

Background
Processes

Introduction

● Up until now, process execution assumed foreground
tasks
– i.e. the shell fully waits until the command finishes executing

● Background tasks are when the shell continues
executing while the command executes

● In terms of syntax, the difference is the inclusion of the
'&' at the end of the command
– ls

– ls &

Waiting?

● Before you used waitpid to signal to the shell to block
– Blocking is when a process temporarily stops executing to

prevent consuming resources

● This is fine for foreground processes because the shell
isn't doing anything anyway

● But you can't use wait the same way for background
processes
– But you still need to wait to capture when the command

finishes

– Otherwise your child process will become a zombie

WNOHANG

● waitpid(pid, &status, WNOHANG);
– Returns pid of changed process, 0 if still running

● This causes waitpid to return immediately
● But it captures whether the process (pid) has

finished or not
– It only tells you when you check

– This means you will have to check repeatedly

Exit

● What happens if you have background
processes and exit is issued?

● You will need to fully wait on each of them
before quiting
– Otherwise they will become orphans

● This requires keeping a counter or array of
executing processes

Project Specifics

● Keep a queue of running background processes
– Position in queue (queue number)

– Process ID (pid)

– Command (cmd)

● When process starts execution, print out
– [queue number] [pid]

– [0] [5532]

● When process finishes execution, print out
– [queue number]+ [cmd]

– [0]+ [ls -la]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

