
SSH: Secure Shell

• Readings

• RFC 4251- RFC 4254

• Manual page of ssh command

What is SSH?

• SSH – Secure Shell
– Program vs. company vs. protocol

– Will concentrate on SSH-2 protocol

• SSH is a protocol for secure remote login and other

secure network services over an insecure network

– Replacement for telnet, rsh, rlogin, etc

• Developed by SSH Communications, Finland

• Specified in a set of Internet drafts

• Two distributions are available:

– Commercial version

– Freeware (www.openssh.com)

2

SSH Layers

SSH Application

User authentication

Protocol

Connection

Protocol

Transport Layer Protocol

TCP

3

Major SSH Components

• SSH Transport Layer Protocol
– Provides server authentication, confidentiality, and integrity

services

– May provide compression too

– Runs on top of any reliable transport layer (e.g., TCP)

• SSH User Authentication Protocol
– Provides client-side user authentication

– Runs on top of the SSH Transport Layer Protocol

• SSH Connection Protocol
– Multiplexes multiple logical channels into secure tunnel

provided by Transport Layer and User Authentication Protocols

– Logical channels can be used for a wide range of purposes

• Secure interactive shell sessions

• Forwarding X11 connections

• TCP port forwarding

4

SSH Security Features

• Strong algorithms

– Uses well established strong algorithms for encryption,

integrity, key exchange, and public key management

• Large key size

– Requires encryption to be used with at least 128 bit keys

– Supports larger keys too

• Algorithm negotiation

– Encryption, integrity, key exchange, and public key

algorithms are negotiated

– It is easy to switch to some other algorithm without modifying

the base protocol

5

SSH Transport Layer Protocol – Overview

6

client server

TCP connection setup

SSH version string exchange

SSH key exchange

(includes algorithm negotiation)

SSH data exchange

termination of the TCP connection

Key Exchange - Overview

7

client server

execution of the selected

key exchange protocol

SSH_MSG_KEXINIT

SSH_MSG_NEWKEYS

u
s
e

s
 n

e
w

 k
e

y
s

a
n

d
 a

lg
o

ri
th

m
s

fo
r

s
e

n
d

in
g

u
s
e

s
 n

e
w

 k
e

y
s

a
n

d
 a

lg
o

ri
th

m
s

fo
r

re
c
e

iv
in

g

Diffie-Hellman Key Exchange

(with Explicit Server Authentication)
1.

– Client generates a random number x and computes e = gx mod p

– Client sends e to the server

2.

– Server generates a random number y and computes f = gy mod p

– Server receives e from the client

– It computes K = ey mod p = gxy mod p and H = HASH(client version string |

server version string | client kex init msg | server kex init msg | server host

key Ksrv | e | f | K)

– It generates a signature s on H using the private part of the server host key

(may involve additional hash computation on H)

– It sends (Ksrv | f | s) to the client

3.

– Client verifies that Ksrv is really the host key of the server

– Client computes K = fx mod p = gxy mod p and the exchange hash H

– Client verifies the signature s on H

8

Deriving Keys and IVs
• Any key exchange algorithm produces two values

– a shared secret K

– an exchange hash value H

• H from the first key exchange is used as the session ID

• Keys and IVs are derived from K and H as follows:
– IV client to server = HASH(K | H | “A” | session ID)

– IV server to client = HASH(K | H | “B” | session ID)

– encryption key client to server = HASH(K | H | “C” | session ID)

– encryption key server to client = HASH(K | H | “D” | session ID)

– MAC key client to server = HASH(K | H | “E” | session ID)

– MAC key server to client = HASH(K | H | “F” | session ID)

9

Server Authentication

• Based on the server’s host key Ksrv

• Client must check Ksrv is really host key of server

• Models
– Client has a local database that associates each host name with the

corresponding public host key

– Host name – to – key association is certified by a trusted CA and

server provides the necessary certificates or client obtains them from

elsewhere

– Check fingerprint of key over an external channel (e.g., phone)

– Best effort:

• accept host key without check when connecting first time to server

• save the host key in the local database, and

• check against the saved key on all future connections to the same

server

10

Key Re-Exchange

• It is recommended to change keys after each

gigabyte of transmitted data or after each hour of

connection time

• key re-exchange is processed identically to the

initial key exchange

– except for the session ID, which will remain unchanged

– algorithms may be changed

– keys and IVs are recomputed

11

Service Request

• After key exchange the client requests a service

• Services

– ssh-userauth

– ssh-connection

• When the service starts, it has access to the session

ID established during the first key exchange

12

SSH – User Authentication Protocol

• Protocol assumes that the underlying transport protocol

provides integrity and confidentiality (e.g., SSH Transport Layer

Protocol)

– Protocol has access to the session ID

• Three authentication methods are supported

– publickey

– password

– hostbased

13

The “publickey” Method

• All implementations must support this method

• However, most local policies will not require

authentication with this method in the near future, as

users don’t have public keys

• Authentication is based on demonstration of the

knowledge of the private key (the client signs with the

private key)

• Server verifies that

– the public key really belongs to the user specified in the

authentication request

– the signature is correct

14

The “password” Method

• All implementations should support this method

– User account

– password

• This method is likely the most widely used

15

The “hostbased” Method

• Authentication is based on the host where the user is

coming from

– This method is optional

• Client sends a signature that has been generated

with the private host key of the client

• Server verifies that

– The public key really belongs to the host specified in the

authentication request

– The signature is correct

16

Hostbased: Try the Following

• To access or run command on remote machine
without typing password.

• Remote ssh from machine A to machine B
Step 1: at machine A: ssh-keygen –t rsa

(do not enter any pass phrase, just keep typing “enter”)

Step 2: append A:.ssh/id_rsa.pub to B:.ssh/authorized_keys

• After these steps, (without typing password)
– You should be able to access remote machine

• On machine A: ssh user@B

– you should be able to run remote command.

• On machine A: ssh user@B “command”

• We do not recommend this
– Breaking into one machine, breaking into all machines

17

SSH – Connection Protocol

• Provides

– interactive login sessions

– remote execution of commands

– forwarded TCP/IP connections

– forwarded X11 connections

• All these applications are implemented as “channels”

• All channels are multiplexed into the single encrypted

tunnel provided by the SSH Transport Layer Protocol

• Channels are identified by channel numbers at both

ends of the connection

– Channel numbers for the same channel at the client and

server sides may differ

18

SSH Port Forwarding or Tunneling

• Frequently as an alternative to a full-fledged VPN
– A (non-secure) TCP/IP connection of an external application is

redirected to the SSH program (client or server)

• Forwards it to the other SSH party (server or client)

• In turn forwards the connection to the desired destination
host

• Forwarded connection is encrypted and protected on
the path between the SSH client and server only

• Primarily useful for tunneling connections through
firewalls
– Ordinarily block that type of connection

– Encrypting protocols which are not normally encrypted (e.g.
VNC).

19

TCP/IP Port Forwarding Example

• Real server on remote machine

– I want to listen on port 5110 on this machine; all packets

arriving here get sent to mailserver, port 110:

– ssh –L 5110:mailserver:110 mailserver

• Real server on this machine

– All web traffic to my firewall should be redirected to the web

server running on port 8000 on my machine instead:

– ssh –R 80:MyMachine:8000 firewall

20

X Windows Forwarding

• No setup – already done!

• Run the X Windows application in the terminal

window:

– xclock &

– The screen display shows up on your computer, and any

keystrokes and mouse movements are sent back, all

encrypted.

21

SSL/TLS vs. SSH

• Developed around the same time (mid 90s)

• SSH Transport Layer Protocol roughly equivalent to

SSL/TLS

– SSH could have been implemented using SSL/TLS

• They do have different origins and targeted

applications

• SSL/TLS, developed by Netscape for web application

– Authenticating server is critical

• SSH targets to replace plaintext remote login

– Authenticating both server and client is critical

22

Reading Assignment

• Reviewing for final exam

23

