Class Introduction



Experience Survey
Recitations

Grading

Project Descriptions
Project Notes
Teams

Late Penalty

Slack Days

Error Policy
Submission Format

Overview



Experience Survey

* |'ll pass out 10mins before the end of class
- Someone remind me if | lose track of time
* Designed to

- Grant access to the computer lab
* Needed for project 2 especially

- Give me an idea of what you know so | can better tailor
the class to your needs/experience

e If you missed the survey
- Fill one out and bring/email it to me ASAP



Recitations

« HCB 216 Friday 12:20am — 1:10pm

e Allocated recitation slots

- Used for office hours or special workshops

- Project 1
« LOV 301
- Project 2, 3
e MCH 202



Grading

» Total grade
- Project 1 = 30%
- Project 2 = 40%
- Project 3 = 30%

* Project breakdown

- Documentation = 30%
— Correctness = 70%

* Appeals

- See me within one week of receiving grade
- Otherwise, grade is permanent



Project Descriptions

* Project 1

- Command-line user interface shell
* Project 2

- Kernel programming
* Project 3

- File Systems



Project Notes

Start projects as soon as they're assigned
- Implementation is often tricky
Ask lots of questions

- This gives me an idea of where you are at and can better you (and the rest of the
class)

- Popular guestions will be posted on the site and mentioned at the next lecture time

Break project into smaller programs to test new features and slowly add
Into actual project

Do automate testing when possible
- Use separate program to test each of the procedures, use cases
Spend time to write good code / maintain code

- Helps you and your teammates finish faster
- Helps me in terms of grading and answering implementation questions



Teams

Can form groups of up to 3 people
It is highly recommended to work in teams
Email cop4610t@cs.fsu.edu team makeup

- Or if you are looking for team members

Submissions are to blackboard and are done
once per team

— Not once for each team member


mailto:cop4610t@cs.fsu.edu

Late Penalty

10 points off total for each day late
* O points after the 5% day

« Example:

- Due Monday @11:59pm

- Submitted Tuesday

« Max points possible will be reduced to 90
- Submitted Saturday

« Max points possible will be reduced to 50
- Submitted Sunday

* 0 points regardless of submission content



Slack Days

Each student is allotted 3 slack days
1 slack day = 1 day past submission deadline without penalty
Can use as many as you want for each project until you run out

Student based, not team based

- Example:

- Project 2 is submitted 1 day late

- Student A uses 1 slack day and receives no penalty

- Student B has no more slack days and receives the 10 point penalty

Each student needs to specify the number of slack days they
want to use in the project report



Error Policy

 Document known errors/bugs

 Undocumented errors will result in full point
deduction If found

By documenting your bugs:

- You let me know that you know things aren't
working correctly

- You can tell me different ways you tried to fix it
- Makes it easier/quicker for me to grade



Submission Format

e far
- README (5pts)
- Project Report (15pts)
- Source Code (80pts)
e *.c, *.h, Makefile

 Demo (project dependent)

- Sign up for a time to demonstrate correctness of your program to
me

- Random implementation based questions will be asked for
verification purposes



README

Team members' names

Contents of the tar archive and a description of
each file

Version of Linux you used or the server you
completed the project on

Description of Makefile commands
Known bugs, unfinished portions of the project
Special considerations | should know when grading



Project Report

The project problem statement

* Assumptions that were made

The steps taken to solve the problem

Brief description of why your solution uses the
chosen system calls and libraries

Problems encountered

Known bugs
- Same as in README



Project Report

Division of labor
Number of slack days used per team member

Cumulative log entries for the entire project

- Meeting times, modifications, decisions made,
accomplishments, etc

Responses to questions (if any)

Descriptions of additional features
— Extra credit



Makefile

* Required
- If not provided, 70 points will be deducted automatically
« Used to automatically, consistently build project

e At a minimum should include commands to:
- Build system
- Remove build targets (executables, object files, etc)
« Additional useful commands:
- Run project
- Test (run a testing program)
- Backup (archives program, commits it to a git repo, etc)



Source Code

* In C programming language
e Code quality makes up the last 10 points of the documentation

- Code needs to be readable and have a consistent layout
* No Junk Code!

- Variables, structures, functions, etc need to adequately describe their
purpose

» Optionally include comments to further specify use, esp for global variables
and complex functions

« Actual design decisions won't impact grading, but might slow
your progress

- Be wary of global variables, goto statements, large procedures, etc

- When possible, it's good to have a functional design, i.e. procedures
that don't introduce side effects (output depends solely on input)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

