
DiffMail: A Differentiated Message Delivery
Architecture to Control Spam

Zhenhai Duan
Computer Science Department

Florida State University
Tallahassee, FL 32306

Email:
�
duan � @cs.fsu.edu

Yingfei Dong
Dept. of Electrical Engineering

University of Hawii
Honolulu, HI 96822

Email:
�
yingfei � @hawaii.edu

Kartik Gopalan
Computer Science Department

Florida State University
Tallahassee, FL 32306

Email:
�
kartik � @cs.fsu.edu

Abstract

Unsolicited bulk electronic mail (spam) is increasingly plaguing the Internet Email users and deteriorating the
value of Email as a convenient communication tool. Although many different spam control schemes have been
proposed and deployed on the Internet, the proportion of Email spam seen on the Internet has been increasing
in recent years. In this paper we argue that the difficulties in controlling spam can be attributed to the lack of
user control on how different Email messages should be delievered on the Internet. In the current Email delivery
architecture, a party can at will force another party to be involved in an Email communication, regardless of whether
the latter is willing to accept the message. Based on this observation, we propose a differentiated message delivery
architecture—DiffMail. In DiffMail, a user can classify Email senders into multiple classes and handle messages
from each class differently. For example, the user may directly accept messages from regular contacts, while asking
other senders to hold their messages at their own mail servers. Such messages can be retrieved from the sender’s
mail server if and when the receiver wishes to do so. In this way, DiffMail achieves several appealing objectives.
Amongst others, regular correspondence is handled in the same way as in the current Email architecture, spammers
are discouraged from blindly sending spam to arbitrary users, and it helps to improve the effectiveness of real-time
blacklists of spammers. In this paper we present a detailed design of the DiffMail architecture and conduct empirical
studies to illustrate its performance trade-offs using real-world Email archives. Furthermore, we also illustrate how
DiffMail can be incrementally deployed on the Internet.

I. INTRODUCTION

Electronic mail (Email) is one of the most popular applications on the Internet. As the ability to send and
receive Emails is being integrated into hand-held devices such as cell phones, we have increasingly come to rely
on Email as an indispensable communication tool. However, the current Email delivery infrastructure also provides
an essentially effort-free platform for spammers to send a deluge of unsolicited commercial messages, commonly
known by the term spam. It is estimated that nowadays spam messages constitute 79% of all business Emails, up
from 68% since the US federal Can-Spam Act of 2003 took effect in January 2004 [6]. In monetary terms, dealing
with spam costed businesses more than $20 billion in 2003 [13]. Email spam is increasingly plaguing the Internet
Email users and threatening to deteriorate the value of Email as a convenient communication tool. For example, a
recent study showed that 29% of Email users have cut down their usage of Email [25].

Given the importance of controlling spam to preserve Email as a valuable communication tool, this issue has
attracted a great amount of attention in both networking research and industry communities. These research and
development efforts can be roughly classified into three categories—Spam filters [5], [9], [16], [17], [26], [28], [29],
sender authentication schemes [11], [21], [23], and mechanisms to increase the cost of sending Email messages
(sender-discouragement mechanisms) [18], [19]. Email spam filters try to identify spam based on the content of a
message (content-based filters) or the IP addresses or domains of the sending machines (IP-address-based filters),
so that users may not need to spend time on processing these messages. However, spam filters are essentially a
reactive method, they can only at best adapt themselves according to the strategies used by spammers. Moreover,
no content-based filters are perfect. Although these filters generally have a very high filtering rate (often higher
than 99%), we still see many spam messages sneaking into our mailboxes. IP-address-based approaches block
messages coming from known spammer sites by maintaining/consulting real-time blacklists (RBL). However, as

spammers can frequently change the IP addresses of their mail servers and/or their Internet Service Providers
(ISPs), how to quickly detect spammer sites and timely update RBL are increasingly becoming a major issue for
any IP-address-based approaches.

As a promising way to prevent spammers from spoofing sender addresses, different sender authentication methods
have been recently proposed, including Sender Policy Framework (SPF), Sender-ID, and DomainKeys [11], [21],
[23]. Relying on special records published in DNS databases, a receiver mail server supporting this feature can
verify if the sending machine is a legitimate mail server to send messages on behalf of the claimed sender. In this
way, sender address spoofing is prevented to a certain degree. However, this method alone cannot stop spam, as
spammers can publish their DNS records. Indeed, it was reported that 16% of messages in a recent collection of
400,000 spam were from spammers who have published their Sender-ID in the DNS databases to comply with
Sender-ID like approaches [7].

Another method to control spam is to discourage spammers from sending a large number of messages, such as
paid Email and challenge-response based mechanisms [18], [19]. Although the idea of paid Email is very simple,
in practice there are many issues that may not be easy to address, for example, how much postage a user needs to
pay for each Email, how to collect and distribute postage on the global Internet, etc. Moreover, ISPs may become
large spammers [19]. On the other hand, challenge-response based schemes may take users too much time to send
an Email, and consequently, may make Email a less attractive communication tool. We discuss other anti-spam
mechanisms in Section VI.

In this paper we propose a novel differentiated message delivery architecture, DiffMail, which can effectively
control spam messages while allowing normal messages to be handled in the same way as in the current Email
delivery architecture. First, we note that the difficulties in controlling spam can be attributed to the lack of user
control on how Email messages from different senders should be delivered on the Internet. In the current Email
delivery architecture, a party can at will force another party to be involved in an Email communication, regardless
of whether the latter is willing to accept the messages. In the early days of the Internet development, this was
not a big problem as people on the network largely trust each other. However, since the commercialization of the
Internet in mid-1990, the nature of the Internet community has changed. It becomes less trustworthy, and Email
spam is possibly one of the most notable examples of the untrustworthy nature of the Internet [3].

In designing DiffMail, we want to achieve several important goals [14]:
� Receivers should have more control over how different messages are delivered from senders to the receivers,

in order to control spam;� Messages from regular correspondents should be handled in the same way as in the current Email delivery
architecture, in order to preserve Email as a convenient communication tool;� People other than regular contacts may be allowed to express the intention to communicate, in order to retain
Email as an open communication tool;� DiffMail must allow incremental deployment.

To achieve these goals in DiffMail, each receiving party1 can classify senders into different classes, and specify
how messages from different classes should be delivered to the party. Here a sender can be defined at different
granularities, for example, Email accounts, IP addresses, and domain names (see Section III). Messages from
different classes may be handled differently. For example, a user may directly accept messages from regular contacts,
while asking other senders to hold their messages at their own mail servers. Such messages can be retrieved from
the sender’s mail server if and when the receiver wishes to do so. It is critical to note that a sender needs to maintain
such messages on his own mail server before they are retrieved by the receivers.

DiffMail has several salient advantages in controlling spam while preserving Email as an open and convenient
communication tool. First, and most importantly, by asking senders (non-regular contacts) to maintain messages on
their mail servers, spammers are forced to keep their servers up. They cannot simply send a large number of spam
messages, shut down their servers, and switch to another domain (and/or change IP addresses). In this way, DiffMail
helps to improve the effectiveness of IP-address-based filtering schemes. Second, since a (complete) message is

1Throughout the paper, a party or a user (sender/receiver) can be either a Mail Transfer Agent [20] or a real Email user. We will distinguish
them when it is desirable.

only retrieved by a receiver at his will, less bandwidth and storage resource will be consumed at the receiver side
if the user does not retrieve the majority of messages from non-regular contacts. Third, spammers now have more
responsibilities to maintain their outgoing messages, for example, deleting messages that have not be retrieved by
receivers after a certain amount of time. This will discourage spammers from blindly sending spam to arbitrary
user accounts. We will illustrate these advantages in the later sections as we present the architecture of DiffMail.

The remainder of the paper is structured as follows. In Section II we present an overview of the DiffMail
architecture. Section III details the architecture, including its components and protocols. We discuss the incremental
deployment issues in Section IV. Section V conducts empirical studies to illustrate the performance trade-offs in
DiffMail using real-world Email archives. After presenting other related work in Section VI, we conclude the paper
and discuss our ongoing work in Section VII.

II. DIFFMAIL: SOLUTION OVERVIEW

In this section we present a functional overview of the DiffMail architecture to highlight how it helps to control
Email spam while still preserving Email as an open and convenient communication tool. We will discuss the details
of the DiffMail architecture, including both its components and protocols, in the next section.

A. Sender Differentiation and Email Delivery Control

As discussed in the previous section, a party in the current Email architecture can at will send messages to
another party without considering if the latter is willing to accept the messages. Users cannot differentiate senders
and cannot control how messages from different senders should be delivered on the Internet, which make the system
extremely vulnerable to spam.

To effectively control spam, users should be able to specify how they want to communicate with others. One
such example is Instant Messenger (IM), where users are equipped with the capability to control who they want
to communicate with. Although IM’s closed communication model may help control spam, it is not adequate for
Internet Email. The value of Internet Email greatly depends on its open communication model, which we need to
preserve in designing any new Email architecture. Moreover, it is also important that regular correspondence should
not be affected. If it takes much more efforts for regular users to send Email, or regular Email cannot be delivered
in a timely fashion, the value of Internet Email as a convenient communication tool will be largely deteriorated.

In order to preserve Email as an open and convenient communication tool while being able to control spam,
DiffMail allows users to differentiate Email senders and control how messages from different senders should be
delivered. Before we present the basic idea of DiffMail, we first define a notation–Sender Email Address Domain
(SEAD). SEAD is used to represent sender(s) of Email messages. It can be defined at different granularities. In this
paper we consider three granularities: Email accounts (in the form of useraccount@domainname), IP addresses,
and network domain names. An Email account uniquely identifies a single sender; an IP address designates all the
senders whose Email messages are sent from this IP address, and a network domain name represents all the senders
within this domain;

In DiffMail, a user is able to classify SEADs into several groups or classes, which are defined and managed by
the users. Associated with each class is an action, which indicates how messages from the class should be handled
regarding their deliveries. Below we present an example SEAD classification. This system has three classes, given
in the form of class name/action:
� well-known spammers/block: messages from this class (spammers) are not accepted. They are never delivered

from the sender to the receiver.� regular contacts/accept: messages from this class will be handled in the same way as in the current Email
architecture. In particular, complete messages (including both headers and bodies) are delivered directly from
the sender to the receiver.� unclassified sources/partial: this class includes all senders that belong to neither regular contacts nor well-
known spammers.

Unlike messages from regular contacts or well-known spammers, the ones from unclassified sources can be either
spam or regular messages. Hence this represents the most critical category to manage in effectively controlling
spam. To discourage spammers we should prevent their messages from being delivered to the receivers. On the

classifier
sender

User level
classifier

sender
MTA level

receiver
MSID(msid)

DMTP

GTML(msid)

MUA
receiver

MUA
Sender

MTA
sender

MTA
DMTP

Fig. 1. Illustration of DiffMail architecture.

other hand, we should also provide legitimate users (who are not in the regular contact class yet) with a way to
express the intention to communicate. To balance these two considerations, DiffMail only accepts the envelopes of
messages from this class [20], [27]. The complete messages are required to be stored at the sender Mail Transfer
Agents (MTAs). If a user wants to read such messages, he can retrieve the messages from the sender MTAs at a
later convenient time. The implication of handling messages from unclassified sources is two-fold. First, by only
delivering the envelope of a message from sender to receiver, less bandwidth, storage, and time will be occupied at
the receiver side, which may be especially important for dial-up users. On the other hand, if the user indeed wants
to read the message from an unclassified source, some extra bandwidth and time will be used. However, users will
most unlikely be interested in messages from unclassified sources, and therefore, the majority of such messages
will not be retrieved.

By differentiating messages coming from different classes, DiffMail accomplishes several appealing goals. First,
messages from regular contacts will be handled in the same way as in the current Email architecture, no extra
efforts are needed for sending such messages. This will preserve Email as a convenient communication tool.
Secondly, although messages from unclassified sources cannot be directly delivered, DiffMail provides a means for
such senders to express the intention to communicate. In this way, we can retain Email as an open and generic
communication tool. And thirdly, receivers have more control over how they want to communicate with the rest of
the world.

B. Outgoing Email Management

In DiffMail, sender MTAs have to store messages before they are retrieved by the receivers, or explicitly deleted
by the senders. Therefore senders in DiffMail have more responsibility to manage their outgoing Email messages
compared with that in the current Email architecture. This is especially true for spammers, who are most likely in
the well-known spammer classes or the unclassified classes of others. For both these two cases, the senders need to
manage their undelivered messages stored on their own MTA servers. This has several advantages. First, spammers
need more efforts to send spam because they need to delete undelivered messages on the mail server; Second,
and more importantly, spammers cannot simply shutdown their mail servers after sending out a large number of
messages. They need to wait for receivers to retrieve the messages. This helps to identify spammers and improve
the effectiveness of IP-address based filtering schemes, which rely on IP addresses to block spam messages. If
spammers can frequently change their IP addresses or domain names, the effectiveness of such schemes is limited.

III. DIFFMAIL: ARCHITECTURE, COMPONENTS, AND PROTOCOL

In this section we present in detail the DiffMail architecture. We discuss the components of DiffMail and
the protocols used among them to manage messages and to deliver them from senders to receivers. Incremental
deployment issues will be discussed in the next section. Figure 1 illustrates the basic architecture of DiffMail.

A. Message Composition and Local Management

A sender uses some Mail User Agent (MUA) to compose the messages that he wants to send [20]. After a
message is composed by the sender, the sender delivers the message to the sender side Mail Transfer Agent (MTA)
using an extended version of the Simple Mail Transfer Protocol (SMTP) [20]. We refer to this extended version of
SMTP as Differentiated Mail Transfer Protocol, or simply DMTP. DMTP extends SMTP in two aspects: it allows

Well-known spammers/block�����	�
�����������
�����	�������������
spammer1.com
spammer2.com

Good citizens/accept� � ��� � �� � ��� �
� � ��� � �� � ��� �
������������
����� �
citizen1.com
citizen2.com

Unclassified sources/partial
*

Fig. 2. Illustration of MTA classifier.

Regular contacts/accept
user1@comcitizen1.com
user2@comcitizen1.com
user3@educitizen1.edu
user4@educitizen2.edu
user5@govcitizen.gov

Fig. 3. Illustration of user classifier.

senders to manage their outgoing message folders (see below), and it supports message retrieval by receivers (see
Subsection III-B). For simplicity, we refer to a sender side MTA server as an SMTA, and a receiver MTA server
as an RMTA.

All the outgoing messages are stored at the SMTA. For this purpose, the SMTA maintains an outgoing message
folder for each sender. This folder contains all the user’s messages that have not been delivered and have not been
deleted. A user can explicitly delete his outgoing messages from the SMTA folder by means of DMTP. An SMTA
can also delete messages on behalf of the users. However, an SMTA can only delete an outgoing message after it
has been delivered to all the intended receivers or after a certain user-configurable expiry time.

B. Message Delivery between MTAs

An SMTA communicates with an RMTA using DMTP, trying to deliver messages from the sender to the receiver.
As discussed in the previous section, receivers in the DiffMail framework have more control on message deliveries
than in the current Email architecture. A receiver differentiates the treatment of messages from different senders
by defining a number of sender classes or groups. We refer to this functionality module as sender classifier. Sender
classifiers can be defined at two levels: MTA level and end user level (Figure 1). For clarity, we first describe a
base model where only the MTA level sender classifier is defined and used to control message deliveries between
MTAs. We will later extend the base model to include both MTA level and end user level sender classifiers.

1) Base Model—MTA classifier and Message Delivery between MTAs: We illustrate the definition of MTA
classifier using the same three-class example we have seen in Section II. Namely, senders are classified into three
classes: well-known spammers, regular contacts (or good citizens), and unclassified sources. However, in an MTA
classifier, senders are in general only defined at IP-address level or domain-name level. That is, an MTA only tries
to classify senders based on the IP addresses or domain names of the sender MTAs. Figure 2 presents an example
of the MTA level sender classifier, where �"!#�	�$!%���!#���! and �&!'���(!%��
!#���)! represent IP addresses (both the IP addresses
and domain names in the figure are only for illustration purpose).

Now let us discuss how an RMTA handles message delivery requests and how MTA classifier is used to enforce
message delivery controls (see Figure 4). The RMTA listens on port 25 for message delivery requests from sender
MTAs, which express the requests by opening a TCP session on the port. When the RMTA receives a request, it will
fetch the IP address and domain name of the SMTA (a DNS lookup may be issued). Then the RMTA consults its
MTA classifier to determine how to treat the request. If the IP address (or domain name) belongs to a well-known
spammer, the request is blocked immediately: the RMTA will reply with the code 550 (permanent error, don’t
retry), and then close and clean the TCP session. (All the commands and reply codes used in DMTP are defined
in SMTP [20], except the ones listed in Table I, which are proposed in our DMTP.) If the IP address (or domain
name) belongs to the good citizen class, the RMTA will proceed in the same way as if SMTP is used. In particular,
the SMTA is allowed to issue the DATA command to deliver the complete message to the RMTA.

TABLE I

NEWS COMMANDS/REPLY DEFINED IN DMTP.

Commands/Replies Explanation
MSID For SMTA to inform RMTA about the reference to a message
GTML For RMTA to retrieve a message from SMTA

253 For RMTA to inform SMTA to send reference (MSID) instead of message (DATA)

Require: WKS: well-known spammer class;
Require: GCC: good citizen class;

1: ip = SMTA’s IP address;
2: dn = SMTA’s domain name;
3: if (ip * WKS) OR (dn * WKS) then
4: /* well-known spammers */
5: reply with 550;
6: close TCP session;
7: else if (ip * GCC) OR (dn * GCC) then
8: /* good citizens */
9: reply with 220 (to TCP session opening request);

10: proceed as if SMTP used;
11: else
12: /* unclassified sources */
13: reply with 253;
14: accept MSID command;
15: reject DATA command;
16: end if

Fig. 4. Base model message delivery algorithm.

Require: WKS: well-known spammer class of MTA;
1: ip = SMTA’s IP address;
2: dn = SMTA’s domain name;
3: if (ip * WKS) OR (dn * WKS) then
4: reply with 550;
5: close TCP session;
6: else
7: proceed to the MAIL command;
8: sender = Email address of sender;
9: proceed to the RCPT command;

10: RCC = regular contact class of the receiver;
11: if sender * RCC then
12: reply with 250 (to RCPT command);
13: proceed as if SMTP used;
14: else
15: /* unclassified sources */
16: reply with 253;
17: accept MSID command;
18: reject DATA command;
19: end if
20: end if

Fig. 5. Message delivery algorithm in extended model.

If the IP address (and domain name) does not belong to the good citizen and well-known spammer classes, the
RMTA classifies it as an unclassified source. For this case, only partial information is delivered from the sender to
the receiver. In particular, the SMTA is not allowed to issue the DATA command to deliver the message. Instead,
the receiver will retrieve the message if he is interested in it. For this purpose, the RMTA will respond to the
request with a new reply code 253, which has the following meaning:

253: the message will not be received immediately, don’t send DATA command. Instead, use the MSID
command (see below).

In this case, the SMTA will store the message locally and generate a reference or index to the message. The index
to the message is sent to the RMTA using a new command MSID. The MSID command looks like this:

MSID: msid; subject (optional)
Where msid is the reference or index to the stored message; and subject is a brief text saying what the message is
about. Note that subject is optional. Moreover, DiffMail also requires that the MSID command line cannot exceed
a configurable maximum length.

If the user wants to read the message, the receiver MTA will retrieve the message on behalf of the user. When
the RMTA needs to retrieve a message, the get mail command GTML is issued, which has the following syntax:

GTML: msid; receiver
Where msid is the index to the message to be retrieved, and receiver is the Email address of the receiver. For
security reasons, when the SMTA receives the GTML command, it needs to verify that the corresponding message
is for the receiver, and more importantly, the requesting MTA is the mail server responsible for the receiver (i.e.

the one which was originally contacted for message delivery). The latter can be verified through a DNS lookup as
in the current Email architecture. We discuss potential security concerns in Subsection III-D.

Figure 4 summarizes the message delivery procedure between MTAs using the base model.
2) Extended Model—User Level Sender Classifier: Now let us extend the base model to include both MTA

level and user-level sender classifiers (or simply user classifiers). User classifiers differ from MTA classifiers in
two aspects. First, unlike MTA classifiers where senders are defined at the IP address level or domain name
level, senders in user classifiers are specified using Email addresses in the form of username@domainname; and
secondly, we do not need to enumerate all classes of senders in user classifiers. For example, considering again
the three-class sender example, which include well-known spammers, regular contacts, and unclassified sources. In
a user classifier, we may only need to specify the regular contact class. Note that users may not have sufficient
knowledge to specify a spammer, and more importantly, the user accounts of a spammer’s Email addresses are
normally randomly generated. So, it may not be effective to let end users to specify spammers at Email address
level. Figure 3 illustrates an example of user classifiers, where only regular contacts are defined. Note that since
user classifiers are defined at Email address level, it is important that Email address spoofing should be prevented.
Therefore, some schemes such as Sender ID, DomainKeys, or SPF should be in place. Note that these schemes
cannot completely prevent Email address spoofing, but they provide us with some confidence in authenticating the
addresses.

Before we proceed to describe how a user classifier could be used along with MTA classifiers to exert message
delivery control, it is worth noting that user classifiers are optional, an institution may not support user classifiers,
or only allow certain users to have this feature. Below we assume both user classifiers and MTA classifiers are
used.

When we have both MTA classifiers and user classifiers defined, a critical problem we need to resolve is the
priority of the classes defined in these two classifiers. The priority of the classes determines the order of the classes
and consequently the actions taken to handle the message deliveries. DiffMail allows individual institutions to define
their own priorities relying on their own policies. To illustrate how the two classifiers can be used together, below
we define a simple priority: MTA classifier’s well-known spammer class has a higher priority than user classifier’s
regular contact class. All senders not in these two classes are considered as unclassified sources. Using this priority,
let us now see how message delivery requests are handled when both MTA classifiers and user classifiers are
supported (Figure 5). When a message delivery request is received, the RMTA will first check if the IP address
(and domain name) of the SMTA is in the well-known spammer class. If so, the mail server rejects the request by
responding with the reply code 550. Otherwise, the mail server starts the conversation with the SMTA. When it gets
the sender’s Email address from the command MAIL, it checks if the address is in the regular contact class in the
user classifier. If it is the case, the transaction will proceed in the same way as if SMTP is in place. In particular,
the SMTA can directly issue the DATA command to send the complete message to the RMTA. Otherwise, the
sender belongs to the unclassified source class. In this case, the RMTA will respond to the MAIL command with
the reply code 253, informing the SMTA that the message cannot be delivered directly. Instead, the receiver will
retrieve the message later. The transaction will proceed with the SMTA issuing the MSID command instead of the
DATA command. Figure 5 summarizes the algorithm of controlling message deliveries using both MTA and user
classifiers.

C. Retrieving Messages by Receivers

As we discussed above, a complete message (including header and body) is directly delivered from the SMTA
to the RMTA only if the message is from a regular contact (good citizen). Messages from a well-known spammer
are blocked immediately. Such messages are never delivered from the SMTA to the RMTA. Now let us examine
how a message from an unclassified source is handled at the receiver.

Remember that complete messages from unclassified sources are not delivered from the SMTA to the RMTA
directly. Instead, only the envelope of such a message is delivered. For ease of exposition, we refer to the messages
only containing envelopes as short messages. For a short message, the RMTA will try to identify if this is a spam
message by parsing the subject (if present) contained in the MSID and detecting anomalies in the envelope. If a
spam message is identified, it is marked so. When the receiver retrieves messages from his MTA server, all the

incoming messages are delivered to his MUA, including short messages. (Actually the receiver MUA gets messages
from POP, IMAP, or other post office servers [24], [10]. For the sake of simplifying the presentation, we ignore this
detail.) For a short message, the RMTA provides the receiver with a mechanism to indicate if he wants to retrieve
the complete message. If the receiver wants, the receiver MTA will contact the SMTA to retrieve the message
using the GTML command, with the corresponding message ID, msid, coming with the MSID command from the
SMTA. After the RMTA gets the complete message, it will try to determine if the message is spam using some
content-based spam filters. If indeed the message is a spam, it is marked so before it is delivered to the receiver
MUA. Furthermore, if many spam messages are received from an MTA, the corresponding IP address (and domain
name) of the MTA may be added to the well-known spammers class.

If a receiver does not want to accept the complete message, the short message will be directly deleted by the
receiver. The short message is also implicitly removed from the RMTA. Note that, the RMTA does not have the
obligation to inform the SMTA that the receiver does not want to accept the message.

D. Discussions

1) Security Concerns about Message Retrieval: DiffMail does not allow messages from unclassified sources to
be delivered from the SMTAs to the RMTA directly. Instead, the receivers will retrieve such messages (through their
MTAs). We argue that the potential security issues arising from this model is not acute. Note first that important
messages are normally communicated amongst regular contacts. Such messages will be handled in DiffMail in the
same way as in the current Email architecture. Secondly, individual users cannot retrieve messages directly, they
have to rely on their corresponding MTAs to retrieve the messages. These MTAs can be authenticated through the
MX records in the DNS servers. Thirdly, the msids are generated randomly based on the messages, they cannot be
easily guessed. On the other hand, if the msid itself can be intercepted during transmission, so can be the entire
message. Therefore, the proposed DiffMail model provides a security level comparable to that in the current Email
architecture.

2) Mailing Lists: We believe that in the future all mailing lists will be mediated and some content-based spam
filters will be deployed by each mailing list. It will become harder to send spam messages through mailing lists.
In DiffMail, we suggest all the users to add into the regular contacts class the addresses of the mailing lists that
he has joined. In this way, messages from other mailing lists can be handled with extra care.

3) Populating Regular Contact Class: It is clear that a user can add into the regular contact class his current
regular correspondents, for example, the ones in his address book. However, it is conceivable that a receiver may
want to communicate with someone who is currently not in the regular contact list, for example, an old classmate
who has not contacted the receiver for years. We consider two ways to handle this. One is through the normal
DiffMail message handling procedure. In this case, the address will be classified into the unclassified source class.
And eventually, the receiver may read the complete message and finds out who the sender is. However, given that
a receiver may pay less attention to messages from unclassified sources, it may take a long time for this person to
be added to the regular contact class. The second is some out-of-band approaches, for example the ones used by
some of the current email servers to register a new user and/or send messages. In this approach, the sender needs to
send the message through some web-based interface. Moreover, some mechanism is used to ensure that automatic
email agent cannot fill the web forms and send messages (e.g., by asking users to solve some puzzles).

This web-based email agent can be either managed by some well-known web sites, or by the local network of
the receiver. In either case, the RMTA will directly accept the complete messages and mark them as OUTOFBAND
when they are forwarded to the user MUA. In this way, the users may handle them promptly.

4) Exporting User Regular Contacts to Service Providers: Note that users may not be willing to export their
own regular contact list to the service providers. This may especially be the case for home users who are served
by some ISPs. Should user-level sender classifiers be supported, some mechanisms such as bloom filters (which
may incur some false positive) can be employed to conceal the exact identifications of the regular contacts of the
users [4].

IV. INCREMENTAL DEPLOYMENT

In this section we outline an approach that DiffMail can be incrementally deployed on the Internet. We assume
that the MTA in consideration supports DiffMail, i.e., adopts the DMTP protocol, and show how it interacts with

Algorithm 1 DiffMail RMTA’s algorithm for incremental deployment.
Require: WKS: well-known spammer class;
Require: GCC: good citizen class;

1: ip = sender MTA’s IP address;
2: dn = sender MTA’s domain name;
3: if (ip * WKS) OR (dn * WKS) then
4: reply with 550;
5: close TCP session;
6: else if (ip * GCC) OR (dn * GCC) then
7: reply with 220 (to TCP session opening request);
8: proceed as if SMTP used;
9: else

10: /* unclassified sources */
11: reply with 220 (to TCP session opening request);
12: proceed to the EHLO command;
13: if (found keyword “DiffMail”) then
14: /* sender supports DiffMail */
15: proceed according to DiffMail’s DMTP;
16: else
17: /* sender does not support DiffMail */
18: respond to DATA command with 354;
19: receive message;
20: respond with 550 (permanent error);
21: store message, send puzzle;
22: message invisible to user;
23: /* message becomes visible to user only after puzzle solved*/
24: end if
25: end if

the rest of the world. Note that DMTP protocol can inter-operate with the current SMTP protocol. For simplicity,
we only consider the the base model. User level sender classifiers are not used.

A. Informing Protocol in Use

In order to support incremental deployment, RMTA supporting DiffMail needs to know if the SMTA also supports
DiffMail. If so, they can proceed according to DiffMail’s DMTP protocol. Otherwise, RMTA needs to handle the
message differently using the algorithm in the following subsection. For this purpose, an SMTA supporting DiffMail
will inform the RMTA this fact by including keyword “DiffMail” in the greeting command EHLO (or HELO), as
illustrated in the following example.

SMTA makes a request (connecting to TCP port 25)
RMTA: 220 ourdomainname.com
SMTA: EHLO citizen1.com DiffMail

In this example, we have assumed SMTA is not a well-known spammer. Otherwise, it will be blocked immediately,
regardless of whether it supports DiffMail. Let us consider two cases. If the RMTA does not support DiffMail,
the keyword “DiffMail” will have no effect, and the message can be delivered in the same way as in the current
Email architecture (note that DMTP is a superset of SMTP). Now we consider the second case: the RMTA supports
DiffMail. In this case, it will search for “DiffMail” in the EHLO command. If it finds the keyword, it knows that
the SMTA supports DiffMail, and the transaction will proceed accordingly. Otherwise, the RMTA knows that the
SMTA only supports SMTP, it does not understand DiffMail.

B. Delivering Messages

Now let us see how an RMTA (supporting DiffMail) handles a message delivery request from an SMTA. If the
SMTA is a good citizen (in the good citizen class), the RMTA will accept the request (and the message) no matter
the SMTA supports DiffMail or not. We now consider the case where the SMTA is an unclassified source. If the
SMTA supports DiffMail, the RMTA will respond with reply code 253 to inform the SMTA to issue the MSID
command instead of the DATA command. They will proceed according to the DMTP protocol.

If the SMTA does not support DiffMail, we need to process the request in a different way. Our basic principle is the
same: We will not accept messages from unclassified sources directly. For such sources, some extra homework needs
to be done by the sender before the messages can be received. This mechanism is meant to prevent spammers from
using legacy SMTP as a backdoor to sneak in their spam emails. We adopt the challenge-response-like method [18]:
the RMTA will respond to the DATA command with reply code 354 (start mail input). After the RMTA receives
the message body from an unclassified source (which does not support DiffMail), the RMTA stores the message
locally in a temporary location and responds with the reply code 550 to inform the SMTA about a permanent error
so that the SMTA will not retry. However, the RMTA will automatically send a message to the sender requiring
him to solve a puzzle. The message will be delivered to the receiver from the RMTA only if the sender can solve
the puzzle. DiffMail does not dictate a specific form of puzzles. Any puzzles satisfying the following requirement
can be used by the RMTA: It cannot be solved by machine automatically. We need this requirement to prevent
spammers from relying on machines to automatically solve puzzles and generating replies. Algorithm 1 summarizes
the algorithm for an RMTA to handle requests from the two types of SMTAs. Note that we assume the RMTA
supports DiffMail.

Spammers normally do not have the capability to solve puzzles for each message they send. So this approach
will help us control Email spam. On the other hand, if the sender is legitimate but not in the regular contact class
yet, this method puts some extra burden for him to send a message. However, such senders will be added to the
regular contact class eventually and thereafter they do not need to take extra efforts to communicate. This approach
introduces some extra overhead at RMTAs as they need to send out puzzles and check the answers. To prevent
RMTAs from being overloaded with such tasks, we can prioritize the tasks of the RMTAs [30]. For example,
RMTAs only handle puzzle-related tasks when there is no new message request.

Before we leave this section, we note that there are two incentives for a site to deploy DiffMail. First, it may
want to deploy DiffMail to control incoming spam. Secondly, their local users may not want to bear the burden
to solve puzzles. Rather, they would like the mail server to support DiffMail (MSID) to store the message on the
server. Over time, we believe that increasing use of DMTP would force legacy SMTP users to switch to DMTP.

V. EMPIRICAL STUDIES

In this section we conduct a number of empirical studies to illustrate the costs and performance gains of the
DiffMail architecture. As a first step towards understanding the performance trade-offs in DiffMail, we focus on
two performance metrics: Distribution of the number of regular contacts of a user and distribution of spam message
body lengths. Given that users of DiffMail may need to maintain regular contact classes, the number of regular
contacts refects the extra burden that users may need to bear in using DiffMail (if user-level sender classifiers are in
use). On the other hand, bodies of messages from unclassified sources will not be directly delivered from senders
to receivers. It will result in bandwidth and storage savings if users do not retrieve such messages (or the majority
of such messages). The distribution of spam message body lengths provides us with an indication on the savings
a user gains. Before we present the empirical study results, let us first discuss the data sets using in the studies.

A. Data Sets

We utilize data from two sources. The first set of data is from the University of Leipzig, Germany [12]. This
set of data contains the log of emails in and out of the university from 9/2/2001 to 11/28/20012. The log records
the following information of a message: date, time, anonymized sender and receiver addresses. Addresses are also

2It appears that there are no recorded messages in some days. This could be caused by recording artifact, or there was indeed no message
in those several days. But this should not have significant impact on our observations even if it is because of recording artifact.

TABLE II

NUMBER OF MESSAGES IN EACH SPAM ARCHIVES

Messages 5/15 6/15 7/15 8/15 9/13 10/15
Complete 478 2742 415 346 462 393
Damaged 4 2 0 2 1 5

Total 482 2744 415 348 463 398

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(C
D

F
)

Number of regular contacts

CDF of regular contact numbers

Leipzig Email archive

Fig. 6. CDF of regular contact numbers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

(C
D

F
)

Message body length

CDF of message body lengths

5/15/2004
6/15/2004
7/15/2004
8/15/2004
9/13/2004

10/15/2004

Fig. 7. CDF of message body lengths.

distinguished as being “internal” or “external” depending on if it is in the university domain. This data set contains
a total of +(+�,�-/.�+�0 messages. We refer to this date set as “Leipzig Email Archive.”

The second data set is from the Spam Archive site [1]. This site maintains archives of Email spam contributed
by Internet Email users. We (randomly) select spam archived by the site on 5/15/2004, 6/15/2004, 7/15/2004,
8/15/2004, 9/13/2004 (no archives on 15th and 14th of the month), and 10/15/2004. Due to forwarding problems,
some messages in the archives are damaged or incomplete, we remove such messages from the data sets before
we analyze the data. Table II shows the total number of messages and the number of complete messages. We refer
to the data set after excluding the incomplete messages as a “Spam Archive.”

B. Distribution of the Number of Regular Contacts

In the Leipzig Email Archive data set, we are not able to distinguish messages from spammers and those from
regular contacts. Because of this, we only consider the addresses to which a user sent messages and regard this set
of addresses as regular contacts of the user. Moreover, we only compute regular contacts for users who belong to
the university (i.e., internal users). Note that such users may send messages to both internal and external users. Note
also that this may only represent a lower bound on the number of regular contacts for the users. We observe 1�-$,�.(0
internal users who sent messages in the data set. Figure 6 presents the cumulative distribution function (CDF) of
the number of regular contacts for such users. From the figure we can see that more than 90% of users have less
than 35 regular contacts, which we believe holds for general Internet Email users. Therefore maintaining regular
contact class should only require minor efforts from users given the relatively small numbers of regular contacts.

C. Distribution of Message Body Lengths

In this subsection we use the Spam Archive dataset to study the distribution of message body lengths. Note
that we exclude message headers when we compute this length. Figure 7 depicts the CDFs of spam message body
lengths. We can see from the figure that more than half of spam have a body longer than 1.5 KB, and 60% of
spam longer than 2 KB. Although the bandwidth and storage saving from without retrieving a single message may
not be significant, the overall potential savings will be promising considering the massive volume of spam on the
Internet.

VI. RELATED WORK

Among all the proposed Email architectures that we are aware of, the Internet Mail 2000 (IM2000) project is
probably most close to the DiffMail architecture [2]. In IM2000, all outgoing messages are stored at the sender

ISPs, and receivers retrieve messages from sender ISPs. To a certain degree, it is similar to the way how DiffMail
handles messages from unclassified sources. However, IM2000 is mainly motivated by some management costs and
difficulties in the current Email architecture such as storage cost at the receivers and difficulties to track message
delivery status. On the other hand, DiffMail aims to control Email spam. More importantly, users in IM2000 needs
to retrieve all the message sent to him from sender ISPs, regardless where the messages come from. This may raise
more issues related to timely delivery, security, and incremental deployment. In contrast, DiffMail differentiates
the treatment of messages from different senders. Messages from regular contacts will be directly delivered from
the sender to the receiver in the same way as in the current Email architecture. Only messages from unclassified
sources will be stored at the sender MTAs and retrieved later by the receivers. Furthermore, as stated in the project
website, many design and implementation issues of IM2000 have not been addressed such as receiver notification
and message delivery.

The Internet Message Access Protocol (IMAP) allows a user to retrieve part of a message, such as the message
header without fetching the complete message, from his mail server [10]. However, it works only between the
user’s MUA and his local mail server. The complete message is first delivered from the sender MTA to the receiver
MTA.

Email Prioritization was proposed in [30] as a way to control the impact of spam on legitimate messages.
However, the performance of the system depends on how well it can predict that an incoming message is spam.
Moreover, spammers still have the incentive to send a large number of messages given that the entire messages
including both headers and bodies are still delivered from the sender to the receiver (even though they may do so
at the cost of purchasing more machines). Li, Pu, and Ahamad proposed a method to slow down spam delivery
by damping the corresponding TCP sessions [22]. However, it has the similar performance constraint to the Email
prioritization method. Moreover, it is not clear what the long-term impact it will have to modify the behavior of
TCP for a specific application, and if the spammers will respond by changing sender MTA’s TCP behavior.

Gburzynski and Maitan proposed to use Email aliases to fight Email spam [15], where different Email aliases
can be created for different purposes and used over a specific duration. However, its effectiveness relies on hiding
Email addresses and their aliases. Moreover, users have more burdens to manage their accounts. For example, they
need to create Email aliases and disseminate them to intended correspondents.

VII. CONCLUSION AND ONGOING WORK

In this paper we proposed and studied a differentiated messsage delivery architecture, DiffMail, to control Email
spam on the Internet. By designating message delivery controls to receivers, DiffMail has several appealing features,
among which the most important ones are that regular correspondence is handled in the same way as in the current
Internet delivery architecture, Email senders have more responsibility to manage their outgoing messages. DiffMail
discourages spammers from blindly sending spam to arbitrary users, as users will most unlikely retrieve the messages
from spammers. Morever, it also helps to improve the effectiveness of real-time blacklists of spammers, as spammers
now cannot frequently change the IP addresses and/or domain names of their mail servers. We conducted empirical
studies to illustrate the cost and performance gains of DiffMail using real Email (spam) logs. Moreover, we also
discussed how DiffMail can be incrementally deployed on the Internet.

Currently we are developing a prototype of DiffMail based on Sendmail and Procmail [8], [31]. We are also
modeling the DiffMail system to theoretically study its performance.

REFERENCES

[1] Apam Archive. Donate your spam to science. http://www.spamarchive.org/.
[2] D. Bernstein. Internet mail 2000 (IM2000). http://cr.yp.to/im2000.html.
[3] M. Blumenthal and D. Clark. Rethinking the design of the internet: the end-to-end arguments vs. the brave new world. ACM Transactions

on Internet Technology, 1(1), August 2001.
[4] A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey. In Proceedings of the 40th Annual Allerton

Conference on Communication, Control, and Computing, 2002.
[5] X. Carreras and L. Márquez. Boosting trees for anti-spam email filtering. In Proceedings of RANLP-01, 4th International Conference

on Recent Advances in Natural Language Processing, Tzigov Chark, BG, 2001.
[6] T. Claburn. Big guns aim at spam. Information Week, March 2004.
[7] T. Claburn. Spammers hijack sender id. Information Week, September 2004.

[8] Sendmail Consortium. Welcome to sendmail.org. http://www.sendmail.org/.
[9] L. Cranor and B. Lamacchia. Spam! Communications of the ACM, 41:74–83, August 1998.

[10] M. Crispin. Internet message access protocol - version 4rev1. IETF RFC3501, March 2003.
[11] M. Delany. Domain-based email authentication using public-keys avertised in the DNS (domainkeys). Internet Draft, August 2004.

Work in Progress.
[12] H. Ebel. The data of the e-mail network. http://www.theo-physik.uni-kiel.de/ ebel/email-net/email%5Fnet.html.
[13] The Editors. Product of the year: Spam? Information Week, January 2004.
[14] B. Gates. Preserving and enhancing the benefits of email. Executive E-mail, Microsoft Corporation, June 2004.
[15] P. Gburzynski and J. Maitan. Fighting the spam wars: A remailer approach with restrictive aliasing. ACM Transactions on Internet

Technology, 4(1):1–30, February 2004.
[16] P. Graham. Better bayesian filtering. http://www.paulgraham.com/better.html, January 2003.
[17] P. Graham. A plan for spam. http://www.paulgraham.com/spam.html, January 2003.
[18] A. Juels and J. Brainard. Client puzzles: A cryptographic defense against connection depletion attacks. In Proceedings of NDSS-1999

(Networks and Distributed Security Systems), February 1999.
[19] RISHI V K. Free lunch ends: e-mail to go paid. The Economic Times, February 2004.
[20] J. Klensin. Simple mail transfer protocol. RFC 2821, April 2001.
[21] M. Lentczner and M. W. Wong. Sender policy framework (spf): A convention to describe hosts authorized to send SMTP traffic.

Internet Draft, February 2003. Work in Progress.
[22] K. Li, C. Pu, and M. Ahamad. Resisting spam delivery by TCP damping. In Proceedings of First Conference on Email and Anti-Spam

(CEAS), July 2004.
[23] J. Lyon and M. Wong. Sender ID: Authenticating e-mail. Internet Draft, August 2004. Work in Progress.
[24] J. Myers and M. Rose. Post office protocol - version 3. RFC 1939, May 1996.
[25] TechWeb News. Report: Spam causing web users to abandon e-mail. Information Week, March 2004.
[26] RBL. Real-time spam black lists (rbl). http://www.email-policy.com/Spam-black-lists.htm.
[27] P. Resnick. Internet message format. RFC 2822, April 2001.
[28] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A bayesian approach to filtering junk E-mail. In Learning for Text Categorization:

Papers from the 1998 Workshop, Madison, Wisconsin, 1998. AAAI Technical Report WS-98-05.
[29] SpamAssassin. The apache spamassassin project. http://spamassassin.apache.org/.
[30] R. Twining, M. Williamson, M. Mowbray, and M. Rahmouni. Email prioritization: reducing delays on legitimate mail caused junk

mail. In USENIX Conference, June 27–July 2 2004.
[31] S. van den Berg. Welcome to procmail.org. http://www.procmail.org/.

