
Project 3 Specification

FAT32 File System Utility

Assigned: October 30, 2015

Due: November 30, 11:59 pm, 2015

 You can use the reminder of the slack days. -10 late penalty for each 24-hour period after the

due time. Absolutely no submission after December 6 11:59 pm.

Language restrictions: C only

Additional restrictions: system() and exec() system calls may not be used

Purpose:

The purpose of this project is to familiarize you with three concepts: basic file-system design and

implementation, file-system image testing, and data serialization/de-serialization. You will need to

understand various aspects of the FAT32 file system such as cluster-based storage, FAT tables, sectors,

directory structure, and byte-ordering (endianness). You will also be introduced to mounting and un-

mounting of file system images onto a running Linux system, data serialization (converting data structures

into raw bytes for storage or network transmissions), and de-serialization (converting serialized bytes into

data structures again).

Problem Statement:

For this project, you will design and implement a simple, user-space, shell-like utility that is capable of

interpreting a FAT32 file system image. The program must understand the basic commands to manipulate

the given file system image. The utility must not corrupt the file system image and should be robust. You

may not reuse kernel file system code, and you may not copy code from other file system utilities (or from

anywhere else over the internet, to be precise).

Project Tasks:

You are tasked with writing a program that supports file system commands. For good modular coding

design, please implement each command in a separate function. Please implement the following

functionality:

 open <FILE_NAME> <MODE>

Opens a file named FILE_NAME in the present working directory. A file can only be read from or

written to if it is opened first. You may need to maintain a table of opened files and add

FILE_NAME to it when open function is called.

MODE may be:

o r – read-only

o w – write-only

o rw – read and write

o wr – read and write

Return an error if the file is already opened.

 close <FILE_NAME>

Closes a file. Return an error if the file is already closed. Depending on your implementation, you

may need to remove FILE_NAME from the table of opened files.

 create <FILE_NAME>

Creates a file in the present working directory of 0 bytes with name FILE_NAME. Return an error

if a file with that name already exists.

 rm <FILE_NAME>

Deletes FILE_NAME from the current working directory. Return an error if FILE_NAME does not

exist. This only removes the link from a directory to a file, not the actual data. (That is, the file

no longer shows in the output of ls, and the space is reclaimed).

 size <FILE_NAME>

Prints the size of file FILE_NAME in the current working directory, in bytes. Return an error if

FILE_NAME does not exist.

 cd <DIR_NAME>

Changes the current working directory to DIR_NAME. Return an error if the specified directory

does not exist. Should support “.” (here) and “..” (up one directory) directories.

 ls <DIR_NAME>

Lists the contents of DIR_NAME, including the “.” (here) and “..” (up one directory) directories.

Return an error if the specified directory does not exist

 mkdir <DIR_NAME>

Creates a new directory with the name DIR_NAME. Return an error if the directory already

exists or if a file already exists by that name.

 rmdir <DIR_NAME>

Removes a directory called DIR_NAME. Return an error if the directory is not empty or the

directory does not exist. (Directory is empty if it contains only “.” And “..”).

 read FILE_NAME POSITION NUM_BYTES

Reads from a file FILE_NAME, starting at POSITION, and prints NUM-BYTES. Return an error

when trying to read from an unopened file or from a file opened only for writing, or if POSITION

is greater than the size of the file FILE_NAME.

 write FILE_NAME POSITION NUM_BYTES STRING

Writes to a file FILE_NAME, starting at POSITION, for NUM-BYTES, the quote-enclosed STRING.

Over-write the existing bytes at the specified position. Return an error when trying to write an

unopened file, or a file opened only for reading.

If POSITION is outside the bounds of the file, grow the file enough to make POSITION valid. File

holes are supported. If the length of the data exceeds the bounds of the file, grow the file as

necessary.

In case of all the functions above, print an appropriate error message if the function returns an error.

Allowed Assumptions:

 File and directory names will not contain spaces.

 You may assume that STRING always begins and ends with QUOTES

 FILE_NAME and DIR_NAME will only contain the names, not multi-level paths. For example,

“create afile” will create a file named afile in the current directory. It does not have to support

commands like “create adirectory/afile”

 Unless specified, you may choose any reasonable data type for the arguments and return values

for your functions.

Grading Criteria:

a) Documentation: 30%

 5: A Readme file listing group members’ names, fsu ids, contents of the folder, and how to

compile and execute.

 5: Makefile

 10: A report explaining how the program works, the basic modules, important data

structures and variables, any known limitations/errors/incompleteness. Basically, make the

grader’s job easier.

 5: Code: Readable

 5: Code: Naming

b) Coding: 70%

 55: open, close, create, rm, size, cd, ls, mkdir, rmdir, read, write (5 points each)

 15: input-output handling

c) Deductions:

 70: for not compiling (So make sure it compiles at least.)

 10: for crashing at any point while running

 20: for corrupting the image file

Submission and Grading Guidelines:

1. This is a group project. Each group will have 3 people.

2. One person from each team will submit a tar and gzip’d archive containing the submission to

Blackboard. He source code and Makefile should be placed inside a “src” directory (Do not submit

binaries). Other files (e.g. Readme) should be placed at the root of the archive. Upload your

submission using Blackboard and verify that you can download and extract it successfully. The

filename of the submission file is to be formatted as:

P3_<member_name1>_<member_name2>_<member_name3>.tar.gz

At a minimum, the submitted archive should contain:

 Documentation

 Source File

 Makefile

3. For this project, no demonstration is necessary. The TA will contact you if he thinks a meeting is

needed.

4. Everyone in the group will get the same grade. Because it is a group project, everyone is expected to

share the workload equally. If anyone has a major disagreement about workload distribution, (s)he

needs to contact the TA beforehand.

