “best path”. Then, if the best
path has changed, it is exported to all adjacent neighbors.
Withdrawal messages are handled differently in each scheme:
in BGP, withdrawals are sent only if a node has no other
valid paths to the destination; in Ghost Flushing (GF), a
node generates a withdrawal message whenever it receives



BGP Ghost Flushing EPIC
Time Ò@¸ÔÓÔn%Õ Ð Ò@¸ÔÓÔn%Õ Ñ Ò È Ó�m�Õ Ñ

Message Ò@¸ÖÓ[n%ÕoÒÁÃ À3ÃCÓ	m�Õ ×�Ø!Ù5Ú4Û<×�Ü8Ù8Ý Þ�Ý Û¿ßÁÜà Ã À3ÃCÓ	m
TABLE II

PERFORMANCE BOUNDS FOR FAIL-DOWN.

BGP Ghost Flushing EPIC
Time Ò!á¸yâãáÈ Ó�m�Õ Ð Ò!á¸ÖÓ�m�Õ Ñ âãáÈ Ð áÈ Ò Ñ â Ð Õ

Message Ò!á¸�âãáÈ Ó�m:ÕoÒÁÃ À3Ã�Ó�m�Õ npÒÁÃ=áÀ3ÃCÓ	m�ÕoÒ�áÈ â¨Ù:äÚ�Û_ßzÜ}Øà Õ ÒÁÃ=áÀ�Ã�Ó�m�Õ,Ù!äå Ù5Ø%æ à Üà
TABLE III

PERFORMANCE BOUNDS FOR FAIL-OVER.

a route announcement for a longer path, even if alternate
routes exist in the routing table.12 Finally, in EPIC, a node
forwards a withdrawal message only if the received withdrawal
invalidated the best path at the node.

We analyze the bounds in two different failure scenarios—
fail-down and fail-over. In a fail-down event, the network
becomes partitioned after the event. In other words, following
the event, some destinations become unreachable, i.e., there
is no valid path to reach them. In a fail-over situation, there
is some valid alternate path available and the network is still
connected after the failure. The notation that will be used in
following analysis is enumerated in Table IV.

A. Fail-down case

The upper bounds in the fail-down scenario are summarized
in Table IV-B. The performance bounds for BGP and Ghost
Flushing follow directly from the results in [11], [12], so we
only derive the bounds for EPIC here.

Proposition 4: After a fail-down event, the convergence
time in EPIC is at most

��
èç + �:é . The number of messages
generated during convergence is bounded by

�Cê � êpç + �
Proof: When a withdrawal message is received at a

router, all paths that depend on the failed path stem are
invalidated. Clearly, in a fail-down situation, there are no
alternate paths (the network is disconnected) and every path
in the routing table will be invalidated. Since it has no valid
path, the router will send a withdrawal to all of its neighbors.

Note that the node farthest from the location of the failure
is at most

��
�ç + � hops away. Since each node takes up to
é

to process the and forward the withdrawal, all nodes receive
a copy of the the withdrawal within

��
èç + �:é time after the
first withdrawal is generated.

To estimate the number of (withdrawal) messages, notice
that at most one withdrawal message will be sent across any
edge following the failure (in the period of convergence). This
follows from the following fact: when a router processes the
first withdrawal after the (fail-down) event, all the paths are
invalidated and a withdrawal is sent. Subsequent withdrawals
received by the router have no effect and are discarded.
Moreover, no message goes across the failed edge. Therefore
the number of messages generated in the network is at most�Cê � êpç + � .

12The underlying intuition is that announcements for longer paths may
indicate path exploration.

B. Fail-over case
Now, we analyze the performance of BGP, Ghost Flushing,

and EPIC in the fail-over case. The analysis here is a little
more involved and we introduce some additional notation.

First, we fix a particular node as the destination. When a
link fails, and alternate paths (to the destination) exist, we can
partition the set of nodes into ëì and

ì ç ëì in the following
manner: if the best path at a node becomes invalid after the
failure, it is in ëì . Also, all of this node’s neighbors are in ëì .
All other nodes are in

ì ç ëì .
Informally, ëì contains nodes whose preferred path is af-

fected by the failure, along with their adjacent neighbors.
Clearly, the nodes in

ì ç ëì are not affected by the failure
and will not take part in the convergence process i.e., they
will neither receive nor propagate any updates, since their best
path does not change after the failure. Then, corresponding toëì , we can imagine a “zone of convergence” in � , defined as
the induced graph ����ëì $í� � ëì �'ë� � . Finally, by


, we take to

mean the length of any longest path from a node in ëì to the
destination i.e. ë ��î	ï1ð ¬1ñ�òó k ê ³í¬ ê l . Note that the path with
length ë is not constrained to lie in �	� ëì $ . Also, to simplify
the analysis, we ignore the effects of BGP policy and assume
that shorter paths are preferred.

The performance bounds for each of the the protocols in
the fail-down case are summarized in Table IV-B. Due to a
lack of space, we only present the results for EPIC in the
following and relegate the remaining to the longer version of
this paper [8].

Proposition 5: After a fail-over event, EPIC will converge
within ë
��Áé�ô�õ	� and require at most

� ë
��Áé�ô�õ	�:ö,õ	�%�Cê ë� ê�ç + �
messages.

Proof: [sketch] From the description of the protocol in
Sec. IV, note that a router will does not select and propagate
a path unless its current “best path” changes. Now consider
all the nodes whose best path is invalidated by the link failure.
When these nodes receive a withdrawal (perhaps attached to
an announcement), they will each select a new best path and
send a route announcement to their other neighbors (with the
same withdrawal attached).

Clearly, the nodes that send and/or receive route announce-
ments are exactly the nodes in ëì . Thus, if ë
 is the diameter
of the induced graph �	�!ëì $ , it takes ë
�é for the withdrawal
information to reach all the nodes in ëì . On the other hand,
in the re-convergence process (where the alternate paths are
being propagated), a node might wait up to

õ
time before
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Fig. 4. Convergence Time in Clique and Waxman topologies. In all the graphs, the bottom curve represents the performance for EPIC.

announcing a new path to its neighbors, and thus the delay on
the longest path is exactly ë
��Áé�ôÄõ�� . Since the network does
not converge until the nodes learn of the alternate paths, the
convergence time is dominated by ë
��Áé�ô÷õ�� , and the result
follows.

In order to derive the message complexity, note that in
each interval

õ
, at most one message is sent from a node

to its neighbor. In other words, the rate of sending messages
is + ö,õ . So, in the time taken to converge, at most

õ��Áé�ôõ�� �ø messages are sent across each edge, and the message
complexity is bounded by

� ë
��ÁéÖôùõ	�:ö*õ	�%�Cê ë� ê1ç + � .
VI. SIMULATION

In this section, we discuss the results of simulation results
carried out with the SSFNet simulation package. In particular,
we contrast the performance of our solution with that of
BGP and GhostFlushing [11]. We used two different topology
families for our simulations—Cliques and Waxman Random
Graphs ( úû�è�� �(.�:üû�è�4 - ) The latter two topology families
were generated using the Brite topology generator [13]. In
each generated topology, links are assigned a uniform propaga-
tion delay of 300ms. Furthermore, for each protocol, we used
an MinRouteAdvertiseInterval value of 30 seconds,
which is the BGP default for a popular router vendor.13

Using each topology, we simulated both fail-down and fail-
over scenarios. In this section, we discuss two performance
metrics: convergence time and message complxexity. In the
following, we plot these metrics for both types of scenarios.

A. Results for fail-down
In this scenario, for each simulated experiment, a dummy

node is attached to a single node in the network and is discon-
nected by the failure event. In the clique(s), the additional node
is attached to node � , while in the other topology families, we
repeat the simulations varying the attachment points over all
the other nodes. Simulations were repeated multiple times with
different random seeds, and the average performance is plotted
in the graphs.

In Figs. 4(a) and 4(b), we plot the network size against the
convergence time, with the y-axis shown in logscale, for the
clique and waxman topologies (respectively). In both figures,
the bottom curve represents the performance of EPIC, the
top curve corresponds to BGP and the middle curve is the
performance of GhostFlushing. Clearly, EPIC performs far

13This corresponds to
Ð

, defined in the previous section.

better than either of the other protocols. Notice that in the
clique topology, i.e., Fig. 4(a), the convergence time for EPIC
is constant. This can be explained as follows: all the nodes are
directly connected to node � , which originates the withdrawal
event. In EPIC, the first withdrawal will cause a node to
invalidate all existing routes (since every path contains the
failed edge), and the network converges immediately. The
constant value corresponding to the EPIC curve is the link
propagation and processing delay. On the other hand, in BGP
and Ghost Flushing, the alternate (invalid) paths are flushed
from the system one by one, though at different rates. Note that
Ghost Flushing performs better than BGP, as it is aggressive
in generating withdrawals. However, it performs worse than
EPIC because each withdrawal only invalidates the previously
announced route, while in the case of EPIC, all the routes are
invalidated.

In Figs. 5(a) and 5(b), we plot network size against the
number of messages generated during the convergence period.
We see that EPIC generates far fewer messages than the
other two protocols. In Fig. 5(a), i.e., the clique graphs, EPIC
causes approximately

����ç + � � withdrawals to be generated:
every node other than � receives a withdrawal from � and
subsequently forwards the withdrawal to every other node (the
previously announced path must be invalidated).

Unlike the clique topologies, it is difficult to analytically
estimate the convergence time or the message volume in
the Waxman topologies, since the different sized graphs are
independently generated. Nevertheless, the graphs plotted in
Figs. 4(b) and 5(b) clearly illustrate that EPIC generally
performs better than BGP and Ghost Flushing. This is as
expected, since when the dummy node is disconnected, there
are no valid alternate paths, and EPIC causes only withdrawals
to be generated. In the other protocols, we expect a certain
number of invalid paths to be explored.

B. Results for fail-over
In this scenario, a dummy node is attached to two nodes

in the network and the failure event causes one of these
adjacencies to fail. In the clique graphs, node � and

�
were

the attachment points. In addition, we force the path through�
to be the least preferred path in the network. In the waxman

topologies, we repeat the simulations with different pairs of
attachment points.

The convergence process for the fail-over case can be under-
stood as follows: when a link incident to the dummy node fails,
the node on the other side of the link sends withdrawals to
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Fig. 5. Number of Messages generated during convergence. Note that 5(a) and 5(b) correspond to fail-down. In all three figures, the bottom curve corresponds
to the performance in EPIC.

its neighbors, which are then propagated through the network.
This causes some of the nodes in the graph to switch to an
alternate path. Note that some nodes might already be using
the alternate path, and will not be affected by the failure. In the
clique topologies, all nodes are forced to choose an alternate
path, since the fail-over backup path has the lowest preference.

In EPIC, when the withdrawal is generated, the nodes
that receive it remove all invalid paths immediately, and the
convergence time is determined by the time taken to distribute
the alternate path to nodes that don’t already have it. Fig. 4(c)
and 5(c) show the relative performance of the protocols in the
clique topologies, while Figs. 6(a) and 6(b) illustrates the same
for the Waxman topologies.

It is clear from these graphs that EPIC performs better
than the other protocols. This is to be expected, since in the
cases of Ghost Flushing and BGP, once the preferred path
is withdrawn, the routers begin to “explore” the longer paths
that contain the failed edge. Another interesting point to note
with this set of graphs is that the convergence time of Ghost
Flushing is quite close to that of BGP, and in some cases
worse! (while it was always better in the fail-over case). This
seems to suggest that when there are alternate paths, it might
be counter-productive to be aggressive in withdrawing paths.
The additional withdrawals may actually delay nodes from
learning the valid alternate path.

VII. IMPLEMENTATION AND DEPLOYMENT

In this section, we briefly discuss how to implement the
fesnList as an actual BGP route attribute (to be carried with
route advertisements) and how we can deploy EPIC incremen-
tally into the existing BGP system.

The fesnList can can be implemented as a new optional
transitive attribute. Specifically, we define the fesnList
route attribute is defined as a list of 4 byte fesn attributes. The
higher order 2 bytes of the fesn encode U � ]�ý « � Z (for AS-AS
edge

6 UY��Z[; ), where U and Z are 2 byte AS Numbers. The
lower order bytes encode the sequence number.14

Note that EPIC preserves the existing BGP protocol seman-
tics with a single exception—withdrawals carry an fesnList
attributeIn order to ensure compatibility with legacy routers,
when an EPIC router is sending a route withdrawal to a non-
EPIC router, it is required to first strip out the fesnList
from the withdrawal. Clearly, route announcements do not
cause a problem—the fesnList route attribute is simply

14Another possibility would be to reuse the extended communities attribute
that is already defined [14].
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Fig. 6. Performance in Waxman graphs, fail-over scenario. Bottom curve
corresponds to EPIC, topmost curve corresponds to BGP.

processed as any other optional, transitive attribute. It should
stressed that that our solution does not “break” existing BGP;
the fesnList is used in addition to the other well-defined
attributes in BGP. When a withdrawal message is sent to
a BGP router (with the fesnList removed), it is a well
formed BGP message and will be processed as a normal BGP
withdrawal. However, when an EPIC route announcement
is sent to a non-EPIC router, the fesnlist is no longer
contiguous and hence cannot be used anymore to invalidate
routes based on withdrawals. Thus, correct BGP operation is
preserved, though there might not be any benefit in terms of
network convergence.

Obviously, the faster network convergence that is enabled
by EPIC will be apparent only when it is deployed system
wide (or at least in some large contiguous region), there are
other independent benefits when deployed in smaller, localized
settings. For example, note that the rate of change of an fesn
measures the instability of the associated edge—the sequence
number is incremented when the edge flaps—pointing to an
efficient and correct way to identify flapping routes, which
overcomes the drawbacks in previousindirect schemes [4].

A more interesting application of EPIC is in enabling
operators to perform “root cause analysis” of BGP updates [5].
Within an AS, annotating routes taht are being distributed can
be very useful in tracking the location of routing changes.
For example, if we think of minor fesns simply as “edge
labels”, it becomes easy to differentiate between updates
caused by instability on the peering links or that which is
propagated from outside the AS. Note that without such an
“annotating” mechanism, performing the same analysis can
be quite complicated [15]. Moving beyind a single AS, if
we consider a larger deployment, the fesnList can be used
to determine the location of routing events that trigger routing



changes. Thus, a key side effect of deploying EPIC on the
Internet is to provide a much needed diagnostic capability.

Given the obvious local benefits, we believe that operators
would be motivated to deploy EPIC within their own networks,
filtering out the EPIC attributes at the edge. Subsequently,
when two or more neighboring ASes run EPIC on their
networks, the scope of operation can be easily enlarged by
turning off the filters and allowing the new attributes to go
across. Eventually, as the deployment base grows, we will see
the more apparent global benefit, i.e., reduced convergence
time.

VIII. RELATED WORK

The notion of “tagging” withdrawals with location informa-
tion was first mentioned in [16]. More recent work discussed
in [17], [18] build on the same idea. While all these ideas
share some similarity with ours, i.e., the notion of attaching
“event information” to BGP withdrawals, they do not address
the complexity introduced by BGP. In particular, all of the
above ideas assume a network model where each AS has a
single router and adjacent ASes share a single edge. However,
as discussed in Sec. II-B, an AS cannot be modelled as a single
node, since the routers in the AS are independent entities
making independent routing choices with different information
available to each. To the best of our knowledge, ours is the first
solution to use a realistic model of BGP and Internet topology.

In [19], the authors discuss a solution based on “consistency
rules” in announcements from a set of neighbours. The draw-
back is that these rules are applicable only in specific settings,
for example, when the paths from from different neighbors
have a mutual dependency. Ghost Flushing, described in [11],
is a simple idea to reduce convergence following a failure. The
underlying idea is to aggressively send withdrawals, forcing
the invalid routes to be flushed from the network. While this
idea is conceptually very simple, it does not really prevent
path exploration, but instead tries to speed up the process.

IX. CONCLUSIONS

In this paper, we describe why path exploration, which
is the root cause of slow convergence in BGP, cannot be
addressed effectively within the existing BGP framework. We
then proposed a simple, novel mechanism— forward edge
sequence number— to annotate the AS paths with path de-
pendency information. Then we described EPIC, an enhanced
path vector protocol, which prevents path exploration after
failure, and discussed some of the additional overhead. To
the best of our knowledge, EPIC is the first solution to be
shown to work in an extremely general model of Internet
topology and BGP operation. Using theoretical analysis and

simulations, we demonstrated that EPIC achieves a dramatic
reduction in routing convergence time, as compared to BGP
and other existing solutions.
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