Overview

- Administrivia
- History/applications
- Modeling agents/environments

What can we learn from the past?

Pre-AI developments

Philosophy: intelligence can be achieved via mechanical computation (e.g., Aristotle)

Church-Turing thesis (1930s): any computable function is computable by a Turing machine

Real computers (1940s): Heath Robinson, Z-3, ABC/ENIAC

Birth of AI, early successes

Birth of AI (1956): Workshop at Dartmouth College (John McCarthy, Marvin Minsky, etc.); aim for general principles

Every aspect of learning or any other feature of intelligence can be so precisely described that a machine can be made to simulate it.

Checkers (1952): Samuel's program learned weights and played at strong amateur level

Problem solving (1955): Newell & Simon's Logic Theorist: prove theorems in Principia Mathematica using search + heuristics; later, General Problem Solver (GPS)

Overwhelming optimism...

Machines will be capable, within twenty years, of doing any work a man can do. —Herbert Simon

Within 10 years the problems of artificial intelligence will be substantially solved. —Marvin Minsky

I visualize a time when we will be to robots what dogs are to humans, and I'm rooting for the machines. —Claude Shannon

...underwhelming results

Example: machine translation:

The spirit is willing but the flesh is weak.

(Russian)

The vodka is good but the meat is rotten.

1966: ALPAC report cut off government funding for MT
Summary

Problems:
- **Limited computation:** search space grew exponentially, outpacing hardware ($100! \approx 10^{10^{57}} > 10^{80}$)
- **Limited information:** complexity of AI problems (number of words, objects, concepts in the world)

Contributions:
- Lisp, garbage collection, time-sharing (John McCarthy)
- **Key paradigm:** separate modeling (declarative) and algorithms (procedural): program has internal model of the external world, search for goal using model

Knowledge-based systems (1970s-1980s)

Knowledge is power

Expert systems: elicit specific domain knowledge from experts in form of rules:

```
if [premises] then [conclusion]
```

DENDRAL: infer molecular structure from mass spectrometry

XCON: convert customer orders into parts specification; save DEC $40 million a year by 1986

Knowledge-based systems

Contributions:
- First real application that impacted industry
- Knowledge helped curb the exponential growth

Problems:
- Knowledge is not deterministic rules, need to model uncertainty
- Requires considerable manual effort to create rules, hard to maintain

Modern AI (1990s-present)

Better models:
- Pearl (1988): promote probability, Bayesian networks in AI to model uncertainty coherently (Bayes rule in 1700s)
- Speech recognition using HMMs

More data:
- Trillions of words in English, billions of images on Web
- Tune million of parameters using statistical principles, e.g., maximum likelihood (Gauss in 1800s, Fisher in 1910s)
- Key: use learning to solve the lack of information

Big milestones

- 1997: IBM's Deep Blue chess computer defeats world champion Gary Kasparov
- 2005: Stanford's Stanley drives 132 miles in desert to win DARPA Grand Challenge
- 2011: IBM's Watson defeats humans at Jeopardy!

Search/planning

Route planning: (e.g., Google maps); search + heuristics

Logistics planning: hospitals organize bed schedules, staff rotations

Formal verification: prove correctness of hardware/software (e.g., NASA, Intel); logic/theorem proving
Prediction

Recommendation systems: users rate/buy products (e.g., Netflix Prize)

Medical diagnosis: given symptoms, predict diseases

Computer vision

Check reading: automatic tellers widespread

Face detection/recognition: widespread on digital cameras

Object recognition: 10 million labeled images, 100,000 object categories

Scene understanding: partition image and label regions with building, sky, road, etc.

Activity recognition: infer high-level concept from low-level data (UIUC)

Robotics

Disaster areas: after earthquakes, surveillance robots check for survivors and structural integrity

Household chores: towel folding [Abbeel at Berkeley]

Robotic surgery: less invasive, can perform some actions better than humans

Autonomous vehicles: (e.g., Google Car)

Natural language processing

Spam filtering: 80-90% of all messages are spam; adversarial

Information retrieval: rank web pages based on relevance to query

Machine translation: Google Translate handles 64 languages

Speech recognition: personal assistants (Siri, Google Now)

Summary

in vitro

reasoning/search

in vivo

perception/uncertainty

AI: the study and design of intelligent **agents**

Ingredients:

- **Computation**: exponential search space
- **Information**: tons of **noisy** data
- **Tools**: logic, probability, statistics, optimization
Framework

- **Environment**
- **Agent**
- **Percepts**
- **Program**
- **Actions**
- **Sensors**
- **Actuators**

Utility: measure performance on desired task
Our goal: build an agent that obtains high utility

Examples

Robotics:
- Percepts: sensor measurements (cameras, microphones, laser range finders, sonar, GPS)
- Actions: move, turn, grasp, etc.

Computer vision:
- Percepts: pixels of an image
- Actions: produce description of objects in image

Natural language:
- Percepts: request in context (e.g., *Where is the nearest airport?*)
- Actions: response (e.g., *San Jose*)

Games:
- Percepts: state of a chess board
- Actions: make legal chess moves

Human agents

Brain (hardware): 100 billion neurons, 7,000 connections per neuron; topic of neuroscience; inspiration for some models (neural networks)

Mind (software): cognitive science studies human intelligence and behavior; share some of same techniques as AI (probabilistic models)

Analogy: brains : intelligence :: wings : flight

Rational agents

Ideally: obtain agent that maximizes expected utility!

\[
\alpha^* = \arg \max_{\alpha:Rational} \text{ExpectedUtility}(\alpha)
\]

Issue:
- Real-world tasks are too complex to formalize exactly
- Example: what are utility (performance measure) and percepts (input) for machine translation?
- Example: in chess, board is fully-observed but opponent is not

Model-based agents

Model: a simplification of the original task (environment, utility)

Methodology for solving AI tasks

1. **Real-world task**
2. **Modeling**: make simplifications / assumptions
 - **Formal task**
3. **Algorithms**: find rational agent in simplified task
 - **Solution**
Making decisions

Task: I give you 2 dollars if you raise your left hand, 5 dollars if you raise your right hand.

Model:
- Environment: I'm telling truth
- Utility: amount of money
- Rational agent: raise right hand

Making decisions under uncertainty

Task: You choose a number n. I flip two coins. If n heads show up, you get n^2 dollars.

Model:
- Environment: I'm telling truth, fair coin
- Utility: amount of money
- Rational agent:
 - Action $n = 2$: $\text{ExpectedUtility} = \frac{1}{2} \cdot 2^2 = 1$
 - Action $n = 1$: $\text{ExpectedUtility} = \frac{1}{2} \cdot 1^2 = 0.5$
- Therefore, choose $n = 2$

Flip coins, get HT; got 0 instead of 1; still rational?

Lesson: under uncertainty, must think about expected utility

A clinical task

- Three drugs (A, B, C), each with some probability of success.
- Conduct 20 trials; in each trial, choose one of the drugs.
- Goal: maximize number of successes.

Desiderata / course topics

Reason about goals: what will I get if I try this sequence of actions?
 - Search, planning, minimax

Deal with uncertainty: don't know what will happen, ambiguity in language, noise in sensor readings
 - MDPs, probabilistic graphical models

Learn from experience: results of actions provide information to improve utility over time
 - Machine learning, reinforcement learning

Interface with the human world: tasks involve humans
 - Vision, robotics, language

Summary

Diverse real-world applications: language, vision, robotics, planning

Challenges: limited computation, limited information

Methodology: modeling + algorithms