

C Tools

Structs

● Contains an group of item under a single name
● Useful because it

– Simplifies code

– Increases code readability

– Allows for more flexibility

Structs

● typedef struct process_entry {
– int pid;

– char *command;

● } pentry;
●

● pentry *background_queue[100];
● background_queue[i] = calloc(sizeof(pentry));
● …
● printf(“%s\n”, background_queue[i]->command);
● ...
● free(background_queue[i]);
● background_queue[0] = NULL;

Function Pointers

● Variables that point to functions
● Useful for

– Abstracting complexity/naming

– Passing functions to other functions

– Defining/changing behavior at runtime

Function Pointers

● void print_hex(int n) {
– printf(“%x\n”, n);

● }
● void (*fun_ptr)(int) = &print_hex;
●

● fun_ptr(5);
● (*fun_ptr)(20);

Object-Oriented Programming
in C ???

● Using structs and function pointers, you can
provide some object-based features

● This makes programming in procedural
languages like C easier to people used to OOP

● Full object-oriented support requires a lot of
work and is overkill for small projects
– You are basically reimplementing C++

Basic Object

● /*Definitions*/
● typedef struct student Student;
●

● Student *student_new();
● void student_delete();
●

● void student_init(Student *, char *, int);
● void student_print_info(Student *);

Basic Object

● /*Object*/
● struct student {

– /*Public*/

– void (*init)(Student*, char*, int);

– void (*print_info)(Student*);

–

– /*Private*/

– char *name;

– int year;

● };

Basic Object

● /*Object Methods*/
● Student *student_new() {

– Student *student;

– student = (Student*)calloc(1, sizeof(Student));

–

– student->init = &student_init;

– student->print_info = &student_print_info;

– student->name = NULL;

– return student;

● }
● void student_delete(Student *student) {

– if (student->name != NULL)
● free(student->name);

– free(student);

● }

Basic Object

● /*Object Methods*/
● void student_init(Student *student, char *name, int year) {

– if (student->name != NULL)
● free(student->name);

– student->name = (char*)calloc(strlen(name)+1, sizeof(char));

– strcpy(student->name, name);

–

– student->year = year;

● }
● void student_print_info(Student *student) {

– printf("%s has been a student for %d years\n", student->name, student->year);

● }

Basic Object

● /*Usage*/
● int main() {

– Student *student = student_new();

– student->init(student, "Bob", 4);

– student->print_info(student);

– student_delete(student);

– return 0;

● }

Some Other Features

● Private members
– Can't truly hide things in C

– Potential implementations
● Comments
● Nested struct with a separate header
● Single void* to all data

● Inheritance
– Can't easily have virtual methods

– Easiest thing is to just have a copy (composition / aggregation)

● Polymorphism
– No built in support in C

– Would need to have a series of function pointers

● http://www.cs.rit.edu/~ats/books/ooc.pdf

http://www.cs.rit.edu/~ats/books/ooc.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

