
1

FAT32 Utility Operations
Guide

Classes COP4610 / CGS5765

Florida State University

Outline

 Directory entries

 Short-name and long-name entries

 Read-only project 3 operations

 Other non-read-only project 3 operations

2

Directory Entries

3

Directory Entries

 Lists names of files and directories in a
directory

 Types

 Short-name directory entry

 Long-name directory entry

4

Short-name Directory Entry

 Limits name size to 8 bytes with additional 3
bytes after “.”

 Compatible with previous FAT versions

 32 bytes total size

 Holds important information about file or dir:

 Attributes, timestamp, last access date, first
cluster number, size

5

Short-name Directory Entry
 FAT32 Directory Entry Structure

6

Name Offset (byte) Size
(bytes)

Description

DIR_Name 0 11 Short Name

DIR_Attr 11 1 File Attributes (More on
it later)

DIR_NTRes 12 1 Reserved for Windows
NT

DIR_CrtTimeTenth 13 1 Millisecond stamp at file
creation time

DIR_CrtTime 14 2 Time file was created

DIR_CrtDate 16 2 Date file was created

Short-name Directory Entry
 FAT32 Directory Entry Structure

7

Name Offset (byte) Size
(bytes)

Description

DIR_LstAccDate 18 2 Last access date

DIR_FstClusHI 20 2 High word of this entry’s
first cluster number

DIR_WrtTime 22 2 Time of last write

DIR_WrtDate 24 2 Date of last write

DIR_FstClusLO 26 2 Low word of this entry’s
first cluster number

DIR_FileSize 28 4 32-bit DWORD holding
this file’s size in bytes

Short-name Directory Entry

 For example, if the bit 4 is set to 1, you know the entry is

for a sub-directory, instead of a file.

8

Bit 7 6 5 4 3 2 1 0

Attribute Reserved.
Set to 0

Archive Directory Volume
ID

System Hidden Read-
only

Short-name Directory Entry

 Check page 23 on FAT32 Spec document for
detailed descriptions

 For the correct implementation of this project,
setting DIR_name, DIR_Attr, DIR_FstClusHI,
DIR_FstClusLO, DIR_FileSize correctly is
essential

 You may lose a point or two if you don’t set
the other fields correctly

9

Short-name Directory Entry

 If DIR_Name[0] == 0xE5, then the directory
entry is free (no file or directory name in this
entry)

 If DIR_Name[0] == 0x00, then the directory
entry is free (same as for 0xE5), and there
are no allocated directory entries after this
one

10

Long-name Directory Entry

 Backwards-compatible way to allow longer
names to be displayed

 Each long-name directory entry is 32 bytes

 A long file name can cover a set of long-name
directory entries

 Each set of long-name directory entries must
correspond to a short-name directory entry

 Long-name entries must immediately precede
corresponding short-name entry

11

Long-name Directory Entry

12

Long-name part 1

Long-name part 2

Short-name

In this example case,
two long-name
entries are needed to
hold the file name

Long-name Directory Entry

13

Long-name part 1

Long-name part 2

Short-name

Short name entry for
the file must exist
too, and it
immediately follows
the long name
entry(s)

Directory entries

 Long-name entry for “fatgen103.pdf"

14

Directory entries

 Short-name entry for “fatgen103.pdf"

15

Long-name Directory Entries

 You can ignore the long directory entries

 Can just display the short names

 This makes the project easier

16

Long-name Directory Entries

 How to know a directory entry is a long-name
entry?

 Byte 11: DIR_Attr

 (ATTR_READ_ONLY | ATTR_HIDDEN |
ATTR_SYSTEM | ATTR_VOLUME_ID) 
ATTR_LONG_NAME

(So, if all four of Read_only, Hidden, System and
Volume_ID attributes are set, you know you have a
long name entry.)

17

“Dot” Entries

 All directories (except root directory of entire
system) have “.” and “..” directory entries

 “.” means “this directory”

 “..” means “the parent directory”

 Why do you think the root directory does not
have these entries?

18

Sub-directories

 ATTR_Directory flag is set in the directory
entry

 Treated just like a file in terms of cluster
allocation

 Clusters contain 32 bytes directory entries,
for the files and directories under this
directory

19

Utility Operations

20

FAT32 Utility Oprations

 open

 close

 create

 rm

 size

 cd

 ls

 mkdir

 rmdir

 read

 write

21

Utility recognizes the following built-in commands:

A Few Definitions

 Read-Only Operations –can be completed
without modifying file system image

 Write Operations – must modify file
system image to complete

 Hint: Do the read-only operations first since
they should not corrupt your image

FAT32 Utility Operations
Classified
Read-Only

 open

 close

 ls

 size

 cd

 read

Write

 create

 rm**

 mkdir

 rmdir**

 write

23

**Will go over rm and rmdir next week

Read-Only Operations

24

Read-Only Precautions

 File or directory must exist before performing
operations on it

 File must be open and flagged for reading
before you attempt to read from it

 Be sure you are reading from the right
location

 Off by 1 byte can throw the whole project off

25

Read-Only Operation: open

1. Check if the file is already open

2. Check that the mode-specifiers are valid (r,
w, rw, or wr)

3. Check that the provided file name exists in
the requested directory

4. If it exists, add the file to your open file table
(or some similar data structure) with mode-
specifiers

open Use Cases

 Successful open

/] open FATINFO.TXT rw

/]

 Unsuccessful open

/] open FATINFO.TXT rw

Error: file already open!

/]

27

open Use Cases

 Unsuccessful open

/] open NOTHERE.TXT rw

Error: file does not exist

/]

 Unsuccessful open

/] open DIRS rw

Error: cannot open a directory

/]

28

open Use Cases

 Unsuccessful open

/] open FATINFO.TXT z

Error: incorrect parameter

/]

29

Read-Only Operation: close

1. Check that the file name provided exists in
your open file table (or the data structure
you are using)

2. If it does, remove that entry from your open
file table

close Use Cases

 Successful close

/] close FATINFO.TXT

/]

 Unsuccessful close

/] close NOTHERE.TXT

Error: file not open

/]

31

Read-Only Operation: ls

1. Make sure that provided directory name is
valid

2. Seek first data cluster

3. Iterate through and print each directory entry
in the cluster

4. If more directory entries left than first cluster
can hold, seek next cluster and repeat 3

ls Use Cases

 Successful ls

/DIRS/] ls .

. .. A B C D

/DIRS/]

33

Read-Only Operation: size

1. Check that provided file name exists in the
requested directory

 Can be accomplished by seeking through the
clusters of the requested directory

2. If it does, extract the size information

 Pay attention to endianness!

size Use Cases

 Successful size

/FILES/] size CONST.TXT

45119

/FILES/]

 Unsuccessful size

/FILES/] size NOTHERE.TXT

Error: file does not exist

/FILES/]

35

Read-Only Operation: cd

1. Check that provided directory name is a
directory and it exists

2. Alter your current working directory to reflect
the change

 For ease of debugging and use, you may want to
alter your prompt to show current working
directory

cd Use Cases

 Successful cd

/] cd FILES

/FILES/]

 Unsuccessful cd

/] cd FATINFO.TXT

Error: not a directory

/]

37

cd Use Cases

 Unsuccessful cd

/] cd NOTHERE

Error: does not exist

/]

38

Read-Only Operation: read

1. Make sure file name provided is in open-file
table and flagged as read-capable

2. Check that the provided position is valid

3. Check that the requested number of bytes is
valid

4. Seek to data cluster corresponding to the
requested start position and begin reading

5. If more data to be read, seek the next
clusters and repeat 4

read Use Cases

 Successful read

/FILES/] read CONST.TXT 0 15

Provided by USC

/FILES/]

 Unsuccessful read

/FILES/] read EMPTY.TXT 45 99

Error: attempt to read beyond EoF

/FILES/]

40

Data read from the file

Write Operations

41

Write Precautions

 File must be open and flagged for writing
before you attempt to write to it

 Make sure the supplied filename is not
actually a directory before you try to write to it

 Check how much space is left in a cluster
when writing a new string

 Don’t want to overwrite other pre-existing data

42

Write Operations

 Many write operations may involve allocating
a new cluster

43

Allocating a New Cluster

1. Search the FAT table for any free clusters

 If none, return an out of space error!

2. Set the previous cluster to point to the new
cluster number

 Watch out, there may be more than one FAT to
update

3. Set the new cluster to EoC (end of cluster
chain)

Write Operations

 Many write operations involve creating a new
directory entry

45

Creating a New Directory Entry

 Just create a short-name directory entry

 All new directory nams will be of length 8
characters or less

46

Write Operation: write

1. Check that the parameters passed are valid
(as for the read operation)

2. Seek the data cluster position requested by
the operation

3. Write as much data as you can fit starting at
the requested position up until the end of a
given cluster

4. If a cluster fills up, allocate a new cluster

5. Repeat 3-4 until the write is complete

write Use Cases

 Successful write
/FILES/] open EMPTY.TXT rw

/FILES/] write EMPTY.TXT 0 10 “Not empty!”

/FILES/]

 Unsuccessful write
/FILES/] open EMPTY.TXT r

/FILES/] write EMPTY.TXT 0 10 “Not empty!”

Error: File is not open for writing

/FILES/]

48

write Use Cases

 Unsuccessful write
/FILES/] write EMPTY.TXT 0 10 “Not empty!”

Error: File not found

/FILES/]

49

Write Operation: create

1. Make sure the requested file name does
NOT already exist in the requested location

2. Create new directory entry for the file

 If there is enough room in the current cluster,
write it there

 If there is not enough space left in the cluster,
allocate a new cluster and write it in the new
cluster

create Use Cases

 Successful create
/FILES/] create HELLO.TXT
/FILES/] ls
. .. CONST.TXT EMPTY.TXT HELLO.TXT
/FILES/]

 Unsuccessful create
/FILES/] create EMPTY.TXT
Error: File already exists
/FILES/]

51

Write Operation: mkdir

 Similar to create, except give the directory

entry the proper directory attribute

mkdir Use Cases

 Successful mkdir

/DIRS/] mkdir NEW

/DIRS/] ls

. .. NEW A B C D

/DIRS/]

53

mkdir Use Cases

 Unsuccessful mkdir

/DIRS/] mkdir A

Error: directory already exists

/DIRS/]

54

Next Week

 Operations rm and rmdir

 Answering any more questions

55

