

/proc

Ways to Interact with OS

● System Calls
– Message passing

– Rigid interface

– Portable

– Good documentation

– More on this in project
2

● Proc File System
– File communication

– More flexible interface

– Less portable

– Little documentation

– Used in project 1

Proc File System

● Virtual file system
● Pass information to/from kernel via files
● Typically located at the root of the file system

– /proc

● Useful for kernel debugging and for accessing data
that doesn't necessarily warrant a system call

● Essentially a backdoor into the operating system
– Can lead to security implications if you're not careful

Proc Examples

● Time since last reboot
– cat /proc/uptime

● Linux and gcc version info
– cat /proc/version

● Accessible devices and partitions
– cat /proc/partitions

● Memory mapped I/O regions
– cat /proc/iomem

Proc Examples

● Clear file system cache from memory
– echo “3” | sudo tee /proc/sys/vm/drop_caches

● Max buffer size of pipes
– cat /proc/sys/fs/pipe-max-size

● Global maximum on number of open files
– cat /proc/sys/fs/file-max

Proc Examples

● Soft and hard limits impossed on a process
– cat /proc/<pid>/limits

● Process status
– cat /proc/<pid>/status

limits

● Command you have to implement
– limits cmd

● Executes provided command
● Then prints out information about the soft, hard limits imposed

on that process
● Only print out

– Max file size

– Max open files

– Max processes

– Max pending signals

limits Workflow

● Child
– Execute cmd

– Exit

● Parent
– Get pid of child

– Get data in
/proc/<pid>limits

– Wait for child to finish

– Print out relevant lines

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

