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What is VVUQ? ● Verification
○ Does the computational 

model fit the mathematical 
description?

● Validation
○ Is the model an accurate 

representation of the real 
world?  

● Uncertainty Quantification
○ How do variations in the 

numerical and physical 
parameters affect simulation 
outcomes?

B.H.Thacker, et al., “Concepts of Model Verification and 
Validation.” 2004. DOI: 10.2172/835920. 



Stochastic (aleatory) errors
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PROTEIN

DRUGS

SINGLE MD

Errors in Computer Simulation
Molecular Dynamics (MD)

Systematic (epsitemic) errors
Preference/bias of different structures from some force fields, which requires extensive 
studies to identify:
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Ensemble MD Simulations

• The MM/PBSA results follow well defined Gaussian distributions.

• Configurational entropies, obtained from normal mode estimates, closely 

resemble normal distributions.

Drug – HIV-1 protease

Wright, Hall, Kenway, Jha & Coveney, JCTC, (2014), DOI: 10.1021/ct4007037.
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Stochastic errors & chaotic systems

P. V. Coveney and R. Highfield, “The arrow of time: a voyage through science to solve time’s greatest mystery”, W. H. 
Allen, London, 1990.
P.V. Coveney, S. Wan, Phys. Chem. Chem. Phys. 2016, 18, 30236−30240.

• Stochastic errors arise due to the chaotic nature of dynamics in 
• eg. classical MD and turbulence

• Such chaotic systems exhibit extreme sensitivity to initial conditions
• Long-time trajectories have low accuracy



Dealing with stochastic errors

• Ideal goal is to find out the (usually) equilibrium 
distribution function – BUT difficult

• Sample the behavior to compute expectation values 
of observables – must do this well

• Use extensive ensemble and time averaging

• The statistical theory of turbulence is based on such 
an approach 9
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Sampling of chaotic systems 
A new pathology in the simulation of chaotic 
dynamical systems on digital computers

Bruce M. Boghosian (Tufts University) 
Peter V. Coveney (UCL) 
Hongyan Wang (Tufts University)

Boghosian, Bruce M., Peter V. Coveney, and Hongyan Wang. "A New Pathology in the Simulation of 
Chaotic Dynamical Systems on Digital Computers" Advanced Theory and Simulations (2019): 1900125.
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Bernoulli map: a simple dynamical system which exhibits chaotic behavior

𝑥"#$ = 2 𝑥" 𝑚𝑜𝑑 1 𝑥 ∈ [0,1)

The generalised Bernoulli map is also known as the b shift:

𝑥"#$ = 𝛽 𝑥" 𝑚𝑜𝑑 1 𝑥 ∈ [0,1), 

- a one-parameter map where b is either an integer or a rational non-integer (> 1).

Many things are known about the behaviour of this map using continuum mathematics. For one 
thing, all b shifts are ergodic and have a unique invariant measure of maximum entropy.

The late time dynamical properties of the b shift can be obtained from the unstable periodic 
orbit (UPO) structure underlying the map. 

From the set of countable UPOs, one can compute ensemble averages of observables using 
Ruelle’s dynamical zeta function.

Ruelle, David. Thermodynamic formalism: the mathematical structure of equilibrium statistical mechanics. Cambridge 
University Press, 2nd edn, 2004 

The generalised Bernoulli map (1)
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The generalised Bernoulli map (2)

● A simple, yet prototypical driven, dissipative dynamical chaotic system 

with a single free parameter 𝛽

● Many of its exact properties are known

● Its state space is in correspondence with the real numbers in the 

interval [0,1). 

● The initial condition is denoted by 𝑥1. 

● The state of the system at time 𝑗 + 1, denoted by 𝑥4#$, is given by

𝑥4#$ = 𝑓𝛽 𝑥4 ≔ 𝛽𝑥4 mod 1

● We consider values of 𝛽 > 1
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Mathematical properties of the map (1) 

● Has a dense, complex attracting set

● An exact expression for its invariant measure is known

● Topologically conjugate to many engineering, biological, chemical and 

mathematical systems

● Can calculate exact expectation values of observables 𝑂 𝑥 = 𝑂<= using 

term-by-term integration over the known invariant measure
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Mathematical properties of the map (2) 

● For any integer value of 𝛽 ≥ 2, the Perron–Frobenius equation can be used to 

demonstrate that the invariant measure of the dynamics is uniform on [0,1)

● For non-integer 𝛽, the invariant measure is much more complicated, but an exact 

expression for it is given by the following series due to Hofbauer

where 𝑥4 ≔ 𝑓?
4 𝑥 (so that, in particular, 14 denotes 𝑓?

4 1 ), 𝜃 is the Heaviside 
function and 𝐶 is a normalization constant. 

Hofbauer, Franz. "β-shifts have unique maximal measure." Monatshefte für Mathematik 85.3 (1978): 189-198.
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Mathematical properties of the map (3)

Invariant measures of the generalized Bernoulli map 𝑓? for 𝛽 = B
C
, C
D
, E
D
, D
F

. 
These are normalized so that ℎ? 1 = 1, which corresponds to 𝐶 = 1 in 
the Hofbauer series

• The Hofbauer series makes 
manifest that the invariant 
measure has discontinuities at 
a dense set of points in 0,1

• Examples for four non-
integer values shown

• Caution: Graphs are less 
smooth than they appear
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The b shift – floating point representation (1)

• The map can be represented & simulated on digital computers using 
standard IEEE floating-point numbers

• Single-precision IEEE floating-point numbers consist of 32 bits, of the 
form 𝜎, 𝑒$, 𝑒F, … , 𝑒K,𝑚$,𝑚F, …𝑚FD where 𝜎 is the sign bit, 𝑒4 are the 
exponent bits & 𝑚4 the mantissa bits.

• Similar construction for double-precision numbers, but using 52 mantissa 
bits and 11 exponent bits.

• Floating point numbers are dyadic (numbers whose denominators are 
powers of two)

• Dyadic numbers are a poor representation of the rational numbers
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Floating point calculations: 
• For the b shift in single precision, we can perform the numerical analysis 

using all the available 4 billion single precision floating point numbers.

• Calculation proceeds by enumerating the Unstable Periodic Orbits (UPOs)

• We compute averages over the limit cycles, then weight those averages by 
the fractional sizes of the corresponding basins of attraction in [0, 1) 

• Equivalent to an ideal floating-point simulation of the system, for an 
infinite period of time and using an infinite number of ensemble elements. 

• We are able to compute this result because there are just about a billion 
single-precision floating-point numbers in [0, 1).

The b shift – floating point representation (2)
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Floating point pathology: b even integer

• Floating-point arithmetic causes highest damage to the dynamics for even values of 𝛽

• Consider 𝛽 = 2 

• The binary digits shift one place to the left with each iteration

• 1 iteration → left shift bits by 1 place → loss of 1 bit of precision with each application of 
the map

• Result will be zero 
• after 23 iterations for single-precision arithmetic
• after 52 iterations for double-precision arithmetic

• The invariant measure will be a Kronecker delta at 𝑥 = 0

• In the hypothetical limiting case of  number of mantissa bits approaching ∞, the Kronecker
delta would effectively approach a delta distribution at 𝑥 = 0

• f.p. arithmetic’s predicted exact time-asymptotic result will never be a uniform measure, the 
correct answer for the real-valued dynamics

• This pathology is fundamental to f.p. arithmetic & independent of choice of radix



19

F.P. representation: loss of UPO structure

• All rational numbers lie on periodic or eventually periodic orbits, since 
their base-𝛽 digit representations will (eventually) repeat

• All irrational numbers lie on chaotic trajectories
• The state space therefore consists of a dense set of unstable periodic orbits

Orbit statistics for odd values of 𝛽 from 3 to 17, 
including the class 𝑆P

± ∈ 𝐶 to which it belongs, the 
value of 𝑘 within that set, the number of orbits of 
various periods, the length 𝑇TU= of the longest orbit, 
and the total number of orbits 𝑁WXY

• Table shows that the periodic orbit 
spectrum for single precision 
floating-point numbers for odd 
integer 𝛽 is very different from 
that of the real continuum 
dynamical system

• Only orbits consisting of dyadic 
fractions can be represented 
precisely, and these have periods 
that are restricted to powers of two
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Floating point pathology: b odd integer

• We compare 𝑂<= with the ideal floating-
point simulation results 𝑂Z[

• The initial conditions comprise an infinite 
ensemble randomly sampled from [0,1), 
each of which is allowed to run for an 
infinite length of time.

• Relative error between the expectation 
values is due to the newfound pathology Relative error and invariant

measure for 𝛽 odd integer
(𝛽 = 7)

This also holds true for 𝛽 = 5,7,9
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Floating point pathology: non-integer b

• Discrepancy between the exact (blue) and numerical (histogram) invariant measures 
for the generalized Bernoulli map 𝑓? for 𝛽 = 3,5,7,9 and for 𝛽 = D

F
, E
D
, C
E
, B
C

• This simulates the average we would obtain if we could run over both an infinite 
length of time and an infinite ensemble size.

• While the agreement is good for odd integer 𝛽 (though still greater than round off), it 
is seen to be very poor for non-integer 𝛽
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Floating point representation (non-integer 𝜷) 

Relative error of the floating-point calculation of the expectation value of 𝑥a for the generalized
Bernoulli map 𝑓?for 𝛽 = B

C
, C
E
, E
D
, D
F

simulating the average we would obtain if we could run over
both an infinite length of time and an infinite ensemble size
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The f.p. error is related to longest period UPO

• This egregious discrepancy in the invariant measure is the origin of the order unity 
differences observed between the theoretical and numerical expectation values of 𝑥a

Maximum relative error of the floating-point calculation of the expectation value of 
𝑥a for 1 ≤ 𝑞 ≤ 100 for various values of 𝛽, versus the period of the longest orbit 
present in the floating point dynamics 
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Summary of floating point analysis (1)

• Floating point numbers have a strong detrimental influence on the map due to
§ their discrete and finite nature, and
§ the delicate structure of the attracting set of chaotic dynamical systems

• For even integer values of 𝛽, the long time behaviour is completely wrong, 

subsuming the known anomalous behaviour for 𝛽 = 2

• For non-integer 𝛽, relative errors in observables can reach 14%

• For odd integer 𝛽 values, floating-point results are more accurate, yet possess 
relative errors two orders of magnitude larger than those attributable to round-off.
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• Alternative representations of real (rational) numbers
- next generation arithmetic

• Investigating unums and posits ~ Gustafson (*)

• Consider analogue computation

* J. L. Gustafson, The End of Error: Unum Computing, Chapman and Hall/CRC Press, Boca Raton, FL, USA 2015.

Mitigation


