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Abstract—We advocate the notion of service overlay network
(SON) as an effective means to address some of the issues, in
particular, end-to-end quality of service (QoS), plaguing the
current Internet, and to facilitate the creation and deployment of
value-added Internet services such as VoIP, Video-on-Demand,
and other emerging QoS-sensitive services. The SON purchases
bandwidth with certain QoS guarantees from the individual
network domains via bilateral service level agreement (SLA) to
build a logical end-to-end service delivery infrastructure on top of
the existing data transport networks. Via a service contract, users
directly pay the SON for using the value-added services provided
by the SON.

In this paper, we study the bandwidth provisioning problem for
an SON which buys bandwidth from the underlying network do-
mains to provide end-to-end value-added QoS sensitive services
such as VoIP and Video-on-Demand. A key problem in the SON de-
ployment is the problem of bandwidth provisioning, which is crit-
ical to cost recovery in deploying and operating the value-added
services over the SON. The paper is devoted to the study of this
problem. We formulate the bandwidth provisioning problem math-
ematically, taking various factors such as SLA, service QoS, traffic
demand distributions, and bandwidth costs. Analytical models and
approximate solutions are developed for both static and dynamic
bandwidth provisioning. Numerical studies are also performed to
illustrate the properties of the proposed solutions and demonstrate
the effect of traffic demand distributions and bandwidth costs on
SON bandwidth provisioning.

Index Terms—Bandwidth provisioning, overlay networks, ser-
vice level agreements.

I. INTRODUCTION

T ODAY’S Internet infrastructure supports primarilybest-
effort connectivityservice. Due to historical reasons, the

Internet consists of a collection of network domains (i.e., au-
tonomous systems owned by various administrative entities).
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Traffic from one user to another user typically traverses mul-
tiple domains; network domains enter various bilateral business
relationships (e.g., provider–customer or peering) for traffic ex-
change to achieve global connectivity. Due to the nature of their
business relationships, a network domain is only concerned with
the network performance of its own domain and responsible for
providing service guarantees for its customers. As it is difficult
to establish multilateral business relationship involving multiple
domains, deployment of end-to-end services beyond the best-ef-
fort connectivity that requires support from multiple network
domains is still far from reality. Such problems have hindered
the transformation of the current Internet into a truly multiser-
vice network infrastructure with end-to-end quality of service
(QoS) support.

We propose and advocate the notion of the service overlay
network (SON) as an effective means to address some of the
issues, in particular, end-to-end QoS, plaguing the current
Internet, and to facilitate the creation and deployment of
value-added Internet services such as VoIP, Video-on-Demand,
and other emerging QoS-sensitive services. The SON network
architecture relies on well-defined business relationships
between the SONs, the underlying network domains and
users of the SONs to provide support for end-to-end QoS: the
SON purchases bandwidth with certain QoS guarantees from
the individual network domains via a bilateral service level
agreement (SLA) to build a logical end-to-end service delivery
infrastructure on top of the existing data transport networks;
via a service contract (e.g., a usage-based or fixed price service
plan), users1 directly pay the SON for using the value-added
services provided by the SON.

Fig. 1 illustrates the SON architecture. The SON is pieced
together via service gateways which perform service-specific
data forwarding and control functions. The logical connection
between two service gateways is provided by the underlying
network domain with certain bandwidth and other QoS guar-
antees. These guarantees are specified in a bilateral SLA be-
tween the SON and the network domain. This architecture, for
example, bypasses the peering points among the network do-
mains, and thus avoids the potential performance problems as-
sociated with them. Relying on the bilateral SLAs the SON can
deliver end-to-end QoS sensitive services to its users via appro-
priate provisioning and service-specific resource management.

In addition to its ability to deliver end-to-end QoS sensitive
services, the SON architecture also has a number of other im-
portant advantages. For example, it decouples application ser-
vices from network services, thereby reducing the complexity

1Users may also need to pay (i.e., a monthly fee) the access networks for their
right to access the Internet.
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Fig. 1. Illustration of a service overlay network.

of network service management and control, especially in terms
of QoS management and control. The network domains are now
concerned primarily with provisioning of data transport services
with associated bandwidth management, traffic engineering and
QoS guarantees on a much coarser granularity (per SON). In
particular, the notion of SON also introduces a new level of
traffic aggregation—theservice aggregate; the underlying net-
work domains can aggregate traffic based on the SONs they be-
long to and perform traffic and QoS control accordingly based
on the corresponding SLAs. Under the SON architecture, an
SON is responsible for ensuring end-to-end QoS for its services.
Because of its service awareness, an SON can deploy service-
specific provisioning, resource management and QoS control
mechanisms (e.g., at service gateways) to optimize its opera-
tions for its services. Hence, the SON architecture not only sim-
plifies the network QoS management and makes it more scal-
able, but also enables flexible creation and deployment of new
(value-added) services.

Obviously, deployment of SON is a capital-intensive invest-
ment. It is, therefore, imperative to consider the cost recovery
issue for the SON. Among the many costs the SON deployment
incurs (e.g., equipment such as service gateways), a dominant
recurring cost is the cost of bandwidth that the SON must pur-
chase from the underlying network domains to support its ser-
vices. The SON must provision adequate bandwidth to support
its end-to-end QoS-sensitive services and meet traffic demands
while minimizing the bandwidth cost so that it can generate suf-
ficient revenue to recover its service deployment cost and stay
profitable.The bandwidth provisioning problem is, therefore, a
critical issue in the deployment of the SON architecture, which
is the focus of this paper.

We develop analytical models to study the problem of SON
bandwidth provisioning and investigate the impact of various
factors on SON bandwidth provisioning: SLAs, service QoS,
bandwidth costs and traffic demands. We consider the so-called
pipe SLA model as an example to illustrate how the SON
bandwidth provisioning problem can be formally defined. The
analyses and solutions can be adapted to the so-called hose
SLA model, which due to space limitations we do not consider
in this paper. In Section II, we describe how the SON logical
topology can be represented under the pipe SLA model and
present the model assumptions. Using the pipe SLA model,
we present a basic static SON bandwidth provisioning solution
in Section III, and study the problems of the more general
static and dynamic SON bandwidth provisioning, respectively,
in Sections IV and V. Analytical models and approximate
solutions are developed for both static and dynamic bandwidth
provisioning. Numerical studies are also performed to illustrate
the properties of the proposed solutions and demonstrate the
effect of traffic demand distributions and bandwidth costs on
SON bandwidth provisioning.

The notion of overlay networks has been used widely in
telecommunication and data networks. For example, more
recently content distribution networks and application layer
multicast networks have been used for multimedia streaming
[3]; Detour [14] and Resilient Overlay Network (RON) [1]
employ the overlay technique to provide better routing sup-
port. Moreover, the overlay technique has attracted a lot of
attention from industry [4], [5] as a means to deliver diverse
QoS-sensitive services over the Internet. The service overlay
networks we propose here is simply a generalization of these
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ideas. Perhaps what is particularly interesting is the use of
SONs to address end-to-end QoS deployment issue. The major
contribution of our paper, however, lies in the study of the
SON bandwidth provisioning problem. Our approach and
formulation also differ from the traditional capacity planning
in telephone networks (e.g., [8], [10]) in that we explicitly take
into account various factors such as SLAs, QoS, and traffic
demand distributions.

II. SERVICE OVERLAY NETWORKS: ASSUMPTIONS

AND BANDWIDTH PROVISIONING PROBLEMS

In this section, we first describe a logical topology represen-
tation of the SON under the pipe SLA model and a simplifying
assumption on service QoS. Two modes of bandwidth provi-
sioning— static and dynamic bandwidth provisioning—are
then introduced. We conclude this section by describing the
traffic demand model and a few notations regarding service
revenue and bandwidth cost that will be used later in this
paper.

A. SON and Service QoS

The pipe SLA model is a common SLA model used in today’s
Internet. Under the pipe model, the SON can request bandwidth
guarantees between any two service gateways across a network
domain (see Fig. 1); in other words, a “pipe” with certain band-
width guarantee is provisioned between the two service gate-
ways across the network domain. To emphasize the relationship
between the service gateways and the underlying network do-
mains, we denote the logical (unidirectional) connection from a
service gateway to a neighboring service gatewayacross a
network domain by , and refer to it as a logical link
(or simply a link) between and across . Note that between
the SON and access networks where traffic to the SON originate
and terminate, the hose SLA model is assumed to be used where
certain amount of bandwidth is reserved for traffic entering or
exiting the SON. We can treat each access networkas a ficti-
tious service gateway . Then we can talk about “connection”
between and a neighboring service gatewayacross and
the corresponding logical link .

Given a logical link , the SON provider will
contract with the network domain to provide a certain amount
of bandwidth guarantee between the service gatewaysand

across . The SON bandwidth provisioning problem is then
to determine how much bandwidth to be provisioned for each
link so that: 1) the end-to-end QoS required by its
services can be supported adequately; and 2) its overall revenue
or net income can be maximized.

Although the QoS that an SON must support for its services
can be quite diverse (e.g., bandwidth, delay, or delay jitter guar-
antees), in almost all cases a key component in providing such
guarantees is to exert some form of control on the link utiliza-
tion level, i.e., to ensure the overall load on a link does not
exceed some specified condition. In other words, for the pur-
pose of bandwidth provisioning, we assume that it is possible to
map the service QoS guarantee requirements to a link utilization

threshold.2 To state this assumption formally, we assume that a
link utilization threshold is specified for each link, and to en-
sure service QoS, the bandwidthprovisioned for link must
be such that the (average) link utilization stays below.

B. Bandwidth Provisioning Modes

We consider two modes of bandwidth provisioning under
the pipe model: static bandwidth provisioning and dynamic
bandwidth provisioning. In static bandwidth provisioning
mode, an SON contracts and purchases a fixed amount of band-
width a priori for each pipe connecting the service gateways
from the underlying network domains. In other words, the
bandwidth is provisioned for a (relatively) long period of time
without changing. In dynamic bandwidth provisioning mode,
in addition to the ability to contract and purchase bandwidth
for each pipea priori, an SON can also dynamically request for
additional bandwidth from the underlying network domains to
meet its traffic demands, and pay for the dynamically allocated
bandwidth accordingly. To account for the potential higher
cost in supporting dynamic bandwidth provisioning, it is likely
that the underlying network domains will charge the SON
different prices for statically provisioned and dynamically
allocated bandwidth. Hence, in either mode the key question in
bandwidth provisioning is to determine the appropriate amount
of bandwidth to be purchaseda priori so that the total overall
net income of an SON is maximized while in the meantime
meeting the traffic demands as well as maintaining the service
QoS.

C. Traffic Demand, Service Revenue, and Bandwidth Cost

We now describe the traffic demand model for the SON.
Recall that we assume that traffic always originates from and
terminates at access networks. Given a source nodeand
destination node, for simplicity we assume that a fixed route

consisting of a series of links connectingand is used
to forward traffic from to . Let denote the collection of
routes between the source and destination nodes. Then the
traffic demands over the SON can be represented by the traffic
demands over these routes: for each , let denote
the (average) traffic demand (also referred to as traffic load)
along route measured over some period of time(see Fig. 2).
The period is relatively short, for example in seconds or
several minutes, compared to the time scale of static bandwidth
provisioning, denoted by , which could be in several hours or
days. The period is considered as the basic unit of time. The
set then represents the traffic demands over the
SON during the time unit they are measured, and is referred
to as the traffic demand matrix of the SON. Note also that the
traffic demands are always measured in units of bandwidth.

2This particularly will be the case if the underlying network domain employs
aggregate packet scheduling mechanisms such as FIFO or priority queues. For
example, it has been shown [2], [9], [16] that in order to provide end-to-end
delay guarantees, link utilization must be controlled at a certain level. Hence,
from the bandwidth provisioning perspective we believe that this assumption on
service QoS is not unreasonable in practice. In fact, it is said that many of today’s
network service providers use a similar utilization based rule (e.g., an average
utilization threshold of 60% or 70%) to provision their Internet backbones.
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To capture the traffic demand fluctuations over time, we as-
sume that the traffic demand along each route varies ac-
cording to some distribution3 . We denote the probability den-
sity function of the traffic demand distribution of by .
Then the probability that the traffic demand exceeds units
of bandwidth is given by . Let , i.e.,
is the (long-term) average traffic demand along routeover the
time period for static bandwidth provisioning. Furthermore, we
assume that the traffic demand distributions along the different
routes are independent. In this paper, we will study the band-
width provisioning problem by considering two different traffic
demand models. The first one takes into account the widely ob-
served self-similar property of the Internet traffic by employing
the input model [12], [13]; the second is based on the
measurements of real Internet traffic.

For each route, we assume that the SON receivesamount
of revenue for carrying one unit of traffic demand per unit of
time along route . On the other hand, for each logical link or
pipe connecting two service gateways, the SON must pay a
cost of per unit of time for reserving amount of band-
width from the underlying network domain. We refer to as
the bandwidth cost function of link. Without loss of generality,
we assume that is a nondecreasing function.

III. B ASIC STATIC BANDWIDTH PROVISIONING MODEL

In static bandwidth provisioning, a certain amount of band-
width overprovisioning is needed to accommodate some de-
gree of fluctuation in traffic demands. The key challenge in
static bandwidth provisioning is, therefore, to decide the op-
timal amount of bandwidth overprovisioning. In this section, we
present a basic static bandwidth provisioning model and ana-
lyze its properties. This basic model will serve as the basis for
other bandwidth provisioning models that we will consider in
this paper.

In the basic model, the SON provisions bandwidth on each
link based on the long-term average traffic demand matrix ,
and attempts to maximize the expected net income. To accom-
modate some degree of fluctuation from the long-term average
traffic demands, we introduce an overprovisioning parameter
on each link , . The meaning of the overprovisioning
parameter is given as follows. We will provision amount
of bandwidth on link such that as long as the overall traffic
load on link does not exceed its long-term average load by

, the service QoS can be maintained, i.e., the link utilization
is kept below the prespecified threshold. Formally, define

, where denotes that link lies on route
. Then

(1)

where is the set of all links of the SON.
Given that amount of bandwidth is provisioned on each link

, the expected net income of the SON is

3This traffic demand distribution can be obtained, for example, through
long-term observation and measurement.

Fig. 2. Traffic demands.

. Hence, the basic bandwidth provisioning problem
can be formulated as the following optimization problem:

Since ’s are nondecreasing, it is easy to see that the optimal
solution to the optimization problem is given by

(2)

Hence, under the basic bandwidth provisioning model, once
we fix the overprovisioning parameters, the optimal amount of
bandwidth to be provisioned for each link can be derived using
(2).

Assuming that ’s are sub-additive, we see that a sufficient
condition for the SON to have positive expected net income is
to ensure that

(3)

The relationship (3) provides a useful guideline for the SON to
determine how it should set its price structure for charging users
of its services to recover its cost of bandwidth provisioning. It
has a simple interpretation: we can regard
as the average cost of carrying one unit of traffic demand per
unit of time along route on link . Then the right-hand side of
(3) is the total cost of carrying one unit of traffic demand per
unit of time along route . To recover its cost, the SON must
then charge users of its services more than this amount. If’s
are strictly concave (i.e., nonlinear), in other words, the per-unit
bandwidth cost decreases as the amount of reserved bandwidth
increases, the economy of scale will benefit the SON: the higher
the average long-term traffic demands, the lower the average
cost of providing its services, yielding higher net income. In
the case ’s are linear, i.e., , then (3) becomes

which is independent of the traffic
demands.

IV. STATIC BANDWIDTH PROVISIONING WITH PENALTY

In the basic static bandwidth provisioning model, we assume
that the overprovisioning parameters are given. We now con-
sider the problem of how to obtain the optimal overprovisioning
parameters under given traffic demand distributions. We study
this problem by taking into account the consequence of poten-
tial QoS violation when the actual traffic demands exceed the
target link utilization. For this purpose, we assume thatthe SON
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may suffer a penalty when the target utilization on a link is ex-
ceeded, and, therefore, service QoS may potentially be violated.
For example, it is quite likely that the service contract between
the SON and its user is such that when the service QoS is poor
(e.g., due to network congestion), a lower rate is charged, or the
user may demand a refund. In the case that some form of ad-
mission control is used by the SON to guide against possible
QoS violation, the penalty can be used to reflect the lost rev-
enue due to declined user service requests. We will refer to this
model as the static bandwidth provisioning with penalty model,
or simply, the static-penalty model.

For each route , let denote the average penalty suffered
by per unit of traffic demand per unit of time along routewhen
the service QoS along routeis potentially violated.Given the
traffic demand matrix , let denote the probability
that the service QoS along routeis potentially violated, more
specifically,the target utilization on one of its links is exceeded.
Then the total net income of the SON for servicing the given
traffic demand matrix can be expressed as

(4)

where we use to emphasize the dependence of the
total net income on the traffic demand matrix . When there
is no confusion, we will drop from the notation.

Let denote the joint probability density function of the
traffic demand matrix , recalling that is the probability
density function of the traffic demand along route . Then
the expected net income of the SON under the traffic demand
distributions is given by

(5)

where denotes multiple integration under the joint
traffic demand distribution .

Now we can state the problem of static bandwidth provi-
sioning with penalty as the following optimization problem:
finding the optimal overprovisioning parameters to max-
imize the expected net income, i.e.,

(6)

Unfortunately, the exact solution to this optimization problem
is in general difficult to obtain. It depends on both the particular
forms of the traffic demand distributions and the service
QoS violation probabilities . To circumvent this difficulty,
in the following, we shall derive an approximate solution (a
lower bound) based on the so-called link independence assump-
tion: the link overload events (i.e., exceeding the target utiliza-
tion threshold) occur on different links independently. Clearly,
this assumption does not hold in reality, but it enables us to ex-
press in terms of , the probability that the target
utilization level on link is exceeded, where .
(Again, we may drop the variablesand in if there
is no confusion.) Such link independence assumption has been
used extensively in teletraffic analysis and capacity planning in

the telephone networks (see, e.g., [10]). Under the link indepen-
dence assumption, the service QoS violation probability, i.e.,
at least one of the links on routeis overloaded, is given by

(7)

Before we present the approximate optimal solution, we need to
introduce one more set of notations. Define a small real number

. For each route, let be such that

(8)

Since , we have
. In other words, (8) basically says that

is such that the probability the traffic demand along route
exceeds is very small, and thus negligible.

With these notations in place, we now present a lower bound
on as follows (see Appendix I for the detailed derivation):

(9)

Denote the right-hand side of the above equation by,
then . Comparing the lower bound with the
expected net income without
taking penalty into account, we see that ignoring the extremal
traffic demands (i.e., when ), we pay at most a penalty
of per unit of traffic demand on route for
potential service QoS violations. For given , the penalty
incurred due to extremal traffic demands is upper bounded by

. Note also that is
the probability of service QoS violation along routewhen
the long-term average traffic demands are assumed to be.
Thus, in using as an approximation to , we are being
conservative by overestimating the probability of potential QoS
violations.

From , we have .
Therefore, we can obtain the best overprovisioning parameters
that maximize instead of the expected net income as an
approximate solution to the original optimization problem (6).
Using the solution to the basic bandwidth provisioning problem
(2), we assume for a given set of , i.e., the
target utilization constraints (1) hold with equality. Under this
assumption, let be the solution to the optimization problem

, and refer to them as the approximate optimal over-
provisioning parameters. In the following, we demonstrate how

can be derived.
Using (7), we can rewrite as

(10)
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where .
Assume is a continuous and everywhere differentiable

function of . (See Section V for a discrete case.) For each link
, define

(11)

where .
Through some simple algebraic manipulation, it is not too

difficult to show that

(12)

Suppose that are strictly positive, then a necessary con-
dition for them to be an optimal solution is that the gradient
(with respect to ) must vanish at ’s. Thus, from (12) we
must have

(13)

Intuitively, measures the sensitivity of potential penalty re-
duction to bandwidth increase on link, whereas
measures the sensitivity of bandwidth cost to bandwidth in-
crease on link. Hence, the optimal (or rather, the approximate
optimal) overprovisioning parameter should be chosen such
that the two values coincide. In the following discussion, we will
loosely refer to as the per-unit bandwidth gain in potential
penalty reduction and to as the increase in per-unit
bandwidth cost.

In the above derivation of the approximate optimal solution
to the static bandwidth provisioning problem, we have simply
assumed the existence of , the probability that the target
utilization level on link is exceeded. The particular form
of it depends on the distribution of (average) traffic demands
on the link. In Subsections IV.A and IV.B, we consider two
different traffic demand models—a self-similar traffic demand
model and a traffic demand model based on real Internet traffic
measurements to demonstrate the static bandwidth provisioning
problem.

A. Traffic Demand Model

Since the pioneering work of [11], the self-similar (or
long-range dependent) property has been observed in Ethernet
local-area network [11], wide-area network [13], and World
Wide Web traffic [7]. The observed self-similar property of
the Internet traffic has important implications on the dimen-
sioning and provisioning of the IP networks. In this section,
we consider a traffic demand model, , that captures
the (asymptotically) self-similar property of the Internet traffic
[12], [13].

Consider an queue, where the service time has a
heavy-tailed distribution. We assume that the distribution of the
service time has a finite mean. Let denote the number of
customers in the system at time, for . Then the
count process is asymptotically self-similar. Let

denote the customer arrival rate to the queue and
the mean service time, then has a Poisson marginal distribu-
tion with mean [6].

Now we are ready to present the traffic demand
model on each route. Consider an arbitrary route. We assume
that the traffic demand (i.e., the average traffic arrival rate per
unit time) is governed by the count process of
an queue. Let denote the mean traffic demand on
the route. It is easy to see that , where and are the
customer arrival rate and the mean service time, respectively, of
the queue. As traffic demands along all the routes are
assumed to be independent, the average overall traffic load on a
link is .

Given the average overall load and the link capacity ,
it can be shown that the probability that the total load on link

exceeds during any given unit of time is given by
. Extending the definition

of to noninteger values of by linear interpolation,
at integer values of define the derivative of with
respect to to be the left derivative. Then

. Therefore

By this definition of , we are able to obtain the (approximate)
optimal overprovisioning parameters’s by solving (13).

We now discuss the shapes of’ and on (approximate)
optimal overprovisioning parameters’s as well as their im-
plication in static bandwidth provisioning. Note first that the
shape of is determined by , which has a shape of (skewed)
bell-shape with a center approximately at(it is essentially
a Poisson probability density function). Hence,is a concave
function of . In particular, there exists such that is
an increasing function in the range and a decreasing func-
tion in the range (see Fig. 3). Intuitively, this means that
as moves from 0 toward , there is an increasing benefit in
bandwidth overprovisioning in terms ofreducing potential QoS
violation penalty. However, as moves beyond , there is a
diminished return in overprovisioning in terms of reducing po-
tential QoS violation penalty.

Suppose that ’ is a linear function, i.e., . Then
. Hence, (13) becomes . Suppose

holds for some . Because of the shape of, there
potentially exists two solutions and ,
such that . In particular, as is a decreasing function
in the range , always exists. As is positive
in the range , and is negative in the ranges
and , we see that with respect to link, is maxi-
mized at either or at (whereas it is mini-
mized at ). Intuitively, when only a small amount of band-
width is overprovisioned on link, the per-unit bandwidth gain
in potential penalty reduction is too small to offset the per-unit
bandwidth cost, hence, decreases. However, as we increases
the amount of bandwidth overprovisioned, the per-unit band-
width gain in potential penalty reduction becomes sufficiently
large and offsets the per-unit bandwidth cost, hence,increases
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Fig. 3. Relationship between̂s , �, & � .

until it reaches a maximum. Due to the diminished return in the
per-unit bandwidth gain in potential penalty reduction,de-
creases again when too much bandwidth is overprovisioned on
link . In the special case that is such that for all

, then as , attains its maximum at
with respect to link . Intuitively it says that when the per-unit
bandwidth cost on link is higher than the per-unit bandwidth
gain in potential penalty reduction, there is no benefit in over-
provisioning any bandwidth on linkto guide against any po-
tential QoS violation penalty. These observations can be ex-
tended to other bandwidth cost functions such as concave or
convex cost functions. In general, we see that the tradeoff be-
tween the bandwidth cost and overprovisioning bandwidth to
guide against service QoS violations is critical to the problem
of SON bandwidth provisioning. It is also clear from the above
discussion that as the per-unit bandwidth cost decreases, there
is more benefit in overprovisioning. Finally, we comment that
from (11) and (13) and the above observations, we can com-
pute the approximate optimal overprovisioning parameters’s
using fixed-point approximation.

1) Numerical Examples:We conduct numerical studies to
illustrate the properties of the analytic results we obtained and
demonstrate the effects of various parameters on static band-
width provisioning. For this purpose, we consider a simple set-
ting: a single route over a single link. Numerical studies in more
complex settings will be performed in a later section.

Unless otherwise stated, the following parameters will be
used in the numerical studies: the long-term average traffic
demand on the route is 200 (measured in unit of bandwidth per
unit of time), i.e., , and , , .
We set and the target utilization threshold .

Fig. 3 shows as a function of with three different values
of , namely, . In the figure, we also include a
line corresponding to to illustrate how can be ob-
tained as the solution to . Recall from Section IV that

(the right intersecting point). From Fig. 3, we see that
as the penalty increases, also increases. Hence, for higher
penalty it is necessary to overprovision more bandwidth to guide
against potential QoS violations. Likewise, as we increase the

Fig. 4. Comparison ofV andE(W ).

per-unit bandwidth cost (i.e., moving up the line of ),
decreases. In other words, as the bandwidth cost increases, it is
beneficial to reduce overprovisioned bandwidth so as to maxi-
mize the net income.

In Fig. 4, we compare the lower boundwith the actual ex-
pected net income for two given values of ( and

). For comparison, we also include the expected net income
under the basic static model, where the overprovisioning pa-

rameter is obtained from the static-penalty model. From the
figure, we see that for both values of, the lower bound pro-
vides a reasonable approximation to . Note also that the
difference between the actual expected net income under
the static-penalty model and the expected net incomeunder
the basic static is almost invisible. This is likely due to the fact
that the additional revenue generated when the traffic demand
exceeds its long-term average (the first term in ) and the
potential penalty incurred due to service QoS violations (the
third term in ) cancel each other out on average. From
Fig. 4, it is clear that the lower bound depends on the choice of
. The smaller the , the closer the approximate revenueis

to the expected revenue . To further explore the relation
between and , in Fig. 5 we plot as a function of (upper
plot). In the figure, we also include the overprovisioning param-
eter as a function of (lower plot). We see that is a concave
function of , and thus there is a uniquethat maximizes . On
the other hand, is a nonincreasing function of.

To highlight the relationship between bandwidth cost and
overprovisioning, in Fig. 6 we plot the overprovisioning param-
eter as a function of the per-unit bandwidth cost. We see
that as the per-unit bandwidth cost decreases (from 2 to 1),
the overprovisioning parameter increases, i.e., it is more ben-
eficial to overprovision more bandwidth. This is not surprising.

B. Measurement-Based Traffic Demand Model

A key property of the presented approximate optimal solution
to the static bandwidth provisioning problem is that it only relies
on the marginal distribution of the traffic demand on each link.
In this section, we will study the static bandwidth provisioning
problem based on the measurements of real Internet traffic. That
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Fig. 5. Impact of� onV and� .

Fig. 6. Impact of unit bandwidth price on� .

is, we estimate the marginal distributions of the traffic demands
on the links by the long-term measurements of the traffic data,
and then apply the estimated marginal distributions of the traffic
demands to our static bandwidth provisioning problem.

The data trace we will use was collected at the University of
Auckland Internet access link on December 1, 1999, and lasted
roughly for 24 hours (referred to as theAuckland data trace)
[15]. In the Auckland data trace, there are in total 32 628 004
packet arrivals. Fig. 7 presents the average traffic arrival rates
(i.e., traffic demands) of the Auckland data trace, where each
point represents the average traffic demand for a 5-min time in-
terval (which is also used as the base unit of time, i.e., min;
see Fig. 2). Given the largely different traffic arrival patterns
during the daytime and nighttime, we will accordingly provision
bandwidth differently for them, where the daytime is defined to
be from 10:00 AM to 5:00 PM and nighttime from 7:00 PM
to 7:00 AM. We will refer to the traffic demands during the
daytime and nighttime asdaytime traffic demandandnighttime
traffic demand, respectively. All other times are considered to be
transition times. The bandwidth provisioned for the daytime and

Fig. 7. Traffic demands of the Auckland data trace.

Fig. 8. Histogram of the Auckland data trace’s traffic demands.

nighttime should be switched during the transition times based
on certain criteria, which is not considered in this paper.

Now let us consider the properties of the daytime and the
nighttime traffic demands. The mean traffic arrival rate is
2.1 Mb/s over the whole daytime duration, and 0.6 Mb/s over
the nighttime duration. Fig. 8 plots the histograms of the
traffic demands for the daytime (left-hand side) and nighttime
(right-hand side) separately, where the bin sizes for the daytime
traffic demands and the nighttime traffic demands are 100
and 50 kb/s, respectively. From the plots, we see that the
daytime traffic demands are relatively symmetrically centered
at its mean arrival rate, while the nighttime traffic demands
are more skewed. In the following studies, we will model
the daytime traffic demands by aNormal distribution and the
nighttime traffic demands by aLognormaldistribution to retain
the different traffic characteristics during the daytime and the
nighttime. Table I presents the mean traffic demands and the
standard deviations (STD) of the daytime and nighttime traffic
demands, where the base unit of bandwidth (traffic demand) is
1 kb/s.
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Fig. 9. Relationship between̂s , �, and� for daytime traffic.

In the following, we will conduct numerical studies to illus-
trate the static bandwidth provisioning using the Auckland data
trace. In all these studies, we again consider the simple setting: a
single route over a single link. The per-unit bandwidth per-unit
time earning , and , . We set the target
utilization threshold .

Similar to the numerical example for the traffic de-
mand model, in Fig. 9, we show as a function of with three
different values of , namely, , for the daytime
traffic demands. The value of used is 140. In the figure, we
also include a line corresponding to to illustrate how

can be obtained as the solution to [see (13)]. Fol-
lowing a similar argument as that in Section IV-A, there poten-
tially exists two solutions and , such that

. Moreover, with respect to link, is maximized at
either or at . From Fig. 9, we can draw the sim-
ilar conclusions as that in the traffic demand model.
In particular, we see that as the penaltyincreases, also in-
creases. Hence, for higher penalty it is necessary to overprovi-
sion more bandwidth to guide against potential QoS violations.
Likewise, as we increase the per-unit bandwidth cost(i.e.,
moving up the line of ), decreases. In other words, as the
bandwidth cost increases, it is beneficial to reduce overprovi-
sioned bandwidth so as to maximize the net income. However,
compared with the result in Fig. 3, we see that we obtain larger
overprovisioning parameters here. This is caused by the high
traffic fluctuation in the Auckland data trace. Table I gives the
coefficient of variance(C.O.V.) for the daytime and the night-
time traffic demands. This value (0.21) is much higher than that
in Fig. 3, which is 0.07.

To compare the different provisioning behaviors during
the daytime and nighttime, we present the overprovisioning
parameters for both the daytime and nighttime traffic demands
in Table I. To obtain these results, we have searched for the best
’s that yield the maximal ’s, respectively. In the table, we

also include the approximate revenue’s (per-unit time) for
the daytime and nighttime traffic demands. From the table, we
see that for the daytime traffic demands, the overprovisioning

TABLE I
PROVISIONING FOR THEAUCKLAND TRAFFIC DEMANDS

(a) (b)

Fig. 10. SON topologies. (a) Tree. (b) Mesh tree.

parameter , while for the nighttime traffic demands
. The reason is that even though the average traffic

demands during nighttime are much lower than that during
daytime, we observe a much higher traffic demand fluctuation
during the nighttime than during the daytime (see Table I
for their corresponding coefficients of variance). It is too
expensive to accommodate this high traffic demand variance
during the nighttime ( is dramatically large), therefore, no
overprovisioning is provided in this case. During daytime, the
(per-unit time) approximate revenue is 3446, which is higher
than that during the nighttime (1672). This is not unexpected.

C. Performance Evaluation

We now use two SON topologies—thetree [Fig. 10(a)] and
the mesh-tree [Fig. 10(b)] topologies—to illustrate the effect
of traffic load distribution among various routes of an SON on
static bandwidth provisioning. In the following denotes
a route from service gatewayto service gateway. The path
with minimum hop-count (i.e., service gateways) is used as the
route between two service gateways. In case there are two such
paths, only one is chosen. In the numerical studies below, we
will use the traffic demand model. We set ,

for all the routes, and for all the links. The value
of is chosen in such a way that .

In the tree topology, four routes are used: ,
, , and .

To investigate the effects of different traffic loads on bandwidth
provisioning, we consider two types of traffic load distribution
among the routes: thebalancedload where the expected traffic
demand for all routes is 200, and theunbalancedload where
the expected traffic demands on routes and
are 300, 100, 250, and 150, respectively. Table II presents the
resulting overprovisioning parameterand provisioned band-
width for six representative links: link 1, 4, 5, 7, 8, and 9.
The corresponding average traffic loads’s on these four links



DUAN et al.: SERVICE OVERLAY NETWORKS: SLAS, QOS, AND BANDWIDTH PROVISIONING 879

TABLE II
TREE TOPOLOGY

TABLE III
MESH-TREE TOPOLOGY

are also given in the table. From the results, we see that under
the balanced load, links with a higher average traffic load have
a smaller overprovisioning parameter. This is due to statistical
multiplexing gains for carrying a higher load on a link. In the
unbalanced case, similar results can be observed. Note that even
though links 4 and 9 have the same traffic demand load, they are
overprovisioned differently. This is because there are two routes
traversing link 9 while there is only one on link 4.

We now consider the mesh-tree topology. In this case, there
are ten routes: , ,

(1), (1), (3),
(3), , ,
, and . The number in

the parentheses following a route shows a link that the route
traverses in case there are multiple paths between the source and
destination with the same path length. Again for the balanced
load case, all the routes have an average traffic demand of 200,
while for the unbalanced load case, the average demands for
routes to are 300, 250, 100, 150, 300, 250, 100, 150,
300, and 100, respectively. Table III shows the results for six
representative links: link 2, 6, 11, 18, 19, and 21. From the table,
we can see that similar observations also hold for the mesh-tree
topology.

In this section, we have studied the static bandwidth provi-
sioning mode, where during a relatively long period, the pro-
visioned bandwidth on a link will not be changed. The static
bandwidth provisioning mode is simple in bandwidth manage-
ment, but may result in inefficient bandwidth usage facing traffic
demand fluctuations. In Section V, we will study the dynamic
bandwidth provisioning mode, where the link bandwidth can be
dynamically adjusted according to the traffic demand fluctua-
tions in relatively shorter time intervals.

V. DYNAMIC BANDWIDTH PROVISIONING

In this section, we study the dynamic bandwidth provisioning
problem. As pointed out in Section II, to account for the poten-
tial higher cost in supporting dynamic bandwidth provisioning,

it is likely that the underlying network domains will charge the
SON different prices for statically provisioned and dynamically
allocated bandwidth. Hence, we assume that for each link,
the cost for reserving amount of bandwidthstatically is, as
before, ; while the cost of reserving the same amount
of bandwidth dynamically is , where .
Given this price differential,a key question for the SON is to
determine how much bandwidth should be reserved statically
on each link a priori to meet certain base traffic demands,
while dynamically allocating bandwidth to meet the additional
traffic demands as needed. The objective is again to maximize
the overall long-term expected net income of the SON.

To focus on the dynamic bandwidth problem, we assume that
the underlying network domains possess abundant bandwidth
that the dynamic requests for additional bandwidth from the
SON are always satisfied. In other words, no request is blocked.
Under this assumption, for a given traffic demand matrix ,
it is possible to compute the expected additional bandwidth that
needs to be dynamically allocated to meet the traffic demands.
This can be done, for example, using the traffic de-
mand model introduced in Section IV. However, such precise
formulation is extremely complicated, and consequently, the
corresponding optimization problem is unlikely to be tractable.
In the following, we will first describe an approximate model
based on the marginal distributions of the traffic demands on
the links of the overlay network, and then present an adaptive
heuristic algorithm for dynamic bandwidth provisioning based
on online traffic measurements.

A. Approximate Model

Suppose for each link , amount of bandwidth has been
provisioned staticallya priori. Given a traffic demand matrix

, we approximate the expected additional bandwidth that
must be dynamically reserved to meet the traffic demands by
the following expression:

(14)

where . Then if and only if .
Using (14), we can write the approximate overall net income

the SON generates for the given traffic demand matrix :

(15)

Integrating on both sides of (15) over the (joint) distribution of
, we have

(16)
The dynamic bandwidth provisioning problem can now be

formulated as the following optimization problem:

(17)

Note that unlike the static bandwidth provisioning problem,
here we do not have any explicit QoS or target utilization con-
straints. This is because we implicitly assume that whenever the
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target utilization threshold is about to be exceeded, additional
bandwidth is dynamically allocated on the link to meet the
service QoS. We will refer to the optimization problem (17) as
the approximate modelfor dynamic bandwidth provisioning.
In the following, we will present an (approximate) solution to
the approximate model of the dynamic bandwidth provisioning
problem. For the detailed analysis, please refer to the technical
report version of this paper [18].

Assume both bandwidth cost functions are linear, i.e., for any
, and , where for

any . Let be such that . Then the set
of ’s is an (approximate) solution to the dynamic bandwidth
provisioning problem, i.e., is the amount of bandwidth to be
statically provisioned, while the portion to be dynamically allo-
cated on link is given by (14), for a given traffic demand matrix

.
An intuitive interpretation of the above results is that under

the dynamic bandwidth allocation model, we need to statically
reserve at most amount of bandwidth on each link, where the
probability that the (average) aggregate load on linkexceeds
the statically reserved link bandwidthequals the ratio of the
two prices on the link, . In the special case that ,
i.e., the unit price of dynamically allocated bandwidth is the
same as that of the statically reserved one, we have .
Hence, in this case, no static capacity needs to be reserved.

1) Numerical Examples:In this section, we perform numer-
ical studies to illustrate the properties of the dynamic bandwidth
provisioning model and compare it with the static bandwidth
provisioning model. Unless otherwise stated, the per-unit band-
width per-unit time earning , and , . The
target link utilization threshold is 0.8.

In the first set of studies, we examine the effects of the
per-unit bandwidth price for dynamically allocated band-
width on the amount of bandwidth provisioned statically
a priori and the approximate revenue . In these
studies, we use the simple network setting: a single route over
a single link. The traffic demand model is and the
long-term average traffic demand on the route is 200. Fig. 11
presents the bandwidth provisioned statically(upper plot)
and the approximate revenue (lower plot) as functions
of , respectively. From the figure, we see that as the per-unit
bandwidth price for dynamically allocated bandwidth increases,
more bandwidth needs to be provisioned staticallya priori.
However, the increase in the amount of static bandwidth is
not dramatic as increases from to . On the
other hand, as we increase the price for dynamically allocated
bandwidth, the approximate revenue decreases. This is
partly due to the fact that an SON needs to statically provision
more bandwidtha priori on each link, as well as the fact that
the SON needs to pay more for the dynamically allocated
bandwidth.

In the next set of numerical studies, we compare the dynamic
bandwidth provisioning model with the static bandwidth provi-
sioning model in terms of the approximate revenues obtained,
using the tree network topology [Fig. 10(a)], with a similar set-
ting as that in Section IV-C. In particular, we use the balanced

Fig. 11. Effects of� on c andE( ~W ).

Fig. 12. Dynamic versus static bandwidth provisioning.

traffic load model and assume the traffic demand on each route
is governed by the model. For static bandwidth pro-
visioning, . Fig. 12 presents the approximate revenue
as a function of the (long-term) average traffic demands for
dynamic and static bandwidth provisioning, respectively. From
the figure, we see that for both dynamic and static bandwidth
provisioning models the approximate revenue increases as the
average traffic demand increases, and the dynamic bandwidth
provisioning has a higher approximate revenue than that of the
static bandwidth provisioning. Moreover, as the average traffic
demand increases, the difference between the approximate rev-
enues of the dynamic bandwidth provisioning and the static
bandwidth provisioning becomes larger. This is possibly due to
the fact that, as the average traffic demand on a route increases,
traffic along the route becomes more bursty (recall that the mar-
ginal distribution of traffic demand on a route is Poisson), and
the dynamic bandwidth provisioning model works better than
the static bandwidth provisioning in this case.
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B. Adaptive Online Bandwidth Provisioning Algorithm

In developing the approximate dynamic bandwidth pro-
visioning model, we have assumed that the (average) traffic
demands are knowna priori for determining the additional
bandwidth that must be dynamically allocated to meet the
traffic demands [see (14)]. In this section, we present an
adaptive online bandwidth provisioning model (or, simply,
online dynamic model) that dynamically adjust the allocated
bandwidth on a link according to the measurement of the traffic
demands on the links of the network.

As before, let denote the long-term average traffic demand
on route , and denote the long-term average
traffic demand on link. Based on the measurement of the traffic
demands on the links, our target in this section is to determine
the amount of bandwidth that should be statically provisioned
a priori to meet certain base traffic demands, and the amount of
bandwidth that should be allocated dynamically to accom-
modate the traffic demand dynamics in the network.

Let denote a fixed time interval. In the online dynamic
model, the average traffic demand during each such time
interval is calculated at the end of the time interval. Based
on the measured average traffic demands and the contracted
service QoS, the bandwidth allocated on each link will be ad-
justed accordingly at the end of the time interval. Moreover, the
resulted bandwidth will be kept constant during the next mea-
surement time interval. In other words, the allocated bandwidth
is only adjusted at the end of each measurement time interval.
To reduce the frequency of allocating additional bandwidth
or de-allocating extra bandwidth caused by short-term traffic
fluctuations, bandwidth will be allocated in units of quota,
which is a chunk of bandwidth [17] and normally much larger
than one unit of bandwidth. In the following, we will denote
the size of a quota by (in unit of bandwidth).

Let denote the amount of bandwidth that has been provi-
sioned staticallya priori. In the online dynamic model, is
chosen in such a manner that, if the average traffic demand on a
link does not exceed , the service QoS will be honored, i.e.,

(18)

Note that the initial static bandwidth is allocated in units of
quota.

Next, we discuss the allocation of additional bandwidth and
deallocation of extra bandwidth on an arbitrary link. To re-
duce the possibility that the service QoS is violated, the online
dynamic model will allocate the additional bandwidth (a new
quota) when the average traffic demand is approaching the target
link utilization level threshold, instead of until the threshold is
exceeded. Let denote a positive number and the current
total bandwidth on link, i.e., . Then an additional
quota will be allocated onto linkif , where
is the forward threshold for allocating a new quota. Similarly, a
backward threshold for deallocating an extra quota is defined as
(denoted by (a positive number)): an extra quota is released
from link only if .

Fig. 13. Dynamic bandwidth provisioning with approximate model and online
model.

Because the online dynamic model only adjusts bandwidth
on the links at the end of the each measurement interval, it is
possible that the service QoS is violated during the course of the
measurement time interval. As in static bandwidth provisioning
with penalty in Section IV, certain penalty will apply in this case.
Let denote the average penalty suffered by per unit of traffic
demand per unit of time (the measurement time interval) along
route when the service QoS along routeis violated. Then the
revenue of the online dynamic model for a measurement time
interval is

(19)

where the indicator function if
holds for any link on route , 0 otherwise.

In the following, we perform numerical studies to illustrate
the bandwidth allocation behavior of the online dynamic model.
The studies are carried out in the simple network setting using
the daytime traffic demands of the Auckland data trace (see
Fig. 7). The following parameters are used. The base unit of
bandwidth for the Auckland data trace is 1 kb/s. The measure-
ment time interval (i.e., unit time) is 5 min. The per-unit band-
width per-unit time earning , and , ,

. The target utilization threshold . The size of
quota , where is the standard deviation of the day-
time traffic demands of the Auckland data trace (see Table II).
The forward and backward threshold .

Fig. 13 presents the average traffic demands (per 5 min) and
the corresponding provisioned bandwidth in the online dynamic
model. For the purpose of comparison, we also include the
bandwidth provisioning behavior of the approximate dynamic
model. From the figure, we see that the online dynamic model
is able to adjust the link bandwidth according to the dynamics
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TABLE IV
PER-UNIT TIME AVERAGE REVENUE

of the traffic demands on the link and, meanwhile, remains
insensitive to small shorttime fluctuations in traffic demands
(for example, see the provisioned bandwidth at times 24, 25,
and 26). Because of the nature of the online dynamic model,
sometimes the bandwidth on a link could be less than the
average traffic demand on the link (for example, at time 14),
where a penalty will apply. (A penalty may apply in other
cases.) Note also that, under this parameter setting, the approx-
imate dynamic model has a smaller initial static bandwidth
than the online dynamic model. Moreover, the approximate
dynamic model is more sensitive to the fluctuations in traffic
demands than the online dynamic model.

Table IV gives the mean revenues (per-unit time) of the ap-
proximate dynamic model and the online dynamic model, av-
eraged over the whole duration of the daytime traffic demands
of the Auckland data trace. From the table, we see that the ap-
proximate dynamic model has a higher per-unit time average
revenue than the online dynamic model. There are two possible
reasons. First, under this parameter setting, the amount of initial
static bandwidth is larger than the approximate dynamic model,
therefore, it results in more cost on the overlay. Second, the on-
line dynamic model is measurement based and the bandwidth
on a link is only adjusted at the end of the measurement time
intervals. Consequently, as we discussed before, service QoS
could be violated during a time interval and incurs penalty on
the overlay. However, the online dynamic model has the advan-
tage that it does not make any assumption about the (average)
traffic demands (except the long-term average traffic demand
and its standard deviation).

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we studied the bandwidth provisioning problem
for the service overlay networks. We considered both the static
and dynamic bandwidth provisioning models and our study took
into account various factors such as QoS, traffic demand distri-
butions, and bandwidth costs.

The approximate optimal solution we presented to the static
bandwidth provisioning problem is generic in the sense that it
applies to different marginal distributions of the traffic demands
on the routes in a network, which makes the solution very
attractive facing different traffic arrival behaviors. The static
bandwidth provisioning model is simple in terms of network
resource management but may result in inefficient network
resource usage if the traffic demands are highly variable. In
this kind of environment, the dynamic bandwidth provisioning
model outperforms the static bandwidth provisioning model,
albeit with more complex and frequent network resource man-
agements. We investigated the effects of various parameters

like static and dynamic bandwidth costs on the revenue that an
SON can obtain, which provides useful guidelines on how an
SON should be provisioned to stay profitable.

In this paper, we have assumed the route between a source
gateway and a destination gateway is predetermined. Currently,
we are investigating the functionalities of the service gateways
in support of service-aware (multipath) routing, which will have
great impact on how an SON should be provisioned.

APPENDIX I
A LOWER BOUND ON OF THE STATIC BANDWIDTH

PROVISIONING WITH PENALTY

From (4) and (5), it is easy to see that

(20)

Moreover

(21)

As when ,

(22)

Notice and the definition of , we have (note
)

(23)

Similarly

(24)
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Substituting (22), (23), and (24) into (21), and then recur-
sively into (20), we have

(25)
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