

Resolving
Pathnames

What to Do?

● Convert pathnames to common interface
– Absolute pathname

● Different ways to access files
– Relative to root directory

– Relative to current directory

– Relative to previous directory

– Relative to $HOME

– Relative to $PATH

Relative to Root Directory

● Absolute pathname
● Can only occur at the start of the path
● $PWD = /home/faculty/cop4610t

– /bin/bash

– /bin/bash

● Nothing to convert

Relative to Current Directory

● Default case
● Can occur anywhere in the path
● $PWD = /home/faculty/cop4610t

– ./lectures/path_resolution.pdf

– lectures/path_resolution.pdf

– /home/faculty/cop4610t/lectures/path_resolution.pdf

● Can just ignore ./
– Exception is when executing commands...

Relative to Previous Directory

● Access parent directory
● Can occur anywhere in path
● $PWD = /home/faculty/cop4610t/public_html

– ../assignments

– /home/faculty/cop4610t/assignments

● Use ../ to signal removing the last directory off of
the current working directory
– Take note of root directory...

Relative to $HOME

● Used to quickly access home directory
● Can only occur at start of path
● $PWD = /home/faculty/cop4610t/lectures

– ~/assignments/project1

– /home/faculty/cop4610t/assignments/project1

● Expand ~/ to value of $HOME

Relative to $PATH

● Only used for commands
● $PWD = /home/faculty/cop4610t

– ls

– /bin/ls

● If pathname satisfies both
– Is a command (not a regular argument)

– Does not contain any /'s

● Then you need to try each path in the $PATH

Relative to $PATH

● $PATH
– ~/bin/git/:/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin

● Need to split by ':' delimiter
– ~/bin/git/

– /usr/kerberos/bin

– /usr/local/bin

– /bin

– /usr/bin

● Concatenate items in $PATH with the provided pathname
– May need to convert these into absolute pathnames first (e.g. ~/bin/git)

● Test each until there is a match that is a regular file
– Execute first match

– If all fail, notify user

When to Convert the Paths?

● External commands
– Expand the command

– Do not expand the arguments

● Built-in commands
– Do not expand the command

– Do not expand the arguments
● cd is the one exception

● However, you will have to look for environmental variables
in all cases
– e.g. ls $PWD/assignments

Parsing the Path

● char **resolve_paths(char **args) {
– int i;

– for (i = 0; args[i] != NULL; i++) {
● args[i] = expand_path(args[i], is_command(args, i));

– }

– return args;

● }
●

● int is_command(char **args, int i) {}
– //returns 0 for argument, 1 for external command, 2 cd, 3 for other built-in commands

● char *expand_path(char *path, int cmd_p) {}
– //returns expanded argument, does nothing in many cases (determined by is_command)

●

● Where to start???

Bottom-up Design

● We started planning the project design top-
down
– Decomposes task into smaller pieces

● However, it's less clear how to break this up
● Instead, lets build up with utility functions

Utility Function Ideas: Pathing

● Expand previous
– Remove trailing directory from passed in path

● Expand home
– Gets value in $HOME

– Attaches it to passed in path

● Expand path
– Gets value in $PATH

– Tests each with passed in path

● Get current working directory
– Gets value in $PWD

Utility Function Ideas: Strings

● Split
– Breaks a string into an array of strings

– Delimited by a character or string separator

● Concatenate pathnames
– Combines two strings into one

– Separated with '/' (may be included in first string...)

● Count
– Counts the number of occurrences of a type of character in a string

● Is member?
– Checks array for existence of an item

Utility Function Ideas: File Checking

● Exists?
– Check if passed in file exists

● File?
– Check if passed in file is a regular file

● Directory?
– Check if passed in file is a directory file

Utility Function Ideas: Memory

● Array size
– Compute number of items in 2D array

● Safe malloc
– Checks for errors in calloc

● Big free
– Frees all memory in a 2D array

Design Choice

● Personal preference
– Start with top-down design

● Breaks up work needed
● Sets up milestones, use cases, general features
● Makes task seem less daunting
● Easier to do use case testing

– Plan rest of the system with bottom-up design
● Prevents continually remaking the same tools
● Makes code cleaner
● Allows dealing with memory management at the lowest level
● Easier to do unit testing, and prove correct

● Can mix and match to fit your own methodology

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

