

Pipes

I/O Redirection to Processes...

● What if we wanted to
– Use output from one program

– As input to a second program

– cmd1 | cmd2

● Could just do I/O redirection
– cmd1 > tmp_file

– cmd2 < tmp_file

– rm tmp_file

● However this is
– Clunky

– Has high file overhead

– Need to worry about file naming collisions

● We need pipes

pipe

● #include <unistd.h>
– int pipe(int pipefd[2])

● pipefd[0] = read end
● pipefd[1] = write end
● returns 0 on success, -1 on error

● Sets up a communication channel between two
file descriptors

Pipe Example
● int fd[2];
●

● if (fork() == 0) {
● //Child (cmd1 | cmd2)

● }
● else {

● //Parent (Shell)

● }

● Why should you fork
before piping?

Pipe Example
● int fd[2];
●

● if (fork() == 0) {
● //Child (cmd1 | cmd2)
● pipe(fd);
● if (fork() == 0) {

● //cmd 1 (Writer)
● //Handle fds
● //Execute command

● }
● Else {

● //cmd 2 (Reader)
● //Handle fds
● //Execute command

● }

● }
● else {

● //Parent (Shell)

● }

● Why should
– The writer be the child?

– The reader be the parent?

Pipe Example
● int fd[2];
●

● if (fork() == 0) {
● //Child (cmd1 | cmd2)
● pipe(fd);
● if (fork() == 0) {

● //cmd1 (Writer)
● close(STDOUT_FILENO);
● dup(fd[1];
● close(fd[0]);
● close(fd[1]);
● //Execute Command

● }
● else {

● //cmd2 (Reader)
● close(STDIN_FILENO);
● dup(fd[0];
● close(fd[0]);
● close(fd[1]);
● //Execute Command

● }

● }
● else {

● //Parent (Shell)
● close(fd);

● }

● How to implement more
than one pipe?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

