
178 Chapter 4 

The Server 

The server will listen to port 6052 waiting for client connections. When 
a client connection is made, the server will service the connection in a separate 
thread and will resume listening for additional client connections. Once a 
client makes a connection to the server, the client will write the IP name it 
wishes the server to resolve-such as www. westminstercollege. edu­
to the socket. The server thread will read this IP name from the socket and 
either resolve its IP address or, if it cannot locate the host address, catch an 
UnknownHostException. The server will write the IP address back to the 
client or, in the case of an UnknownHostException, will write the message 
"Unable to resolve host <host name>." Once the server has written 
to the client, it will close its socket connection. 

The Client 

Initially, write just the server application and connect to it via telnet. 
For example, assuming the server is running on the localhost a telnet session 
would appear as follows. (Client responses appear in 

telnec localhost 6052 

Connected to localhost. 
Escape character is 'A]'. 

\i~/VV\H "'destrninstercollege. edu 
146.86.1.17 
Connection closed by foreign host. 

By initially having telnet act as a client, you can more easily debug any problems 
you may have with your server. Once you are convinced your server is working 
properly, you can write a client application. The client will be passed the IP 
name that is to be resolved as a parameter. The client will open a socket 
connection to the server and then write the IF name that is to be resolved. It 
will then read the response sent back by the server. As an example, if the client 
is named NSClient, it is invoked as follows: 

java NSClient www.westminstercollege.edu 

and the server will respond with the corresponding IF address or "unknown 
host" message. Once the client has output the IF address, it will close its socket 
connection. 

Project 2: Matrix Multiplication Project 

Given two matrices, A and B, where matrix A contains M rows and K columns 
and matrix B contains K rows and N columns, the of A and B 
is matrix C, where C contains M rows and N coh.11m1s. The entry in matrix C 
for row i, column j (C.j) is the sum of the products of the elements for row i 
in matrix A and column j in matrix B. That is, 



179 

K 

C,j = L A;, 11 X Bn,j 
11=:1 

For example, if A is a 3-by-2 matrix and B is a 2-by-3 m.atrix, element C3,1 is 
the sum of A3,1 x B1. 1 and A3,2 x B2,1· 

For this project, calculate each element C;,j in a separate worker thread. This 
will involve creating M x N worker threads. The main-or parent-thread 
will initialize the matrices A and B and allocate sufficient memory for matrix 
C, which will hold the product of matrices A and B. These matrices will be 
declared as global data so that each worker thread has access to A, B, and C. 

Matrices A and B can be initialized statically, as shown below: 

#define M 3 
#define K 2 
#define N 3 

int A [M] [K] 
int B [K] [N] 
int C [M] [N] ; 

{ {1,4}, {2,5}, {3,6} }; 
{ {8,7,6}, {5,4,3} }; 

Alternatively, they can be populated by reading in values from a file. 

Passing Parameters to Each Thread 

The parent thread will create M x N worker threads, passing each worker the 
values of row i and column j that it is to use in calculating the matrix product. 
This requires passing two parameters to each thread. The easiest approach with 
Pthreads and Win32 is to create a data structure using a struct. The members 
of this structure are i and j, and the structure appears as follows: 

I* structure for passing data to threads *I 
struct v 
{ 

} ; 

int i; I* row *I 
int j; I* column *I 

Both the Pthreads and Win32 programs will create the worker threads 
using a strategy similar to that shown below: 

I* We have to create M * N worker threads *I 
for (i = 0; i < M, i++) 

} 

for (j = 0; j < N; j++ ) { 

} 

struct v *data= (struct v *) rnalloc(sizeof(struct v)); 
data->i = i; 
data->j = j; 
I* Now create the thread passing it data as a parameter *I 



180 Chapter 4 

public class WorkerThread implements Runnable 
{ 

} 

private int row; 
private int col; 
private int [] [] A; 
private int [] [] B; 
private int[] [] C; 

public WorkerThread(int row, int col, int[] [] A, 

} 

int [] [] B, int [] [] C) { 
this.row =row; 
this.col = col; 
this.A A; 
this.B 
this.C 

B· 
' 

C; 

public void run() { 
I* calculate the matrix product in C [row] [col] *I 

} 

Figure 4.15 Worker thread in Java. 

The data pointer will be passed to either the pthread_create () (Pthreads) 
function or the CreateThread () (Win32) function, which in turn will pass it 
as a parameter to the function that is to run as a separate thread. 

Sharing of data between Java threads is different from sharing between 
threads in Pthreads or Win32. One approach is for the main thread to create 
and initialize the matrices A, B, and C. This main thread will then create the 
worker threads, passing the three matrices-along with row i and column j­
to the constructor for each worker. Thus, the outline of a worker thread appears 
in Figure 4.15. 

Waiting for Threads to Complete 

Once all worker threads have completed, the main thread will output the 
product contained in matrix C. This requires the main thread to wait for 
all worker threads to finish before it can output the value of the matrix 
product. Several different strategies can be used to enable a thread to wait 
for other threads to finish. Section 4.3 describes how to wait for a child 
thread to complete using the Win32, Pthreads, and Java thread libraries. 
Win32 provides the Wai tForSingleObj ect () function, whereas Pthreads 
and Java use pthread_j oin () and join(), respectively. However, in these 
programming examples, the parent thread waits for a single child thread to 
finish; completing this exercise will require waiting for multiple threads. 

In Section 4.3.2, we describe the Wai tForSingleObj ect () function, which 
is used to wait for a single thread to finish. However, the Win32 API also 
provides the Wai tForMultipleDbj ects () function, which is used when 
waiting for multiple threads to complete. WaitForMultipleObjectsO is 
passed four parameters: 



#define NUM_THREADS 10 

I* an array of threads to be joined upon *I 
pthread_t workers[NUM_THREADS]; 

for (int i = 0; i < NUM_THREADS; i++) 
pthread_join(workers[i], NULL); 

Figure 4.16 Pthread code for joining ten threads. 

The num.ber of objects to wait for 

A pointer to the array of objects 

A flag indicating if all objects have been signaled 

A timeout duration (or INFINITE) 

181 

For example, if THandles is an array of thread HANDLE objects of size N, the 
parent thread can wait for all its child threads to complete with the statement: 

WaitForMultipleObjects(N, THandles, TRUE, INFINITE); 

A simple strategy for waiting on several threads using the Pthreads 
pthread_join() or Java's join() is to enclose the join operation within a 
simple for loop. For example, you could join on ten threads using the Pthread 
code depicted in Figure 4.16. The equivalent code using Java threads is shown 
in Figure 4.17. 

final static int NUM_THREADS = 10; 

I* an array of threads to be joined upon *I 
Thread[] workers = new Thread[NUM_THREADS]; 

for (int i = 0; i < NUM_THREADS; i++) { 
try { 

workers [i] . join() ; 
} catch (InterruptedException ie) { } 

} 

Figure 4.17 Java code for joining ten threads. 

Threads have had a long evolution, starting as "cheap concurrency" in 
programming languages and moving to "lightweight processes", with early 
examples that included the Thotll. system (Cheriton et al. [1979]) and the Pilot 
system (Redell et al. [1980]). Binding [1985] described moving threads into 
the UNIX kernel. Mach (Accetta et al. [1986], Tevanian et al. [1987a]) and V 
(Cheriton [1988]) made extensive use of threads, and eventually almost all 
major operating systems implemented them in some form or another. 



182 Chapter 4 

Thread performance issues were discussed by Anderson et al. [1989], who 
continued their work in Anderson et al. [1991] by evaluating the performance 
of user-level threads with kernel support. Bershad et al. [1990] describe 
combining threads with RPC. Engelschall [2000] discusses a technique for 
supporting user-level threads. An analysis of an optimal thread-pool size can 
be found in Ling et al. [2000]. Scheduler activations were first presented in 
Anderson et al. [1991], and Williams [2002] discusses scheduler activations in 
the NetBSD system_. Other mechanisms by which the user-level thread library 
and the kernel cooperate with each other are discussed in Marsh et al. [1991], 
Govindan and Anderson [1991], Draves et al. [1991], and Black [1990]. Zabatta 
and Young [1998] compare Windows NT and Solaris threads on a symmetric 
multiprocessor. Pinilla and Gill [2003] compare Java thread performance on 
Lim1X, Windows, and Solaris. 

Vahalia [1996] covers threading in several versions of UNIX. McDougall 
and Mauro [2007] describe recent developments in threading the Solaris kernel. 
Russinovich and Solomon [2005] discuss threading in the Windows operating 
system family. Bovet and Cesati [2006] and Love [2004] explain how Linux 
handles threading and Singh [2007] covers threads in Mac OS X. 

Information on Pthreads programming is given in Lewis and Berg [1998] 
and Butenhof [1997]. Oaks and Wong [1999], Lewis and Berg [2000], and Holub 
[2000] discuss multithreading in Java. Goetz et al. [2006] present a detailed 
discussion of concurrent programming in Java. Beveridge and Wiener [1997] 
and Cohen and Woodring [1997] describe multithreading using Win32. 


