

Scheduling

Why Make an Elevator?

● It demonstrates the producer / consumer
analogy
– People are produced

● Through system calls

– The elevator consumes them
● By taking them to the appropriate floor

Examples

● File system
– Users produce read/write requests

– Disk consumes the requests by returning the file
data

● Prioritizes based on disk head position and rotational
delay

Examples

● Web
– Clients request to view web pages

– Server consumes requests by returning the page
data

● Prioritizes based on decreasing the amount of time each
client has to wait

Simple Design

● While elevator is on
– Pickup as many people as you can on a floor

– Loop until empty
● Go to the destination of the first person
● Drop off as many people as you can

– Optionally, pick people up from that floor as well

● Start with something like this
● Optimize time permitting

Scheduler Design Choices

● Different tasks have different needs
– There is no one size-fits-all model

● Some metrics that can be optimized (not mutually exclusive)
– Throughput

● Maximize total number of requests serviced

– Burst throughput
● Be able to handle bursts of requests

– Latency
● Minimize time it takes to service each request

– Priorities
● Service requests with higher priorities first

– Energy
● Minimize processing time
● Different than the time to service the requests

Scheduler Design Choices

● Elevator scheduler should be optimized for
throughput
– You don't need to worry about

● How long it takes for each person
● Priorities among different types of people
● Priorities for which floor to service
● Amount of effort spent loading/moving

Scheduler Algorithms
FIFO

● Method
– Service requests in the order they arrive

● Pros:
– No computational time needed

– Easy implementation

– Every request gets a turn

● Cons:
– Bad at random requests

● Elevator needs to go back and forth several times in
processing requests

– Low throughput potential

Scheduler Algorithms
Shortest Seek Time First

● Method
– Service requests near elevator first

● Pros
– Very low computational time expended

– Implementation is fairly easy

– Fairly high throughput by minimizing seek time

● Cons
– Unfair to distant requests

● Note, you're trying to maximize throughput, you're not
worrying about the individual requests

– May ignore distant clusters of requests

Scheduler Algorithms
SCAN

● Method
– Service requests in one direction, then go backwards

● Pros
– Very low computational time expended

– Implementation is easy (up, down, up, down, …)

– Throughput is somewhat high

– Fair due to no starvation

● Cons
– May take up to two trips to collect a set of requests

(up,down)

Scheduler Algorithms
LOOK

● Method
– Improvement on SCAN

– Uses information of request locations to determine where to stop
going in a certain direction

● Pros
– Low computational time expended

– Moderate implementation difficulty
● Set upper bound, go up, set lower bound, go down

– Throughput is somewhat high

– Fair due to no starvation

● Cons
– May miss a new request at outer boundary just as direction change

occurs

Scheduler Algorithms
Hybrid

● Combine methods and come up with something
new

● Up to your creativity
● Example

– Shortest Seek Time First w/ Scan

– Do shortest seek time on a window size of k

– Move the window up, down, up, down

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

