SSL and TLS

 Readings

— Chapter 19



Internet Security Protocols

IPSec and SSL

Socket layer lives
between
application and
transport layers

SSL usually lives
between HTTP
and TCP

IPSec lives at the
network layer

SSL ‘_,

IPSec |—>

application

transport

network

link

physical

User

0OS

NIC



What is SSL (Secure Socket Layer)?

SSL is the protocol used for most secure transactions
over the Internet

For example, if you want to buy a book at
amazon.com...

— You want to be sure you are dealing with Amazon
(authentication)

— Your credit card information must be protected in transit
(confidentiality and/or integrity)

— As long as you have money, Amazon doesn’t care who you
are (authentication need not be mutual)



Secure Socket Layer

Originally developed by Netscape

SSL runs above layer 4 (the transport control layer),
It is sometimes said to be at layer 4

In practice, SSL uses TCP sockets

— The underlying TCP implementation handles robustness of
communication, such as replay of lost packets, buffering
packets to re-order them correctly, etc.

SSL extends the TCP interface (sockets API) by
adding security features

Versions 2 & 3, with SSLv3 most commonly
deployed.
— TLS (Transport Layer Security) is a variation of v3
— Internet standard



What does It Entail?

 To use SSL, applications must change.

— They have to use the SSL API (application programming
interface) and use SSL calls instead of TCP socket calls.
Applications’ networking code must change.

— See for example OpenSSL, based on the SSLeay Library.

« SSL runs above TCP/IP (transport/network layer)
and below high-level application protocols such as
HTTP, LDAP and IMAP.

« SSL may be deployed without making changes to
the underlying Operating System, because it does
not alter the implementation of the TCP protocol.



Capabilities of SSL

« SSL server authentication
— User can confirm a server’s identity

— SSL client software checks server’s certificate and public
key, and that they have been issued by a CA in the clients
list of trusted CAs.

« SSL client authentication
— Server can optionally check client identity

* Encrypted SSL Connection
— Supports encryption and data integrity



SSL/TLS: First Ingredients

« SSL supports several “cipher suites™:

— Algorithm sets for public key encryption, symmetric key
encryption, and authentication (MACs).

— Flexibility was needed because of export restrictions.
— Client and server must negotiate which algorithms are used
in a session.
« Client and server agree on a common secret:
— Negotiated using public key cryptography
— Incorporates challenges (nonces) from both parties.
— From this common secret the symmetric keys are derived.

« SSL'’s focus is on real-time communication security

— for applications such as those requiring authentication of
web sites but not specifically the authentication of clients



SSL/TLS: Ingredients (2)

« SSL uses directional symmetric keys. After agreeing
on a common secret (master key K):

— Client and server derive from it two Vs, encrypt and decrypt
keys, as well as authentication and verification keys. A total
of six secrets are derived from the agreed secret (pre-key).

— Client read keys = Server write keys

» Server |V = part of Server encryption parameters = part of client
decryption parameters

» Server encryption key = Client decryption key
« Server authentication key = Client verification key (also called
integrity keys or MAC keys)
— Client write keys = Server read keys

» Client IV = part of Client encryption parameters = part of server
decryption parameters

» Client encryption key = Server decryption key
» Client authentication key = Server verification key



Simple SSL-like Protocol

I'd like to talk to you securely
—
Here's my certificate
—

{KAB}Bob
—

protected HTTP

* |s Alice sure she’s talking to Bob?
* |s Bob sure he’s talking to Alice?



Simplified SSL Protocol

Can we talk?, cipher list, R,

—
certificate, cipher, Ry

{S}gop, E(h(mMsgs,CLNT,K),K)
—
h(msgs,SRVR,K)

Data protected with key K

« S is pre-master secret, chosen by Alice
K= h(S,R,,Rp)

msgs = all previous messages

CLNT and SRVR are constants

10



SSL Keys

* 6 “keys” derived from master key K =
hash(S,R,,Rg)

— 2 encryption keys: send and receive
— 2 integrity keys: send and receive
— 2 IVs: send and receive (client and server side 1Vs)
— Why different keys in each direction?

* Q: Why is h(msgs,CLNT,K) encrypted (and
integrity protected)?

« A: It adds no security...

11



SSL Authentication

* Alice authenticates Bob, not vice-versa
— How does client authenticate server?
— Why does server not authenticate client?

* Mutual authentication is possible: Bob sends
certificate request in message 2

— This requires client to have certificate

— |If server wants to authenticate client, server could
instead require (encrypted) password

12



SSL MiM Attack

Ra Ra
i o ECGK) (S 2door EOGK)
h(Y.K,) (Y K,)
Alice E(data,K,) Tru E(data,K,)
- —_——— - -> - —_-——— - ->

Q: What prevents this MiM attack?

A: Bob’s certificate must be signed by a
certificate authority (such as Verisign)

What does Web browser do if sig. not valid?
What does user do if signature is not valid?

13



SSL Sessions vs Connections

SSL session is established as shown on previous
slides

SSL designed for use with HTTP 1.0

HTTP 1.0 usually opens multiple simultaneous
(parallel) connections

SSL session establishment is costly
— Due to public key operations

SSL has an efficient protocol for opening new
connections given an existing session

14



SSL Connection

session-ID, cipher list, R,
—
session-ID, cipher, Ry
h(msgs,SRVR,K)
—
h(msgs,CLNT,K)
—

| Alice Protected data

Assuming SSL session exists

So S is already known to Alice and Bob
Both sides must remember session-ID
Again, K = h(S,R,,Rg)

0 No public key operations! (relies on known S)

15



HTTPS

* Hypertext Transfer Protocol Secure
— Different from S-HTTP (Secure HTTP)

* Not a new single protocol
— A combination of HTTP and SSL/TLS
— On default port number 443 instead of 80

16



 Chapter 17

Reading Assignment

17



