Project 3: An Introduction
to File Systems

COP4610
Florida State University

Introduction

The goal of project 3 is to understand

o basic file system design and implementation
o file system testing

o data serialization/de-serialization

At the end of the project, you will feel like a
file system expert!

Outline

Background
o Setting up your environment
o Mounting file systems

Project 3

o Specification

o Downloading and testing file system image
o General FAT32 data structures

o Endian-ness

Environment Setup

Get ready for Project 3!

Project 3 Environment

Must develop inside Linux environment with
root access

Make sure that they compile in the lab
machines, which runs the most recent
version of Linux Mint

| will be grading your projects inside a similar
environment

Project Environment

Kernel version no longer matters

Entire project will be in userspace, not kernel!

o Please use debuggers, they will save you time
gdb, ddd, others...

Programming language is still C

Running out of room?

You must have at least 64MB free, plus room
for your source code

To see how much room you have left inside
your machine, issue the following command:

S> df -h

df -h

l’ user@copdbll: ~ l = | =] |_EE_I

-

/dev/sda is root file system mounted on “/”
o Has 2.2GB currently available

Mounting File Systems

Unix File Hierarchy

All files accessible in a Unix system are
arranged in one big tree

o Also called the file hierarchy

o Tree is rooted (starts) at /

These files can be spread out over several
devices

The mount command serves to attach the
file system found on some device to the big
file tree

10

‘mount’ command

mount

mount <device> <mount directory>

Typing ‘mount’ without arguments shows you
what is mounted and where

Second example attaches a device or
partition to a directory

o Must have root privileges

11

Mount Example

Mount point ‘ -

/dev/sda1

l /mnt \l /boot l/home l /lib
| |
l files... l files... l files...

The device sda partition 1 is mounted at “/”. All
files and dirs below “/” come from this device.

12

Mount Example

Type command ‘mount’” without any
arguments to see what is mounted and where

r user@copdfll: ~ | == |—£h]

13

Mount Example

/dev/sda1

l /mnt \l /boot l
|

/home /lib

ool

files... files...

e
e

-

/dev/sdb1

Now suppose we attach a thumb
drive and want our thumb drive
files accessible under /mnt...

14

Mount Example

sudo mount /dev/sdb1 /mnt
@ user@copdbld: ~ | =L |-£§-]1

vpe tmpfs (rw e=0755)

[TW ., nioe

15

‘ File Hierarchy Example

Mount point #l /mnt l /boot l

/dev/sda1

/home /lib

files... files...

e
3

\

/dev/sdb1

Files from the thumb drive are
now accessible under /mnt

16

Un-mount Command

umount <dir>

In our example where the thumb drive was
mounted at /mnt, we can issue

a0 $> umount /mnt

o Must have root privileges

17

Figuring out names of devices

/etc/fstab — Has list of devices and file
systems that get auto-mounted on boot

18

Project 3

More than you wanted to know about
FAT32..

19

Project 3

You will create a user-space utility to
manipulate a FAT32 file system image

o No more kernel programming!

Utility must understand a few basic
commands to allow simple file system
manipulation

Utility must not corrupt the file system and
should be robust

20

FAT32 Manipulation Utility

Utility will only recogniz the following built-in

commands:

open
close
create
rm
size

cd

s
mkdir
rmdir
read
write

21

File System Image

Manipulation utility will work on a pre-
configured FAT32 file system image

o Actually a file

File system image will have raw FAT32 data
structures inside

o Just like looking at the raw bytes inside of a disk
partition

22

File System Image

Your FAT32 manipulation utility will have to
o Open the FAT32 file system image

o Read parts of the FAT32 file system image and
Interpret the raw bytes inside to service your
utility’s file system commands...

...just like a file system!

23

File System Image

Sometimes you may want to check that you
haven't corrupted your file system image, or
that you can add or write files successfully

o Mount your file system image with the OS FAT32
driver

o Just like the file system image is a device

24

‘ File System Image Mount Example

l /mnt \l /boot

-]

/home

/lib

l files...

/user

files...

(-
=

fat32.img

kil

25

‘ File System Image Mount Example

]

l /mnt \l /boot l /home l /lib
I y,
l files.. l /user l files...

File that contains a raw
image of a file system

l fat32.img

26

File System Image Mount Example

/lib

=
=

files...

Mount image onto /mnt
to read files in image

fat32.img

27

File System Image Mount Example

$> sudo mount fat32.img /mnt
S> cd /mnt

fat32.img IS your image file
/mnt IS your mounting directory

Once the file is mounted, you can go into the
/mnt directory and issue all your normal file
system commands like:

o Is, cat, cd, ...

28

General FAT32 Data
Structures

Terminology

Byte — 8 bits of data, the smallest
addressable unit in modern processors

Sector — Smallest addressable unit on a
storage device. Usually this is 512 bytes

Cluster — FAT32-specific term. A group of
sectors representing a chunk of data

FAT — Stands for file allocation table and is a
map of files to data

30

'FATS32 Disk Layout

= 3 main regions...

Reserved

Region

Track <«—— Disk arm

Sector

Reserved Region

= Reserved Region — Includes the boot
sector, the extended boot sector, the file
system information sector, and a few other

reserved sectors

Reserved

Region

7’ ~
7’ N
7’ N
7 \\
7
N

FS Information Additional
Boot Sector Reserved Sectors
Sector)
(Optional)

‘ FAT Region

= FAT Region — A map used to traverse the
data region. Contains mappings from cluster
locations to cluster locations

Reserved

Region

/ N

N
// S

4 N
/ N

: : Copy of File Allocation
File Allocation Table #1 Table #1

Data Region

= Data Region — Using the addresses from
the FAT region, contains actual file/directory
data

Reserved

Region
/ \

/ \
/ \

Data until end of partition

\

Endian

Big or little?

35

Machine Endianness

The endianness of a given machine
determines in what order a group of bytes
are handled (ints, shorts, long longs)

o Big-endian — most significant byte first

o Little-endian — least significant byte first

This is important to understand for this
project, since FAT32 is always formatted as
little-endian

FAT32 Endianness

The following are a few cases where
endianness matters in your project:
o Reading in integral values from the FAT32
iImage
o Reading in shorts from a FAT32 image

o Combining multiple shorts to form a single
integer from the FAT32 image

o Interpreting directory entry attributes

Endian Example (English Version)

Imagine you can only communicate three
letters at a time, and your word is “RAPID”

Big-endian
o 1. RAP

o 2.1D
o Word = RAPID

Little-endian
o 1.PID
o 2.RA
o Word = PIDRA (come again?)

Endian Example (data version)

short value = 15; /* OxO00F */
char bytes[2];

memcpy(bytes, &value, sizeof(short));

In little-endian:
o bytes[0] = OxOF
0 bytes[1] = 0x00
In big-endian:
o bytes[0] = 0x00
o bytes[1] = OxOF

Endian Example (data version 2)

Int value = 13371337; /* Ox00CCO07C9 */
char bytes[4];

memcpy(bytes, &value, sizeof(int));
In little-endian:

bytes

bytes

o O 0O DO

bytes]

0]
bytes|1
2]
3] = 0x00

= 0xC9

] = 0x07

= 0OxCC

In big-endian:
o bytes[0] = 0x00
o bytes[1] = OxCC
o bytes[2] = 0x07
o bytes[3] = 0x09

Visualizing Example 2
Value = 13371337 (0x00CC07C9)

_
big
. 0x00 0OxCC 0x07 0xC9

endian

Additional Project 3 Information

Group project. 3 People in each group.
Each group member will receive same grade.

Deadline: December 1. Late penalties apply.
Absolutely no submission after December 6
11:59 pm.

42

Until Next Time

Set up your environment
Download the image file

Practice mounting the image file with the OS
~AT32 drivers

o Make sure you can cd into /mnt and read/write to
the files

Read over the FAT32 Specification

43

