/O Redirection



Per Process Data

Global data

Stack

Code

Environmental Variables

File descriptor table



File Descriptor Table

I-node table
(system-wide)

Open file table
(system-wide)

Process A
File descriptor table

fdo
fd 1
fd 2

fd20

a0
fd 1
fd 2
fd 3

fd
flags

file
ptr

]

/|

Y

Process B
File descriptor table

fd
flags

file
ptr

NN

23

73

86

file
offset

status
ﬂags

inode
ptr

224

1976

5139

file
type

file
locks




File Descriptor (fd)

Integer index into the file descriptor table

Calls like open() return the next one available
This is different from fopen which returns FILE*
open(), close(), read(), write() work on fd's

- System calls
- STDIN_FILENO, STDOUT_FILENO
fopen(), fclose(), fscanf(), fprintf() work on FILE*

— C library calls
- stdin, stdout
- Can get fd by calling fileno(FILE?)



Standard File Descriptors

» fd=0 — stdin

- A standard place to read input from
» fd=1 — stdout

- A standard place to write output to
e fd=2 — stderr

- A standard place to write errors to



close(stdin)???

* |f we close stdin, the process won't be able to
read data from a centralized place

- Though we can still access files, sockets, etc
 However, by calling open on a different file
- We can replace this stdin slot with that file

» This redirection of input from stdin to a file Is
the basics of I/O redirection

- cmd < file



Basic I/O Redirection Types

* |nput redirection

- Read from file

- cmd < file

- cmd reads from file instead of stdin
» Output redirection

- Overwrite file

- cmd > file

- cmd writes to file instead of stdout



Input Redirection Example

Int fd = open(path);

If (fork() ==0) {
//Child
close(STDIN_FILENO);
dup(fd);
close(fd);
/[Execute process

}
else {

/[Parent
close(fd);

}



dup

e #include <unistd.h>

— dup(int oldfd)
- Returns the new fd: -1 on error

» Duplicates a file descriptor
- dup simply assigns to lowest slot



Reasons to dup

» Keep from forking if open doesn't work
- Fork Is an expensive operation

* Redirect to an existing fd
- Is > file 2>&1

* To open the same file but with different
attributes

- Read and write to the same socket



Why Bother with I/O Redirection?

* Program can program to standard interface while
caller can change where the 1/O goes

- Testing (read from test file)

- Debugging (splitting output and errors)

- Logging (save output)

- Network communication (read/write to/from socket files)
* |t's part of your project...

* |It's the foundation of how pipes work



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

