

I/O Redirection

Per Process Data

● Global data
● Stack
● Code
● Environmental Variables
● ...
● File descriptor table

File Descriptor Table

File Descriptor (fd)

● Integer index into the file descriptor table
● Calls like open() return the next one available
● This is different from fopen which returns FILE*
● open(), close(), read(), write() work on fd's

– System calls

– STDIN_FILENO, STDOUT_FILENO

● fopen(), fclose(), fscanf(), fprintf() work on FILE*
– C library calls

– stdin, stdout

– Can get fd by calling fileno(FILE*)

Standard File Descriptors

● fd=0 – stdin
– A standard place to read input from

● fd=1 – stdout
– A standard place to write output to

● fd=2 – stderr
– A standard place to write errors to

close(stdin)???

● If we close stdin, the process won't be able to
read data from a centralized place
– Though we can still access files, sockets, etc

● However, by calling open on a different file
– We can replace this stdin slot with that file

● This redirection of input from stdin to a file is
the basics of I/O redirection
– cmd < file

Basic I/O Redirection Types

● Input redirection
– Read from file

– cmd < file

– cmd reads from file instead of stdin

● Output redirection
– Overwrite file

– cmd > file

– cmd writes to file instead of stdout

Input Redirection Example

● int fd = open(path);
●

● if (fork() == 0) {
– //Child

– close(STDIN_FILENO);

– dup(fd);

– close(fd);

– //Execute process

● }
● else {

– //Parent

– close(fd);

● }

dup

● #include <unistd.h>
– dup(int oldfd)

– Returns the new fd; -1 on error

● Duplicates a file descriptor
– dup simply assigns to lowest slot

Reasons to dup

● Keep from forking if open doesn't work
– Fork is an expensive operation

● Redirect to an existing fd
– ls > file 2>&1

● To open the same file but with different
attributes
– Read and write to the same socket

Why Bother with I/O Redirection?

● Program can program to standard interface while
caller can change where the I/O goes
– Testing (read from test file)

– Debugging (splitting output and errors)

– Logging (save output)

– Network communication (read/write to/from socket files)

● It's part of your project...
● It's the foundation of how pipes work

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

