
Project 3: An Introduction
to File Systems

COP4610

Florida State University

1

Introduction

 The goal of project 3 is to understand

 basic file system design and implementation

 file system testing

 data serialization/de-serialization

 At the end of the project, you will feel like a
file system expert!

2

Outline

 Background

 Setting up your environment

 Mounting file systems

 Project 3

 Specification

 Downloading and testing file system image

 General FAT32 data structures

 Endian-ness

3

Environment Setup

Get ready for Project 3!

4

Project 3 Environment

 Must develop inside Linux environment with
root access

 Make sure that they compile in the lab
machines, which runs the most recent
version of Linux Mint

 I will be grading your projects inside a similar
environment

5

Project Environment

 Kernel version no longer matters

 Entire project will be in userspace, not kernel!

 Please use debuggers, they will save you time
 gdb, ddd, others…

 Programming language is still C

6

Running out of room?

 You must have at least 64MB free, plus room
for your source code

 To see how much room you have left inside
your machine, issue the following command:

$> df -h

7

df -h

 /dev/sda is root file system mounted on “/”

 Has 2.2GB currently available

8

Mounting File Systems

9

Unix File Hierarchy

 All files accessible in a Unix system are
arranged in one big tree

 Also called the file hierarchy

 Tree is rooted (starts) at /

 These files can be spread out over several
devices

 The mount command serves to attach the
file system found on some device to the big
file tree

10

‘mount’ command

 mount

 mount <device> <mount directory>

 Typing ‘mount’ without arguments shows you
what is mounted and where

 Second example attaches a device or
partition to a directory

 Must have root privileges

11

Mount Example

/

/mnt /boot

files…

/home

files…

/lib

files…

12

/dev/sda1

Mount point

The device sda partition 1 is mounted at “/”. All
files and dirs below “/” come from this device.

Mount Example

 Type command ‘mount’ without any
arguments to see what is mounted and where

13

Root “/” file
system

mounted

Mount Example

/

/mnt /boot

files…

/home

files…

/lib

files…

14

/dev/sda1
Now suppose we attach a thumb
drive and want our thumb drive
files accessible under /mnt…/dev/sdb1

Mount Example

 sudo mount /dev/sdb1 /mnt

15

Thumb drive
mounted

here

File Hierarchy Example

/

/mnt

files…

/boot

files…

/home

files…

/lib

files…

16

/dev/sda1

Mount point

Files from the thumb drive are
now accessible under /mnt

/dev/sdb1

Un-mount Command

 umount <dir>

 In our example where the thumb drive was
mounted at /mnt, we can issue
 $> umount /mnt

 Must have root privileges

17

Figuring out names of devices

 /etc/fstab – Has list of devices and file
systems that get auto-mounted on boot

18

Project 3

More than you wanted to know about
FAT32..

19

Project 3

 You will create a user-space utility to
manipulate a FAT32 file system image

 No more kernel programming!

 Utility must understand a few basic
commands to allow simple file system
manipulation

 Utility must not corrupt the file system and
should be robust

20

FAT32 Manipulation Utility

 open

 close

 create

 rm

 size

 cd

 ls

 mkdir

 rmdir

 read

 write

21

Utility will only recogniz the following built-in
commands:

File System Image

 Manipulation utility will work on a pre-
configured FAT32 file system image

 Actually a file

 File system image will have raw FAT32 data
structures inside

 Just like looking at the raw bytes inside of a disk
partition

22

File System Image

 Your FAT32 manipulation utility will have to

 Open the FAT32 file system image

 Read parts of the FAT32 file system image and
interpret the raw bytes inside to service your
utility’s file system commands…

…just like a file system!

23

File System Image

 Sometimes you may want to check that you
haven’t corrupted your file system image, or
that you can add or write files successfully

 Mount your file system image with the OS FAT32
driver

 Just like the file system image is a device

24

File System Image Mount Example

/

/mnt /boot

files…

/home

/user

fat32.img

/lib

files…

25

File System Image Mount Example

/

/mnt /boot

files…

/home

/user

fat32.img

/lib

files…

26

File that contains a raw
image of a file system

File System Image Mount Example

/

/mnt

files…

/boot

files…

/home

/user

fat32.img

/lib

files…

27

Mount image onto /mnt
to read files in image

File System Image Mount Example

$> sudo mount fat32.img /mnt

$> cd /mnt

 fat32.img is your image file

 /mnt is your mounting directory

 Once the file is mounted, you can go into the
/mnt directory and issue all your normal file
system commands like:

 ls, cat, cd, …

28

General FAT32 Data
Structures

29

Terminology

 Byte – 8 bits of data, the smallest
addressable unit in modern processors

 Sector – Smallest addressable unit on a
storage device. Usually this is 512 bytes

 Cluster – FAT32-specific term. A group of
sectors representing a chunk of data

 FAT – Stands for file allocation table and is a
map of files to data

30

FAT32 Disk Layout

 3 main regions…

Reserved
Region

FAT
Region

Data
Region

Disk armTrack

Sector

Reserved Region

 Reserved Region – Includes the boot
sector, the extended boot sector, the file
system information sector, and a few other
reserved sectors

Reserved
Region

FAT
Region

Data
Region

Boot Sector
FS Information

Sector

Additional
Reserved Sectors

(Optional)

FAT Region

 FAT Region – A map used to traverse the
data region. Contains mappings from cluster
locations to cluster locations

Reserved
Region

FAT
Region

Data
Region

File Allocation Table #1
Copy of File Allocation

Table #1

Data Region

 Data Region – Using the addresses from
the FAT region, contains actual file/directory
data

Reserved
Region

FAT
Region

Data
Region

Data until end of partition

Endian

Big or little?

35

Machine Endianness

 The endianness of a given machine
determines in what order a group of bytes
are handled (ints, shorts, long longs)

 Big-endian – most significant byte first

 Little-endian – least significant byte first

 This is important to understand for this
project, since FAT32 is always formatted as
little-endian

FAT32 Endianness

 The following are a few cases where
endianness matters in your project:

 Reading in integral values from the FAT32
image

 Reading in shorts from a FAT32 image

 Combining multiple shorts to form a single
integer from the FAT32 image

 Interpreting directory entry attributes

Endian Example (English Version)

 Imagine you can only communicate three
letters at a time, and your word is “RAPID”

 Big-endian
 1. RAP

 2. ID

 Word = RAPID

 Little-endian
 1. PID

 2. RA

 Word = PIDRA (come again?)

Endian Example (data version)

 short value = 15; /* 0x000F */

 char bytes[2];

 memcpy(bytes, &value, sizeof(short));

 In little-endian:

 bytes[0] = 0x0F

 bytes[1] = 0x00

 In big-endian:

 bytes[0] = 0x00

 bytes[1] = 0x0F

Endian Example (data version 2)

 int value = 13371337; /* 0x00CC07C9 */

 char bytes[4];

 memcpy(bytes, &value, sizeof(int));

 In little-endian:

 bytes[0] = 0xC9

 bytes[1] = 0x07

 bytes[2] = 0xCC

 bytes[3] = 0x00

 In big-endian:

 bytes[0] = 0x00

 bytes[1] = 0xCC

 bytes[2] = 0x07

 bytes[3] = 0x09

Visualizing Example 2
Value = 13371337 (0x00CC07C9)

index 0 1 2 3

little
endian

0xC9 0x07 0xCC 0x00

big
endian

0x00 0xCC 0x07 0xC9

Additional Project 3 Information

 Group project. 3 People in each group.
Each group member will receive same grade.

 Deadline: December 1. Late penalties apply.
Absolutely no submission after December 6
11:59 pm.

42

Until Next Time

 Set up your environment

 Download the image file

 Practice mounting the image file with the OS
FAT32 drivers

 Make sure you can cd into /mnt and read/write to
the files

 Read over the FAT32 Specification

43

