
Thwarting Traceback Attack on Freenet
Guanyu Tian, Zhenhai Duan

Florida State University
{tian, duan}@cs.fsu.edu

Todd Baumeister, Yingfei Dong
University of Hawaii

{baumeist, yingfei}@hawaii.edu

Abstract—A traceback attack was recently developed on
Freenet, which can identify the originating machine of a content
request message, even if a single content request message has been
issued by a content retriever. The traceback attack exploited a few
fine-grained design and development decisions made in Freenet,
including the unique identifier (UID) based mechanism to prevent
routing loops of content request messages. In this paper we
develop a simple yet effective scheme named dynID to thwart the
traceback attack on Freenet. In dynID, the UID associated with a
content request message is dynamically changed at the beginning
portion of the message forwarding path. As a consequence, an
attacker can only trace back a content request message to the
node where the UID value is last changed; it cannot uniquely
determine the originating machine of the message. Importantly,
dynID only has negligible impacts on the performance of Freenet
in locating content on the network. For example, our simulation
studies based on the original Freenet source code show that, for
all content requests, we can successfully locate the corresponding
requested content.

I. INTRODUCTION

Freenet is a popular anonymous peer-to-peer content sharing
network, with the design objective to provide the anonymity
of both content publishers and retrievers [2], [3]. Despite the
time-proven high-level security mechanisms and algorithms
adopted in Freenet, a traceback attack has been recently
developed that can break the anonymity of content retrievers
on Freenet [5]. More specifically, the traceback attack can
identify the originating machine of a content request message,
even if a single content request message has been issued by
the content retriever.

In the traceback attack, after a monitoring node of an
attacker observes a content request message, nodes controlled
by the attacker will iteratively connect to suspect nodes,
and query them to determine if they have seen the message
previously, based on the reply message from a suspect node.
The traceback attack exploited a few fine-grained design and
development decisions made in Freenet. A key Freenet feature
utilized by the traceback attack in determining if a node has
seen a message is the unique identifier (UID) associated with
each content request message.

The UID carried in a content request message is used to
prevent routing loops of the message. In Freenet, each node
maintains a set of UIDs carried by the messages that it has
seen, i.e., it has either originated or forwarded. When a request
message with an old UID arrives at a node, the node will
discard the message and reply to the upstream node with

This work was supported in part by NSF grants CNS-1041677, CNS-
1041739, CNS-1127875, and CNS-1219579.

a Reject with Loop failure message. The traceback attack
exploited this feature by sending to a suspect node a specially
crafted probe message with the same UID as that of the
interested content request message, in order to determine if
the node has seen the content request message previously.

In this paper we develop a simple yet effective scheme
named dynID (dynamic UID) to thwart the traceback attack
on Freenet. In dynID, the UID of a content request message
will be dynamically changed at the beginning portion of the
message forwarding path. Let n denote the node where the
UID of a content request message is last changed along the
message forwarding path. In dynID, an attacker can only trace
back the message to n; it cannot uniquely determine if n or
any node is the originating machine of the message.

A key concern over dynID is that, given that a content
request message is not uniquely associated with a UID any-
more, loops may be formed along the message forwarding
path, which may limit the search scope of a content request
message and result in the failure in locating the corresponding
content on Freenet. We note that a number of design decisions
of dynID and the Freenet make this unlikely, and dynID
should only have negligible impacts on the performance of
Freenet in locating content on the network. Our simulation
studies using the original Freenet source code, extended with
dynID, show that, for all the content requests, we are able
to successfully locate the corresponding content, despite the
existence of short-lived loops along the forwarding path of a
content request message (in some of the simulation studies).

In this paper we present the details of the dynID scheme
in thwarting the traceback attack on Freenet, and conduct
simulation studies to investigate its performance impacts on
Freenet in locating content on the network. The remainder of
the paper is organized as follows. In Section II we provide the
essential background on the traceback attack (and Freenet). In
Section III we detail the proposed dynID scheme in thwarting
the traceback attack on Freenet. We perform simulation studies
on the impacts of dynID on the performance of Freenet in
Section IV. We briefly discuss related work in Section V and
conclude the paper in Section VI.

II. BACKGROUND

In this section we provide the necessary background on the
traceback attack on Freenet, and the critical Freenet features
that were exploited by the traceback attack. We refer interested
readers to [5] and [2] for the details of the traceback attack
and Freenet, respectively.

monitored

Monitoring node
Routing keys
to be

k−1 kn n

Attack nodes

Fig. 1. Illustration of the traceback attack.

Figure 1 illustrates the basic structure of the traceback
attack. In the traceback attack, an attacker will deploy a
number of monitoring nodes in Freenet, with each maintaining
a set of interested routing keys to be monitored. (A routing
key is calculated based on the content to be requested and
carried in a content request message.) A monitoring node
will passively observe the content request messages passing
through the node and try to match their routing keys with the
routing keys to be monitored.

When an interested content request message is identified by
a monitoring node m, it will forward a few pieces of informa-
tion to an attack node controlled by the attacker, including the
set of suspect nodes, which are the nodes who may have seen
(i.e., either originated or forwarded) the message. Let n → m
denote that a message is forwarded from node n to node m,
that is, node m received the interested message from node n.
Then the suspect nodes are the neighbors of node n (excluding
node m since we know that m has received the message). The
neighbor information of node n is available at node m due to
the two-hop lookup algorithm employed by Freenet [5].

After an attack node receives the set of suspect nodes, it
will connect to (i.e., become a neighbor of) each of the suspect
nodes one by one. This component of the attack is carried out
by exploiting the Freenet features on supporting an arbitrary
node to join Freenet and the neighbor update mechanism at a
Freenet node [1] and [5]. After an attack node is connected
to a suspect node, it will send a specially crafted probe
message to the suspect node to determine if the node has seen
the corresponding content request message previously. This
process exploited the Freenet feature on preventing routing
loops of content request messages.

In Freenet, each content request message is associated with
a unique identifier (UID), and each node also maintains the set
of UIDs that it has seen. UIDs maintained by a node is clas-
sified into two categories. The first category is a list of UIDs
associated with active request messages (whose corresponding
reply message has not come back from the downstream node),
and the second a queue of UIDs of the completed request
messages (whose corresponding reply message has come back
from the downstream node). When a request message arrives at
a node, the node will first check if it has seen the UID carried
in the message (in the set of UIDs of either category). If the
node has seen the UID previously, it will immediately send
back a failure message Reject with Loop to the upstream node
where the message comes from. Otherwise, it will process the
request message normally.

Based on the reply from a suspect node, the attack node can

determine if the suspect node has seen the message previously.
After a node n that has seen the message is identified, its
neighbors will be in turn considered as suspect nodes and
will be contacted and probed by an attack node to determine
if any of them has seen the message previously. Similarly,
the neighbor information of node n is available at the attack
node because of the two-hop lookup algorithm of Freenet. This
process continues until no new suspect nodes are identified. At
the end of this process, we have the set of all nodes that have
either originated or forwarded the content request message.

A set of lemmas were developed in [5] to help determine
the originating machine of a content request message, after
all nodes that have seen the message have been identified,
by exploiting the routing algorithms employed by Freenet to
forward a request message. In essence, the originating machine
of a content request message can be uniquely determined, if
the forwarding path of the message satisfies certain conditions
defined in the lemmas. The experimental studies performed
in [5] showed that, the originating machines of 24% to 43%
of content request messages can be uniquely determined.

III. DYNID TO THWART TRACEBACK ATTACK

In this section we provide the details of the dynID scheme in
thwarting the traceback attack on Freenet. We will present the
intuition and the design choices of the scheme, and illustrate
how it can help thwart the traceback attack on Freenet.

As we have discussed above, Freenet relies on a UID based
mechanism to prevent routing loops of request messages, and
this mechanism is one of the key features being exploited
by the traceback attack. By iteratively connecting to and
probing suspect nodes starting from a monitoring node where
an interested content request message is observed, an attacker
can identify all the nodes that have seen the message (based on
the UID value). The originating machine of the message can
then be determined if the message forwarding path satisfies
certain conditions [5].

Given that the UID associated with a content request mes-
sage plays a critical role in guiding the progress of a traceback
attack, one way to thwart the traceback attack is to dynamically
change the UID value associated with the message along the
message forwarding path, which is the basic idea of the dynID
scheme. In designing dynID, we must take into consideration
a few factors that may affect the performance of Freenet, and
whether or not an attacker can infer if the UID value of a
message has been changed. In particular, we note that UID
associated with a request message is used by Freenet to prevent
routing loops. If a routing loop is formed along the forwarding
path of a content request message, Freenet may not be able
to locate the desired content even if the content exists on the
network. Therefore, dynID should be designed in a way that
can reduce the likelihood of forming routing loops, which is
strongly related to when the UID value should be changed. In
the following we will discuss these design choices of dynID.

We first provide some necessary Freenet background on
controlling how far a request message can traverse in the
network. In Freenet, in addition to UID and routing key,

a content request message is also associated with an HTL
(hop to live) value, which is used to control how many hops
(nodes) the message can traverse. The HTL field is initialized
to a maximum value at the originating machine, and reduced
by one at each node. When the HTL value becomes 0 at a
node, the message is discarded by the node, and a Data not
Found failure message is returned to the upstream node (and
propagated back to the originating machine).

In Freenet, for security reasons, a node may not decrease the
HTL value by 1 when the HTL value is the maximum value,
so that a receiving node cannot infer if the upstream neighbor
is the originating machine of the message, even if HTL has a
value that is 1 less than the maximum value. Instead, the HTL
value is only decreased by 1 with a preconfigured probability
(default probability is 50%) when it equals the maximum
value. Similarly, the HTL value may not be decreased to 0
when it already reaches 1. As a consequence of this behavior,
a message may traverse a path that is longer than the initial
(maximum) HTL value.

Location where UID value should be changed. Now let
us discuss when the UID value of a request message should
be changed. To simplify the discussion, we first assume that
the UID is only changed once along the forwarding path. As
mentioned above, a consequence of dynamically changing the
UID value of a message is that routing loops may be formed
along the forwarding path, and more importantly, the desired
content may not be located because of routing loops. Figure 2
illustrates an instance where a routing loop is formed along
the forwarding message.

uid1 uid1 uid2

uid1uid1

A B C D E

Fig. 2. A forwarding path with loop.

In the figure, node A originates a message with UID value
of uid1, which is forwarded along the solid line from A to B,
and then to C, D, and E, in that order. Assume the UID value
is changed at node E from uid1 to uid2, and the message is
forwarded back to node B with the new UID value. Given
that the incoming message carries a new UID value, node B
considers the message a new message, and (likely) the message
will be forwarded along the dashed line to nodes C and D in
that order. Node D may again forward the message to node E.
However, given that node E has seen uid2 previously, it will
directly reject the message, and node D will choose a different
node to forward the message to (if it has one). We refer to
the number of nodes involved in a loop (i.e., the nodes that
forward the same message more than one time) as the size of
the loop, and denote it as |L|. In Figure 2, |L| = 3.

We note that the larger the value of |L| is, the greater impact
a loop will have on the decrement of the HTL value, and
consequently, the search scope of a content request message.
(Note that the HTL value may not always be decreased by 1

at a node.) In the worst case, the HTL value could be reduced
by |L|, that is, each node in the loop will decrease HTL by 1.
If the value of |L| is large, this can greatly affect the search
scope of a content request message. For example, assume the
maximum value of HTL is 18 (default HTL maximum value
in Freenet), and further assume |L| to be 15, the concerned
content request message can only roughly visit 3 nodes that
are not part of the loop along a forwarding path, and the
likelihood for the content request message to locate the desired
content will be small. Therefore, changing the UID value after
a request message has traversed a large number of nodes may
not be desired, due to the impacts on the performance of
Freenet in locating requested content on the network.

Another related issue is if the UID value of a request
message should be changed at a fixed (relative) location along
the forwarding path, or each node should independently decide
whether or not it will change the UID value. In order to
illustrate the issue, we present a failed solution that we first
worked on. In this failed solution, we choose to change the
UID value after a message has traversed at least two nodes.
More formally, let max denote the default maximum HTL
value (18 in Freenet), and let htli denote the HTL value carried
in a content request message when it arrives at a node n,
and htlo the new HTL value (may be htli − 1) to be carried
by the outgoing message. A new random UID value will be
assigned to the message by node n if htlo = max − 2 and
htli > max − 2.

We note that the two conditions ensure that the UID value
is only changed one time along the forwarding path (when
htlo = 16). We also note that the UID value may be changed
at node that is more than 2 hops away from the originating
machine, given that the HTL value may not be decreased
when it equals the maximum value. However, this solution
cannot completely prevent the traceback attack. For example,
if a monitoring node observes a content request message with
UID = 17, it can safely infer that the UID value of the
message has not been changed, and therefore, it can carry
out the traceback attack to determine the originating machine
of the message. Based on this observation, we conclude that
changing the UID value at a fixed location (relative to the HTL
value) cannot provide the desired anonymity strength. Instead,
we need to let each node to independently decide if the UID
value should be changed.

In order to balance the two requirements (the UID value
should not be changed after a content request message has
traversed a large number of nodes, and each node should
independently decide if the UID value should be changed),
dynID will only dynamically change the UID value of a
message at the beginning portion of the message forwarding
path. More specifically, the UID value will only be changed
with a preconfigured probability at the nodes where the HTL
of a message still equals the maximum value (i.e., htl = max).
Recall that the HTL value of a message may not be decreased
by 1 when it equals the maximum value, therefore, multiple
nodes may independently change the UID value of the mes-
sage. In essence, the basic process of changing UID in dynID

is similar to that of updating the HTL values in the original
Freenet. If the UID value is changed at a node n, node n will
also maintain the mapping between the two UIDs so that a
reply message can be properly processed and propagated back
to the upstream node.

Given this design of the dynID scheme, a natural question
is if the UID value should also be changed at other parts of
the forwarding path. We note that the objective of this work
is to thwart the traceback attack that can uniquely identify the
originating machine of a content request message. In dynID,
an attacker cannot deterministically infer if the UID value has
been changed at the beginning portion of the forwarding path.
Therefore, it cannot uniquely determine if the last node being
traced back to is the originating machine. Consequently, it is
not necessary to change the UID value again at other parts of
the forwarding path.

It is also worth noting that the UID value of a request mes-
sage may not be changed along the forwarding path, depending
on the length of the forwarding path, the dynamics of the
HTL value of the message, and the probabilistic behavior of
each node in deciding if the UID value should be changed.
The desired content may be located close to the originating
machine of the message (before the UID value is changed),
or all the nodes where the HTL value equals the maximum
value decide not to change the UID value. A related question
is whether or not we should guarantee that the UID value
should be changed at least one time along the forwarding
path. By the same argument as above, even if htl = max at
the monitoring node, an attacker still cannot deterministically
infer how many nodes the message has traversed or if the UID
value of a message has been changed. Therefore, we do not
need to guarantee that the UID value should be changed at
least one time.

Based on the above discussions, in this paper the UID
value of a content request message may only be changed at
the beginning portion of the message forwarding path while
htl = max, for the purpose of thwarting the traceback
attack that can uniquely identify the originating machine of
a content request message. We leave the investigation of
probabilistic identification of the originating machine of a
request message, and further changing the UID value along
the message forwarding path as future work.

How secure is dynID? In dynID, an attacker can trace
back a message from a monitoring node to the node n where
the UID value is last changed along the forwarding path of
the message. However, based on the information carried in the
request message alone, an attacker cannot determine if node n
is the originating machine or it is merely a node where the UID
value is changed. (An attacker can compute the probability
that node n is the originating machine, but it cannot uniquely
determine if it is so.)

One complicating factor is the availability of the routing
tables at the nodes in Freenet. Due to the two-hop message
lookup mechanism adopted in Freenet, the routing table of any
node in the Freenet can be obtained by an attacker (see [1]
and [5]). At the high level, Freenet adopts a two-hop shortest-

distance routing mechanism. Consider a message msg, and
let d(k) denote the distance from node k to the routing key
carried in the message msg (based on the virtual location of
node k and its neighbors). Let m denote a node on which
the message msg arrives, and let N denote the set of all
neighbors of node m. In the two-hop shortest-distance routing
mechanism of Freenet, node m will choose the neighbor with
the smallest distance to the routing key of the message msg,
that is argmink{d(k)}.

In [5], a few lemmas were developed to help determine the
originating machine of a message, by exploring the routing
algorithm used in Freenet. A natural question is that if the
routing algorithm (and the availability of routing tables of all
nodes) can help an attacker to determine the node n where
the UID is last changed is indeed the originating machine. To
ease exposition, let us assume that node k in Figure 3 is the
last node that an traceback attack have identified to have seen
an interested UID value uid (of an interested request message
msg), all the neighbors of node k did not see uid (except node
n, from which the attacker traced the message back to node k).
Without loss of generality, we further assume that node k is
the source node of message msg among all the nodes that the
traceback attack has identified to have seen the corresponding
UID value. That is, the message is first forwarded to node
k, before being further forwarded into any other nodes being
identified by the traceback attack, based on the UID value
observed by the monitoring node.

h j k n

Fig. 3. Can node j forward a message to node k if node h is more preferred?

Let N(k) denote the set of neighbors of node k (excluding
node n for the simplicity of discussion). If the attacker can
conclude based on the routing tables of N(k) and the routing
algorithm in Freenet that none of the nodes in N(k) can have
forwarded the message to node k, then it can also conclude
that node k is the originating machine of the message (recall
that we assume node k is the source node of all nodes that
have been identified by the traceback attack based on the UID
value).

In the following we show that, although the routing tables of
all nodes and the specifics of the routing algorithm of Freenet
are available to an attacker, it cannot determine if a neighbor
of node k can have forwarded a message to the node. We
note that despite the similarity between the problem being
faced here and the problem being faced in [5], the problem
faced here is much harder. In [5], an attacker knows all the
nodes that have seen a particular UID value, it only needs
to determine the direction of a message forwarding in order
to determine if a machine is the originator of a message. In
contrast, an attacker in the dynID scheme does not know all
the nodes that have either originated or forwarded a message.

One potential approach an attacker may try to determine if
node k is the originating machine is to check if it is possible
for any of the neighbors j ∈ N(k) to forward the message
msg to node k, based on the routing tables of the neighbors.
If it is impossible for any of the neighbors to forward the
message to node k, then the attacker can conclude that node
k is the originating machine of the message. Following the
methodology in [5], it is enticing to believe that if a neighbor
j has a more preferred neighbor h than node k (i.e., d(h) <
d(k)), node j will not forward the message to node k, and if
this applies to all neighbors of node k, none of them could have
forwarded the message to node k. However, this observation
is incorrect. Even if d(h) < d(k) holds, it is still possible for
node j to forward the message to node k.

One possible scenario is that node j tried to forward the
message to node h first (because it is more preferred); however,
the desired content is not located along that path, and the
message is backtracked to node j, which then chosen node k.
Another possible scenario is that, the message was actually
forwarded by node h to node j, and then forwarded by
node j to node k. There are other scenarios where it is
possible for node j to forward the message to node k, even
if more preferred neighbors of node j exist. Given that it is
alway possible to make a case that the message may have
been forwarded by a neighbor to node k, the attacker cannot
conclude node k is the originating machine, even if it is the
source node among all the nodes that have identified by the
traceback attack to have seen a request message.

Per node or per message probability to change the
UID value. In the original Freenet, the HTL value is kept
the maximum value on a per node basis. More specifically,
the behavior of a node to decrease or not to decrease the
HTL value when htl = max is determined when the node
is started (joining Freenet). After the behavior is determined,
it will be applied to all content request messages in the same
manner. However, it provides a security hole in the sense that
an attacker can easily determine the behavior of node in terms
of the HTL update. For example, an attacker can connect two
nodes to a target node, and send a content request message
from one attack node to request content stored on another
attack node. By observing the HTL value at the receiving
attack node, it can infer if the target node will decrease HTL
value or not (when it equals the maximum value).

Similarly, using the same method, an attacker can determine
if a target node will change the UID value (when htl = max),
should changing UID value be performed on a per node
basis. Moreover, an attacker can profile all nodes on Freenet
beforehand, instead of during a traceback attack. Profiling the
behavior of all benign nodes on Freenet (in terms of HTL
and UID update) will help an attacker in determining the
originating machine of a message, at least in some special
cases. For example, assume that node k is determined as
the source node of all nodes that have been identified by a
traceback attack, and assume (in an extreme case) that all
neighbors of node k will decrease the HTL value (when
htl = max), then the attacker can safely infer that node k

is the originating machine if, for example, the observed HTL
value equals the maximum value. For this reason, in dynID,
both the HTL value and the UID value are updated on a per
message basis instead of on a per node basis. That is, a node
will determine if the HTL value and UID value of a message
should be updated, independent from other messages that have
been forwarded by the node.

IV. PERFORMANCE EVALUATION

In this section we conduct simulation studies to investigate
the impacts of the dynID scheme on the performance of
Freenet in locating content on the network. We first describe
the set-up of the simulation studies, and then we present the
performance results.

A. Simulation Set-up
The performance studies are carried out using the simulator

coming with the Freenet project. Unlike other simulators that
re-implement (and normally simplify) a product system, the
simulator coming with Freenet uses the original Freenet source
code (version 0.7, the latest version of Freenet). Put in another
way, the behavior of nodes in the simulator is identical to that
of nodes in the real-world public Freenet. We extend the source
code of Freenet to support the dynID scheme.

All the Freenet networks we used in the simulation studies
consist of 400 nodes, and each node can have up to 6
neighbors. The networks are Kleinberg (small-world) networks
and constructed in the following manner [4]. As in the real-
world Freenet, each node in a network will be assigned with
a location in the circular space [0, 1], where location 0 and 1
are considered identical. The set of locations used are evenly
distributed in the circular space, with a distance of 1/N , where
N is the number of nodes in the network (400). The first
location is 0, the second 0.0025, the third 0.0050, and so on.

Next we describe how a node selects neighbors. A node n
will select half of the maximum number of neighbors based
on a probability that is reversely proportional to the distance
between node n and a candidate node. After all nodes have
selected half of the maximum number of neighbors (i.e., 3 in
our case), node n may have between 3 and 6 neighbors (node
n may be selected by other nodes as a neighbors, therefore, it
may have more than 3 neighbors). For each node n with b < 6
neighbors, we randomly select 6 − b nodes as its neighbors
among all the nodes who still need more neighbors.

We run 10 sets of simulation studies, with each set contain-
ing 100 simulation runs. Each set of simulation studies use the
same network topology (i.e., 10 different network topologies
are used). In each set of simulation studies, we insert 100
different files at randomly selected nodes, and then retrieve
them one by one from randomly selected nodes. We refer to
the 10 sets of simulation studies as S1 to S10, respectively. In
all simulation studies, we use the Freenet default values unless
otherwise stated. In particular, we use the default HTL value
(18), and the default probability 50% to decrease HTL when
it has the maximum value. The probability to change the UID
value in dynID when htl = max is also 50%.

B. Results
In this section we present the results of the simulation

studies; we focus on the impacts of the dynID scheme on the
performance of Freenet in locating content on the network. As
we have discussed early, loops may be formed along a message
forwarding path in dynID, which will (likely) decrease the
HTL value and limit the search scope of a content request
message. As a consequence, we may not be able to return
the desired content for a content request message, if the
loop situation becomes very bad (which has been taken into
consideration in the design of dynID).

TABLE I
RESULTS OF SIMULATION STUDIES.

Set Total Successful
S1-S10 1000 1000

As shown in Table I, for all the 1000 content requests, we
are able to successfully locate the desired content. A number of
factors should have contributed to the desired performance of
dynID. First, dynID limits the change of the UID values only
to the beginning portion of a message forwarding path. This
design coupled with the probabilistic behavior of decreasing
HTL values implies that the size of a loop, even if one is
formed, will not be large. (The number of nodes with htl =
max along a message forwarding path follows a geometric
distribution with p = 0.5.)

Moreover, the two-hop lookup algorithm and the semi-
structured network topology also help to route a content
request message towards the right direction [5]. In addition,
a large initial value of HTL (18) also reduces the chance for
a content request message to back track (to the originating
machine). Combining all these factors, the chance for a
forwarding path to enter a loop caused by dynID is small.
In addition, even if a loop is formed, its impact on affecting
HTL (and therefore limiting the search scope of the request
message) should also be small (see below).

In order to better understand the results of the simulation
studies, in Table II we show the number of message forwarding
paths of various properties. A forwarding path is considered
linear if every node n on the path only forwards the message
to a single downstream node one time. Consequently, paths

TABLE II
PROPERTIES OF MESSAGE FORWARDING PATHS.

Non-linear
Set Linear Total Loop (size) Rejected loop L & R
S1 99 1 0 1 0
S2 100 0 0 0 0
S3 99 1 0 1 0
S4 98 2 0 2 0
S5 99 1 0 1 0
S6 99 1 0 1 0
S7 100 0 0 0 0
S8 99 2 1 (2) 2 1
S9 100 0 0 0 0
S10 98 2 0 2 0

containing loops caused by dynID (loop in the table) and paths
where Reject with Loop occurs (Rejected loop in the table)
are non-linear paths. In the table the column L & R shows
the number of paths that contains both loops and Rejected
loops. As we can see from the table, the majority of message
forwarding paths are linear. Moreover, we only have one loop
that is caused by dynID, and the size of the loop is very
small (2), which should only impose a minimal impact on
the search scope of a content request message. Note that S8
contains more than 100 forwarding paths. When a Data not
Found failure (because htl = 0) is returned to the originating
machine, it will automatically start a new content request
message with a different UID value in the original Freenet [3].
We consider the path followed by this new content request
message as a separate path from the previous request message.

V. RELATED WORK

Shortly after the traceback attack was identified on Freenet,
the Freenet project developed a quick patch to mitigate the
traceback attack, by removing the queue of UIDs associated
with the completed request messages [6]. This scheme limits
the flexibility of the traceback attack in terms of the time
window that a traceback attack can be carried out. However,
given that the list of UIDs associated with active request
messages are still maintained by each node, the traceback
attack can be still carried out, albeit with a smaller time
window due to the scheme. The lightweight dynID scheme
can more effectively thwart the traceback attack on Freenet.
In particular, an attacker can only trace back a content request
message to the node where the UID value is last changed;
it cannot uniquely determine the originating machine of the
message. It is worth noting that the two schemes complement
each other, and can be combined to provide stronger user
anonymity for content retrievers on Freenet.

VI. CONCLUSION

In this paper we have developed a simple yet effective
scheme named dynID to thwart the traceback attack on
Freenet. In dynID, an attacker can only trace back a content
request message to the node where the UID value is last
changed; it cannot uniquely determine the originating machine
of the message. Importantly, the developed dynID scheme
only has negligible impacts on the performance of Freenet
in locating content on the network.

REFERENCES

[1] T. Baumeister, Y. Dong, Z. Duan, and G. Tian. A routing table insertion
attack on Freenet. In Proceedings of ASE International Conference on
Cyber Security, Washington D.C., USA, Dec. 2012.

[2] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In International
Workshop On Designing Privacy Enhancing Technologies: Design Issues
In Anonymity And Unobservability, 2001.

[3] Freenet. https://freenetproject.org/.
[4] Freenet. Kleinberg networks. https://wiki.freenetproject.org/Kleinberg

network/.
[5] G. Tian, Z. Duan, T. Baumeister, and Y. Dong. A traceback attack on

Freenet. In Proc. IEEE INFOCOM, Turin, Italy, Apr. 2013.
[6] Toad. How safe is Freenet anyway? http://amphibian.dyndns.org/

flogmirror/#20120911-security.

