

Getting Started

Project 1

Project 1

● Implement a shell interface that behaves
similarly to a stripped down bash shell

● Due in 3 weeks
– September 21, 2015, 11:59:59pm

● Specification, grading sheet, and test examples
are located on the website

Shell?

● Interpreter for a simple programming language
– Can interface with directly

– Or run a file called a shell script

● Usually used to quickly interface with an
operating system

Shell Examples

● sh – The first shell, came with Unix
● csh – The C-shell
● ksh – The Korn shell
● tchsh – The Tenex C-shell, used on linprog
● bash – The Bourne Again Shell (default on

most Linux distributions)
● DOS/cmd – The Windows Shell

Shell Preparation

● These next few lectures will walk you through
how to build a shell

● Feel free to follow the steps and use the code
templates I provide
– The code won't be complete as some things will be

left for you to figure out on your own

● The first thing to cover is C

C Standard Library

● Provides a standard way to:
– Open / close files

– Read / write data

– Manipulate and compare c-strings

– Convert c-strings to other types (and vice-versa)

– Allocate/free memory

– Sort/search input

– ….

Opening and Closing Files

● #include <stdio.h>
– FILE *fopen(const char *file_name, const char *mode)

– void fclose(FILE *file)

● FILE pointers provide access to the contents of a file
● Modes:

– r – Read. Error if file does not exist

– w – Write. Replaces existing file or creates a new file

– a – Append. Add data to existing file or creates a new file

– w+ – Equivalent to both 'r' and 'w'

– a+ – Equivalent to both 'r' and 'a'

C-strings

● C functions using strings, require the string to be
null-terminated

● That is the final character in the string needs to be
'\0'
– Otherwise, the function will extend beyond the bounds

of the string

● If there are any other '\0' characters within the
string, then you can not use these functions
– An example would be a 'string' containing raw data

Writing Output

● #include <stdio.h>
– int printf(const char *format, …)

– int sprintf(const char *buffer, const char *format, …)

– int fprintf(FILE *stream, const char *format, …)

– int fputs(char *str, FILE *stream)

● Takes in a c-string and format specifiers to format the output
● sprintf writes to a buffer
● fprintf and fputs write to a file
● The return value is the number of characters written

– Null character implicitly added in sprintf is not counted

Format Specifiers

● Most I/O functions in the C Standard Library use format specifiers and
flags

● Common specifiers:
– %d - signed integer value

– %u - unsigned integer value

– %f - float value

– %x - hexadecimal value

– %c - character value

– %s - string value

● Typing man printf in a shell will give a more complete list
● Example

printf(“%s %d\n”, “Project due: Sept.”, 21);

Project due: Sept. 21

Reading Input

● #include <stdio.h>
– int scanf(const char *format, …)

– int sscanf(const char *buffer, const *format, …)

– int fscanf(FILE *stream, const char *format, …)

– int fgets(char *buffer, int num, FILE *stream)

● Scanf functions return number of items read
● Fgets reads num characters from a file into buffer

– returns the number of characters read

C-string Comparison

● #include <string.h>
– int strncmp (const char *str1, const char *str2, size_t num)

– int strcmp (const char *str1, const char *str2)

● Returns
– <0 if str2 contains the large value at the first non-matching

character

– 0 if value of str1 == value of str2

– >0 if str1 contains the large value at the first non-matching
character

● Do not do if(str1 == str2)
– This is a pointer comparison, not a value comparison

C-String Copying

● #include <string.h>
– char *strncpy(char *dest, const char *src, size_t num)

– char *strcpy(char *dest, const char *src)

● Copies source string into destination string
● Returns the pointer to dest string
● Make sure to allocate enough room for dest string
● Again, do not do dest = src

C-string Searching

● #include <string.h>
– char *strstr(const char *pattern, const char *string)

– char *strchr(const char character, const char
*string)

● Search for the first occurrence of a
pattern/character in a string

● Returns the starting address of the target item
– Null if not found

Memory Allocation

● #include <stdlib.h>
– void *malloc(const size_t num_bytes)

– void *calloc(const size_t num_objs, const size_t obj_size)

– void free(void *obj)

● Need to use when you don't know the size ahead of time
● Need to cast malloc, calloc to desired type

– e.g. char *str = (char *)malloc(sizeof(char) * num_chars);

● calloc returns a 0-initialized pointer
– Recommended over malloc

● free deallocates dynamically allocated memory
– ….

Potential Problems with Free

● void memory_leak(int size) {
– /* Never freed! Can not access! */

– int *leak = (int *)calloc(size, sizeof(int));

– return;

● }

Potential Problems with Free

● void dangaling_reference(int size) {
– int *reference = (int *)malloc(size * sizeof(int);

– free(ref);

–

– /* Already freed! Should not access! */

– printf(“%d\n”, ref[0]);

– return;

● }

Tools

Man Pages

● Documentation that comes with most Unix-like systems
● Contains information for C functions, packages, bash commands,

system calls, etc
– Examples

● man bash
● man strncpy
● man bsearch

● When there are multiple definitions, it will refer to the lower section
– Use man 3 printf to see C version

– Otherwise it will show bash version (man 1 printf)

● Section information can be found at man man

tar

● Tape ARchiver
● To archive

– tar cvf tarfile.tar files to tar

● To extract
– tar xvf tarfile.tar

● For gzipping
– Use 'z' flag and .gz extension

– tar xvfz tarfile.tar.gz

Make

● Automated software build system
● You'll use it provide a simple way to the executable for your

project
– Name it: “Makefile”

● It works by specifying a target, what it depends on, and how to
transform the dependencies

● In general, it looks like:

target : dependency1, dependency2, …

command1

command2

command3

Make Example
● CC=gcc
● CFLAGS=-I. -ansi -pedantic -Wall
●

● .PHONY : compile clean run
● compile : main.x
●

● main.x : main.o util.o
● <tab>$(CC) $(CFLAGS) -o hello.x hello.o
●

● main.o : main.c
● <tab>$(CC) $(CFLAGS) -o main.o -c main.c
● util.o : util.c
● <tab>$(CC) $(CFLAGS) -o util.o -c util.c
●

● Clean :
● <tab>rm -f *.o *.x
●

● run : compile
● <tab>./main.x

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

