
Project 3: An Introduction
to File Systems

COP4610

Florida State University

1

Introduction

 The goal of project 3 is to understand

 basic file system design and implementation

 file system testing

 data serialization/de-serialization

 At the end of the project, you will feel like a
file system expert!

2

Outline

 Background

 Setting up your environment

 Mounting file systems

 Project 3

 Specification

 Downloading and testing file system image

 General FAT32 data structures

 Endian-ness

3

Environment Setup

Get ready for Project 3!

4

Project 3 Environment

 Must develop inside Linux environment with
root access

 Make sure that they compile in the lab
machines, which runs the most recent
version of Linux Mint

 I will be grading your projects inside a similar
environment

5

Project Environment

 Kernel version no longer matters

 Entire project will be in userspace, not kernel!

 Please use debuggers, they will save you time
 gdb, ddd, others…

 Programming language is still C

6

Running out of room?

 You must have at least 64MB free, plus room
for your source code

 To see how much room you have left inside
your machine, issue the following command:

$> df -h

7

df -h

 /dev/sda is root file system mounted on “/”

 Has 2.2GB currently available

8

Mounting File Systems

9

Unix File Hierarchy

 All files accessible in a Unix system are
arranged in one big tree

 Also called the file hierarchy

 Tree is rooted (starts) at /

 These files can be spread out over several
devices

 The mount command serves to attach the
file system found on some device to the big
file tree

10

‘mount’ command

 mount

 mount <device> <mount directory>

 Typing ‘mount’ without arguments shows you
what is mounted and where

 Second example attaches a device or
partition to a directory

 Must have root privileges

11

Mount Example

/

/mnt /boot

files…

/home

files…

/lib

files…

12

/dev/sda1

Mount point

The device sda partition 1 is mounted at “/”. All
files and dirs below “/” come from this device.

Mount Example

 Type command ‘mount’ without any
arguments to see what is mounted and where

13

Root “/” file
system

mounted

Mount Example

/

/mnt /boot

files…

/home

files…

/lib

files…

14

/dev/sda1
Now suppose we attach a thumb
drive and want our thumb drive
files accessible under /mnt…/dev/sdb1

Mount Example

 sudo mount /dev/sdb1 /mnt

15

Thumb drive
mounted

here

File Hierarchy Example

/

/mnt

files…

/boot

files…

/home

files…

/lib

files…

16

/dev/sda1

Mount point

Files from the thumb drive are
now accessible under /mnt

/dev/sdb1

Un-mount Command

 umount <dir>

 In our example where the thumb drive was
mounted at /mnt, we can issue
 $> umount /mnt

 Must have root privileges

17

Figuring out names of devices

 /etc/fstab – Has list of devices and file
systems that get auto-mounted on boot

18

Project 3

More than you wanted to know about
FAT32..

19

Project 3

 You will create a user-space utility to
manipulate a FAT32 file system image

 No more kernel programming!

 Utility must understand a few basic
commands to allow simple file system
manipulation

 Utility must not corrupt the file system and
should be robust

20

FAT32 Manipulation Utility

 open

 close

 create

 rm

 size

 cd

 ls

 mkdir

 rmdir

 read

 write

21

Utility will only recogniz the following built-in
commands:

File System Image

 Manipulation utility will work on a pre-
configured FAT32 file system image

 Actually a file

 File system image will have raw FAT32 data
structures inside

 Just like looking at the raw bytes inside of a disk
partition

22

File System Image

 Your FAT32 manipulation utility will have to

 Open the FAT32 file system image

 Read parts of the FAT32 file system image and
interpret the raw bytes inside to service your
utility’s file system commands…

…just like a file system!

23

File System Image

 Sometimes you may want to check that you
haven’t corrupted your file system image, or
that you can add or write files successfully

 Mount your file system image with the OS FAT32
driver

 Just like the file system image is a device

24

File System Image Mount Example

/

/mnt /boot

files…

/home

/user

fat32.img

/lib

files…

25

File System Image Mount Example

/

/mnt /boot

files…

/home

/user

fat32.img

/lib

files…

26

File that contains a raw
image of a file system

File System Image Mount Example

/

/mnt

files…

/boot

files…

/home

/user

fat32.img

/lib

files…

27

Mount image onto /mnt
to read files in image

File System Image Mount Example

$> sudo mount fat32.img /mnt

$> cd /mnt

 fat32.img is your image file

 /mnt is your mounting directory

 Once the file is mounted, you can go into the
/mnt directory and issue all your normal file
system commands like:

 ls, cat, cd, …

28

General FAT32 Data
Structures

29

Terminology

 Byte – 8 bits of data, the smallest
addressable unit in modern processors

 Sector – Smallest addressable unit on a
storage device. Usually this is 512 bytes

 Cluster – FAT32-specific term. A group of
sectors representing a chunk of data

 FAT – Stands for file allocation table and is a
map of files to data

30

FAT32 Disk Layout

 3 main regions…

Reserved
Region

FAT
Region

Data
Region

Disk armTrack

Sector

Reserved Region

 Reserved Region – Includes the boot
sector, the extended boot sector, the file
system information sector, and a few other
reserved sectors

Reserved
Region

FAT
Region

Data
Region

Boot Sector
FS Information

Sector

Additional
Reserved Sectors

(Optional)

FAT Region

 FAT Region – A map used to traverse the
data region. Contains mappings from cluster
locations to cluster locations

Reserved
Region

FAT
Region

Data
Region

File Allocation Table #1
Copy of File Allocation

Table #1

Data Region

 Data Region – Using the addresses from
the FAT region, contains actual file/directory
data

Reserved
Region

FAT
Region

Data
Region

Data until end of partition

Endian

Big or little?

35

Machine Endianness

 The endianness of a given machine
determines in what order a group of bytes
are handled (ints, shorts, long longs)

 Big-endian – most significant byte first

 Little-endian – least significant byte first

 This is important to understand for this
project, since FAT32 is always formatted as
little-endian

FAT32 Endianness

 The following are a few cases where
endianness matters in your project:

 Reading in integral values from the FAT32
image

 Reading in shorts from a FAT32 image

 Combining multiple shorts to form a single
integer from the FAT32 image

 Interpreting directory entry attributes

Endian Example (English Version)

 Imagine you can only communicate three
letters at a time, and your word is “RAPID”

 Big-endian
 1. RAP

 2. ID

 Word = RAPID

 Little-endian
 1. PID

 2. RA

 Word = PIDRA (come again?)

Endian Example (data version)

 short value = 15; /* 0x000F */

 char bytes[2];

 memcpy(bytes, &value, sizeof(short));

 In little-endian:

 bytes[0] = 0x0F

 bytes[1] = 0x00

 In big-endian:

 bytes[0] = 0x00

 bytes[1] = 0x0F

Endian Example (data version 2)

 int value = 13371337; /* 0x00CC07C9 */

 char bytes[4];

 memcpy(bytes, &value, sizeof(int));

 In little-endian:

 bytes[0] = 0xC9

 bytes[1] = 0x07

 bytes[2] = 0xCC

 bytes[3] = 0x00

 In big-endian:

 bytes[0] = 0x00

 bytes[1] = 0xCC

 bytes[2] = 0x07

 bytes[3] = 0x09

Visualizing Example 2
Value = 13371337 (0x00CC07C9)

index 0 1 2 3

little
endian

0xC9 0x07 0xCC 0x00

big
endian

0x00 0xCC 0x07 0xC9

Additional Project 3 Information

 Group project. 3 People in each group.
Each group member will receive same grade.

 Deadline: December 1. Late penalties apply.
Absolutely no submission after December 6
11:59 pm.

42

Until Next Time

 Set up your environment

 Download the image file

 Practice mounting the image file with the OS
FAT32 drivers

 Make sure you can cd into /mnt and read/write to
the files

 Read over the FAT32 Specification

43

