SSH: Secure Shell

* Readings
« RFC 4251- RFC 4254
» Manual page of ssh command

What is SSH?

SSH — Secure Shell

— Program vs. company vs. protocol
— Will concentrate on SSH-2 protocol

SSH is a protocol for secure remote login and other
secure network services over an insecure network
— Replacement for telnet, rsh, rlogin, etc

Developed by SSH Communications, Finland
Specified in a set of Internet drafts

Two distributions are available:
— Commercial version
— Freeware (www.openssh.com)

SSH Layers

SSH Application

User authentication Connection
Protocol Protocol

Transport Layer Protocol

TCP

Major SSH Components

« SSH Transport Layer Protocol

— Provides server authentication, confidentiality, and integrity
services

— May provide compression too
— Runs on top of any reliable transport layer (e.g., TCP)

« SSH User Authentication Protocol
— Provides client-side user authentication
— Runs on top of the SSH Transport Layer Protocol

« SSH Connection Protocol

— Multiplexes multiple logical channels into secure tunnel
provided by Transport Layer and User Authentication Protocols

— Logical channels can be used for a wide range of purposes
» Secure interactive shell sessions
* Forwarding X11 connections
« TCP port forwarding

SSH Security Features

e Strong algorithms
— Uses well established strong algorithms for encryption,
integrity, key exchange, and public key management
« Large key size
— Requires encryption to be used with at least 128 bit keys
— Supports larger keys too

» Algorithm negotiation
— Encryption, integrity, key exchange, and public key
algorithms are negotiated

— ltis easy to switch to some other algorithm without modifying
the base protocol

SSH Transport Layer Protocol — Overview

client server

TCP connection setup

A

\ 4

SSH version string exchange

A

A 4

SSH key exchange
(includes algorithm negotiation)

A

SSH data exchange

A

termination of the TCP connection

A

Key Exchange - Overview

client server

SSH_MSG_KEXINIT

><

execution of the selected
key exchange protocol

SSH_MSG_NEWKEYS

uses new keys
and algorithms
for sending

uses new keys
and algorithms

<«

for receiving

P
<«

Diffie-Hellman Key Exchange
(with Explicit Server Authentication)

Client generates a random number x and computes € = g* mod p
Client sends e to the server

Server generates a random number y and computes f = g¥y mod p
Server receives e from the client

It computes K = eY mod p = g mod p and H = HASH(client version string |
server version string | client kex init msg | server kex init msg | server host
key K [€| TIK)

It generates a signature s on H using the private part of the server host key
(may involve additional hash computation on H)

It sends (K, | f| s) to the client

Client verifies that K, is really the host key of the server
Client computes K = * mod p = g mod p and the exchange hash H
Client verifies the signature s on H

Deriving Keys and |Vs

* Any key exchange algorithm produces two values
— ashared secret K
— an exchange hash value H
* H from the first key exchange is used as the session ID

« Keys and IVs are derived from K and H as follows:
— IV client to server = HASH(K | H | “A” | session ID)
— IV server to client = HASH(K | H | “B” | session ID)
— encryption key client to server = HASH(K | H | “C”" | session ID)
— encryption key server to client = HASH(K | H | “D” | session ID)
— MAC key client to server = HASH(K | H | “E” | session ID)
— MAC key server to client = HASH(K | H | “F” | session ID)

Server Authentication

« Based on the server's host key K,
» Client must check K, is really host key of server
 Models

Client has a local database that associates each host name with the
corresponding public host key

Host name — to — key association is certified by a trusted CA and
server provides the necessary certificates or client obtains them from
elsewhere

Check fingerprint of key over an external channel (e.g., phone)

Best effort:
 accept host key without check when connecting first time to server
» save the host key in the local database, and

» check against the saved key on all future connections to the same
server

10

Key Re-Exchange

« Itis recommended to change keys after each
gigabyte of transmitted data or after each hour of
connection time

* key re-exchange is processed identically to the
Initial key exchange
— except for the session ID, which will remain unchanged
— algorithms may be changed
— keys and |Vs are recomputed

11

Service Request

« After key exchange the client requests a service

e Services
— ssh-userauth
— ssh-connection

 When the service starts, it has access to the session
ID established during the first key exchange

12

SSH — User Authentication Protocol

Protocol assumes that the underlying transport protocol
provides integrity and confidentiality (e.g., SSH Transport Layer

Protocol)
— Protocol has access to the session ID

Three authentication methods are supported
— publickey
— password
— hostbased

13

The “publickey” Method

All implementations must support this method

However, most local policies will not require
authentication with this method in the near future, as
users don’t have public keys

Authentication is based on demonstration of the
knowledge of the private key (the client signs with the
private key)

Server verifies that

— the public key really belongs to the user specified in the
authentication request

— the signature is correct

14

The “password” Method

« All implementations should support this method
— User account
— password

* This method is likely the most widely used

15

The “hostbased” Method

Authentication is based on the host where the user is
coming from

— This method is optional

Client sends a signature that has been generated
with the private host key of the client
Server verifies that

— The public key really belongs to the host specified in the
authentication request

— The signature is correct

16

Hostbased: Try the Following

To access or run command on remote machine
without typing password.
Remote ssh from machine A to machine B

Step 1: at machine A: ssh-keygen —t rsa
(do not enter any pass phrase, just keep typing “enter”)
Step 2: append A:.ssh/id_rsa.pub to B:.ssh/authorized keys

After these steps, (without typing password)
— You should be able to access remote machine
* On machine A: ssh user@B
— you should be able to run remote command.
* On machine A: ssh user@B “command”

We do not recommend this

— Breaking into one machine, breaking into all machines

17

SSH — Connection Protocol

Provides

— interactive login sessions

— remote execution of commands
— forwarded TCP/IP connections
— forwarded X11 connections

All these applications are implemented as “channels”

All channels are multiplexed into the single encrypted
tunnel provided by the SSH Transport Layer Protocol

Channels are identified by channel numbers at both
ends of the connection

— Channel numbers for the same channel at the client and
server sides may differ

18

SSH Port Forwarding or Tunneling

Frequently as an alternative to a full-fledged VPN

— A (non-secure) TCP/IP connection of an external application is
redirected to the SSH program (client or server)

« Forwards it to the other SSH party (server or client)
* In turn forwards the connection to the desired destination
host

Forwarded connection is encrypted and protected on
the path between the SSH client and server only

Primarily useful for tunneling connections through

firewalls
— Ordinarily block that type of connection

— Encrypting protocols which are not normally encrypted (e.g.
VNC).

19

TCP/IP Port Forwarding Example

Real server on remote machine

— | want to listen on port 5110 on this machine; all packets
arriving here get sent to mailserver, port 110:

— ssh —L 5110:mailserver:110 mailserver

Real server on this machine

— All web traffic to my firewall should be redirected to the web
server running on port 8000 on my machine instead:

— ssh —R 80:MyMachine:8000 firewall

20

X Windows Forwarding

* No setup — already done!

* Run the X Windows application in the terminal
window:

— Xxclock &

— The screen display shows up on your computer, and any
keystrokes and mouse movements are sent back, all
encrypted.

21

SSL/TLS vs. SSH

Developed around the same time (mid 90s)

SSH Transport Layer Protocol roughly equivalent to

SSL/TLS
— SSH could have been implemented using SSL/TLS

They do have different origins and targeted
applications

SSL/TLS, developed by Netscape for web application

— Authenticating server is critical

SSH targets to replace plaintext remote login
— Authenticating both server and client is critical

22

Reading Assignment

* Reviewing for final exam

23

