Virtualization

What is it?

- A virtual machine (VM) provides a layer, emulating one or more operating systems (guests) on top of a single operating system (host)
- Guest thinks it is running on top of hardware
- Host thinks guests are just regular applications
- Examples
 - VMware
 - VirtualBox
 - Virtual PC
 - Xen

Advantages

- Distributing a preconfigured OS
- Can take snapshots of current state
 - A rollback if there's a problem
- Easily portable
 - VM abstracts hardware and host OS details
 - Guest image is a handful of files and can be moved
- Provides a sandbox
 - Problems in guest do not affect host
- Can access remotely over network

Why Should I Care?

- Project 2 is required to be implemented on lab machines
 - You will give your demo on the assigned machine
- Optionally, you can implement in a VM first
 - Make sure to give yourself time to port to lab machine!!!
- Allows you to quickly recover from kernel errors by recovering a snapshot
 - Seconds for a snapshot recovery
 - Minutes for system reboot
- Also allows for more portability
 - Can work when another class is using the lab

VM Settings

- Use VirtualBox and LinuxMint
 - You can use other VMs / distributions, but I will only help with these
- CPU
 - Set the execution cap to 80% or lower
- Memory
 - Leave at least 1GB for host

Using VMs

- First, create settings within the VM
- Then, launch the newly created guest
 - Install image as you would a typical OS
- If you need to switch back to host, you'll need to type a special command to leave the guest
 - In VirtualBox the host key defaults to right ctrl
- Setup a means of outside communication using one or more of
 - External devices (usb)
 - Network (ssh)
 - Shared files (host)

SSH Setup

- Guest
 - Set VM network port forwarding rule
 - Name=SSH
 - Host port = 2222
 - Guest port = 22
 - sudo apt-get install openssh-server
 - sudo restart ssh
- Host
 - ssh -p 2222 username@127.0.0.1