

Executing
External Process

Executing External Commands

● void my_execute(char **cmd) {
– execv(cmd[0], cmd);

● }

● Problems???

execv

● #include <unistd.h>
● int execv(char *absolute_pathname, char **arguments)

– char *cmd[4] = { “/bin/ls”, “-l”, “-a”, NULL };

– execv(cmd[0], cmd);

● Returns only if execution fails
– In which case it is -1

● Otherwise, the new process overwrites the images of the existing
process
– The shell if this case

● Note, you have to use execv
– You can not use system or any of the other exec calls

Executing External Commands

● void my_execute(char **cmd) {
– execv(cmd[0], cmd);

● }

● Problems???
– The command (ls in the example) will execute

– The command's process will replace the shell's

– When the command completes, it will appear as if the shell crashed/exited
to the user

● Solutions?
– Fork

fork

● #include <sys/types.h>
● #include <unistd.h>
● pid_t fork()
● Spawns a new process

– Original is parent process

– New is child process

● Returns three types of values
– Failure

● -1

– In parent process
● pid of child process

– In child process
● 0

pid

● Process identifier
– Unique number representing the process

● Can get using getpid
– #include <sys/types.h>

– #include <unistd.h>

– pid_t getpid()

● Can get parent's pid using getppid()
– Same libraries

● How to get childrens' pid?
– Have to save from fork calls

Executing External Commands

● void my_execute(char **cmd) {
– pid_t pid = fork();

– if (pid == -1) {
● //Error
● Exit(1);

– }

– else if (pid == 0) {
● //Child
● execv(cmd[0], cmd);
● //???

– }

– else {
● //Parent
● //???

– }

● }

● Where to go now???
– Child's command might not

execute
● Need to process error

– Nothing to do in this case
● Need to inform user

– Parent will loop before child
finishes

● Messes up the prompt
display

● Need to wait for child to finish

Executing External Commands

● void my_execute(char **cmd) {
– pid_t pid = fork();

– if (pid == -1) {
● //Error
● Exit(1);

– }

– else if (pid == 0) {
● //Child
● execv(cmd[0], cmd);
● fprintf(“Problem executing %s\n”, cmd[0]);
● exit(1);

– }

– else {
● //Parent
● //wait???

– }

● }

● Why the exit(1)
– Child process doesn't

terminate at the end
of the if statement

– Will result in two shell
processes executing
in the same process
group

● As for how to wait...

waitpid

● #include <sys/types.h>
● #include <sys/wait.h>
● #include <unistd.h>
● pid_t waitpid(pid_t pid, int *status, int options)

– pid is the process to wait on
● -1, 0 is for a single process

– Wait differently depending on the option code
● 0 to wait until the child terminates

– Returns id of process who's state has changed
● -1 on error

– The status field is simply a second return value
● Can pass in NULL to not receive this
● Look in the man page for more information

Executing External Commands
● void my_execute(char **cmd) {

– int status;

– pid_t pid = fork();

– if (pid == -1) {
● //Error
● Exit(1);

– }

– else if (pid == 0) {
● //Child
● execv(cmd[0], cmd);
● fprintf(“Problem executing %s\n”, cmd[0]);
● exit(1);

– }

– else {
● //Parent
● waitpid(pid, &status, 0);

– }

● }

What if...

● void my_execute(char **cmd) {
– pid_t pid = fork();

– if (pid == 0) {
● //Child
● //Do nothing

– }

– else {
● //Parent
● exit(0)

– }

● }

● Parent exits while
child is still running
– Child becomes an

orphan process

– Child's parent
becomes the init
process (pid = 1)

What if...

● void my_execute(char **cmd) {
– pid_t pid = fork();

– if (pid == 0) {
● //Child
● exit(0);

– }

– else {
● //Parent
● //Do nothing

– }

● }

● Parent does not wait
on child and child exits
– Child becomes an

zombie process

– Child's resources are
reclaimed but it still
takes up a slot in the
process table

– Requires init to
eventually remove it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

