/O Redirection



Per Process Data

Global data

Stack

Code

Environmental Variables

File descriptor table



File Descriptor Table

I-node table
(system-wide)

Open file table
(system-wide)
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File Descriptor (fd)

Integer index into the file descriptor table

Calls like open() return the next one available
This is different from fopen which returns FILE*
open(), close(), read(), write() work on fd's

- System calls
- STDIN_FILENO, STDOUT_FILENO
fopen(), fclose(), fscanf(), fprintf() work on FILE*

— C library calls
- stdin, stdout
- Can get fd by calling fileno(FILE?)



Standard File Descriptors

» fd=0 — stdin

- A standard place to read input from
» fd=1 — stdout

- A standard place to write output to
e fd=2 — stderr

- A standard place to write errors to



close(stdin)???

* |f we close stdin, the process won't be able to
read data from a centralized place

- Though we can still access files, sockets, etc
 However, by calling open on a different file
- We can replace this stdin slot with that file

» This redirection of input from stdin to a file Is
the basics of I/O redirection

- cmd < file



Basic I/O Redirection Types

* |nput redirection

- Read from file

- cmd < file

- cmd reads from file instead of stdin
» Output redirection

- Overwrite file

- cmd > file

- cmd writes to file instead of stdout



Input Redirection Example

Int fd = open(path);

If (fork() ==0) {
//Child
close(STDIN_FILENO);
dup(fd);
close(fd);
/[Execute process

}
else {

/[Parent
close(fd);

}



dup

e #include <unistd.h>

— dup(int oldfd)
- Returns the new fd: -1 on error

» Duplicates a file descriptor
- dup simply assigns to lowest slot



Reasons to dup

» Keep from forking if open doesn't work
- Fork Is an expensive operation

* Redirect to an existing fd
- Is > file 2>&1

* To open the same file but with different
attributes

- Read and write to the same socket



Why Bother with I/O Redirection?

* Program can program to standard interface while
caller can change where the 1/O goes

- Testing (read from test file)

- Debugging (splitting output and errors)

- Logging (save output)

- Network communication (read/write to/from socket files)
* |t's part of your project...

* |It's the foundation of how pipes work
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