Project 1
Wrap Up

Changing Directory

e #include <unistd.h>

- Int chdir(const char *path)
e Changes working directory to passed in path
* Returns O on success, -1 on failure

* Need to copy contents to $PWD to keep things
consistent

cd path

Convert relative path to absolute path
Call chdir on absolute path
Check return value

- Print error message and exit if invalid
Update $PWD using setenv
- Need to use same absolute path as used in chdir

Getting the Time

 #include <sys/time.h>

- Int gettimeofday(struct timeval *tv, struct timezone
*tz);

— Stores current time into tv, current timezone in tz
- Returns 0 on success, -1 on failure
e struct timeval
- time_ttv_sec
— suseconds_ttv_usec

etime cmd

Record timel with gettimeofday
Fork child to execute cmd
Waitpid on child to finish
Record time2 with gettimeofday
Output time2-timel

- time2.tv_sec — timel.tv_sec

- time2.tv_usec — time2.tv_usec
 If negative, need to borrow from tv_sec

Sample README

Member 1: Exam Ple
Member 2: Rea D. Me

pl-Ple-Me.tar contents:
README
report.txt
main.c // main implementation
main.h // interface to impl., macros, etc.
util.c /[utility functions
util.h
Makefile

Sample README

Completed using: linprog
(alternatively)
Completed using: Ubuntu Linux 3.16.0-46-generic

(can use output of command ‘uname -vr' here.)

To build:
$> make

To clean:
$> make clean

To run test suite:
$> make test

Sample README

Known bugs:

1. Hangs whenever my_parse is called.

2. Crashes whenever user doesn't input anything.
3. Crashes when it finishes running.

4. Does not catch zombies

To do:
1. Still need to do piping

Additional comments:

We used a static two dimensional array for the command sized at 100 elements
with 256 bytes per element.

(Either paraphrase the assignment goal or copy/paste the
assignment problem statement here.)
Implement a shell program.

. Experimented with existing shell.

. Took notes on how it handled certain commands.

. Wrote a few test programs to understand directory searching.
. Implemented user-input routine.

. Implemented input-parsing routine.

. Implemented input redirection.

. Implemented background process.

© 00 N O O A W N P

. Implemented zombie-termination.
10. Implemented forking new process.
11. Completed.

. Experimented with our shell to make sure above were correct.

Report

Sample Report

No more than 255 characters would be used for input
Redirection and piping would not be mixed within a single command

read() - Get user input.
stdio.h - output, printf, etc.
stdlib.h - fork(), execv(), ...

Sample Report

- execv didn't seem to work as expected.

- Path searching was tricky.

- Weren't sure how much memory to allocate.
- Computer crashed once- lost some progress.

(Just copy the details from the README.)

Exam Ple

- user-input

- input-parsing

- process forking
Rea D. Me

- path-searching

- input redirection

- zombie termination

3 days for Exam Ple
2 days for Rea D. Me

Sample Report

Sample Report

11/26/05
- project completed

11/25/05
- bug fixed: user-input > 120 characters crashes program
- speed up: path-searching improved.

11/24/05
- completed: input redirection

11/4/05
- design: some areas unclear.
- started implementation.

11/3/05
- researched existing shells.
- started designing.

11/2/05
- project assigned.

Sample Report

1. Is it safe to try to open a file that does not exist?

It can be unsafe if the program does not pay attention to the return
value from the call to open(). If the program assumes that it has a
pointer to a file that, and that file does not exist, it is possible

that the program will crash before long, most likely with a
segmentation fault.

Sample Report

Simple text auto-complete:

Pressing <Tab> will auto-complete the rest of the
command argument to the first match. For commands,
it completes to the first item in the $PATH. For
arguments, it completes to first matching filename.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

