
 

Simple Automobile Tire Expert System Built in C++  

with Embedded SWI-Prolog 

  

Whetzel Thornsbury 

wst12@my.fsu.edu 
 
 
 
 

Abstract 

Expert Systems are an interesting part of Artificial 
Intelligence that focuses on mimicking the decision 
making ability of human experts. This is accomplished 
by using formal logic to examine facts and then to 
make decisions on those facts, similar to how a human 
would. This system uses two separate parts, the 
inference engine and the knowledge base. The 
inference engine is the system that examines the rules 
and knowledge and then comes to some logical 
conclusion. The knowledge base is where all the facts 
and rules are stored. For this paper, a simple Expert 
System will be created based on knowledge and rules 
of an automobile tire professional. In order to achieve 
this, C++ will be used as the interface between the 
user, Inference Engine, and knowledge based. SWI-
Prolog will be used as the Inference Engine.  
 

Introduction 

 
There are many types of expert systems in use today in 
different industries from medical to automotive.  These 
systems are both used by experts and non-experts to help 
make decisions based on the facts they have about a 
particular domain of knowledge. 

An expert system is a program designed to solve 
problems at a level comparable to that of a human 
expert in a given domain. 
(Ogu, 2013) 

This knowledge is stored in the knowledge base of an 
expert system.  Formal logic is the language that is used to 
store this knowledge, and will be used to retrieve and 
processed information as it is queried by the user. 
 Before that can happen, a user interface will need to take 
the information from the user in order to compare to the 
knowledge base to their query.  An easy way to do this is to 
have the user give facts about a particular problem.  The 
program will then package this information and send it to 
the inference engine. 
 The inference engine is where the magic happens when it 
comes to expert systems.  With the user’s information at 

hand, the inference engine will use this to come up with a 
decision to a problem.  When it comes to inference engines, 
there are two schools of thought as to how the information 
is processed and a decision is made; forward chaining and 
backward chaining.  
 Forward chaining is very basic in how it operates.  “The 
system simply tests the rules in the order that they occur... If 
the system needs a variable to determine if a rule is true or 
false, and the value of the variable is unknown, the system 
immediately asks the user for the value”.  (Huntington, 
2002)  The facts are processed by finding an appropriate rule 
where the fact is in the IF portion of a predicate, and the 
THEN portion is output as a solution. 
 Backwards chaining works in a reverse way by first 
looking at the THEN portion of the rule.  “This requires an 
IF/THEN rule that assigns a value to the variable in the 
THEN part of the rule.  If such a rule is found, that rules IF 
portion is tested to determine if it is true.”  (Huntington, 
2002)  Unlike forward chaining requiring all variables to 
have a rule which it is matched to, backward chaining will 
take an unknown value and perform another backward chain 
query to find a value that it can use to complete the original 
query.  “If no rule is available to assign a value …, the 
system asks the user directly.” (Huntington, 2002) The 
Expert system that will be described in this paper will use 
backwards chaining. 
 Although there is a more complex “shell” that is used for 
most expert systems, in this paper I will only describe and 
build a basic system that will look like Figure 1. 

 

Figure 1.  Expert System  

Based on Fig. 0.1 of Noran. The Evolution of Expert Systems 

 

 

 

 

 

 

User 

Interface Facts 

Expertise 

Knowledge Base 

Inference Engine 



 

Background 
Back in the early part of Artificial Intelligence research, one 
of the projects that researchers worked on was a General 
Problem Solver, the precursor of modern day expert 
systems.  The first system, called Post, was first derived 
from mathematics being a “set of rules specifying how to 
change a string of symbols into another set of symbols.”  
(Noran)  The drawback of this system was using symbols 
for knowledge and manipulating the symbols to form new 
symbols, “the manipulation of strings is only based on 
syntax and not on any semantics or understanding of the 
underlying knowledge.”  (Noran)  What researches wanted 
was a way for the computer to reason like humans, and this 
was not possible if a computer does not have rules to help it 
“understand” the decision. 
 Newell and Simon demonstrated that much of human 
problem-solving could be expressed as IF..THEN 
production rules.  (Noran)  These rules help the computer 
understand the decision, not like we understand, but the 
semantics of the decision process and how knowledge is 
represented.   
Still researchers still focused on creating a general 

problem solver, but there was too much knowledge to 
model, and this wasn’t efficient.  They needed to break up 
how much knowledge needed to be represented, and this is 
where the focus of expert systems came from.  It was easier 
to model domain knowledge, then have a computer keep 
track of all knowledge. 
 

Building a Basic Expert System 
So let’s break down what will be used to create the expert 
system created based on the domain knowledge of an 
automobile tire expert. 
 First, let’s take a look at the inference engine that will be 
used, Prolog.  Prolog is a logic programming language that 
uses backwards chaining in order to process decisions.  As 
described by A. Aaby, in Prolog Tutorial, a Prolog program 
consists of a data base of facts and logical relationships that 
is referenced when a question is asked, and the program uses 
logical deduction to find the answer.  This makes it perfect 
to use as an inference engine, because logical deduction is 
similar to how experts filter through their own knowledge.  
A knowledge base will need to be created that the user can 
query against to produce an answer. 
Finally, the user interface will be created.  This will be a 

texted based console that will allow a user to select an issue 
with their tire, and the console will either return an answer 
or ask a further question in order to help diagnose the 
problem. 
 

Knowledge Base Creation 
 The expert we will be mimicking will be an automobile 
tire professional.  To fill this knowledge base, I will be using 
facts and rules that deal specifically with tire repair and tire 

replacement, in order to keep it simple.  All facts concerning 
car alignment and other mechanical problems that may 
cause tire damage (or early wear) will be ignored.  The 
following rules will be added to the knowledge base. 

Expert Rules for Tire Repair and Replacement 
If tire tread <= 0.3175 cm, Then tire damaged. 
If tire is flat And hole in tire, Then patch tire. 
If tire is flat And Not hole or Not tear,  
Then air tire up. 
If tire is flat and tear in tire, Then replace tire. 
If tear in tire, Then flat tire. 
If hole in tire, Than flat tire 
If tire is damage, Then replace tire. 

 
 Unfortunately, these rules are not as cut and dry when it 
comes to creating a knowledge base around them using 
Prolog.  Programming using a logical programming 
language, like Prolog, is very different than what most 
students will learn in the first couple of years at university.  
Although much of the inference engine rules are based on 
IF/THEN statements and facts, they do not work similar to 
how IF/THEN statements work in procedural paradigms. 
Using predicates, you string together rules using formal 

logic, and these rules work on facts within the program.  
Let’s say you are given the facts causes(cause, problem) and 
effects(cause, effect).  The statement experienced 
problem(X,Z) :- causes(X,Y), effects(Y,Z) would mean IF 
experienced problem(X,Z) THEN causes(X,Y) AND 
effects(Y,Z).  If you wanted to evaluate experienced 
problem(problem,Z), then Prolog would output Z=effect 
based on the knowledge base. 
I used the rules that I defined above as a starting point for 

the facts and rules I would write for Prolog.  I had to do this 
quite a few times to actually understand how to do this 
correctly using the new paradigm.  What I ended up using 
was a cause and effect type rule, similar to my example 
above, to determine what the solution is to a particular tire 
problem.  In order to have this rule work, I had to create a 
list of facts about tire problems, what causes those problems, 
and what would fix those particular problems. 
 

Testing and Results 
Seeing as there were not many problems for which this 
expert system solves for, I did not have much testing to do.  
I took every problem and ran it through the system many 
different times to see what solutions were given.  I received 
appropriate solutions for my queries, but it did not give the 
option to select an intermediate problem if there were 
multiple issues that would cause a problem, in this case the 
flat tire option.  It tended to always pick hole in the tire 
option, and selected that I patch the tire.  I looked into the 
problem, but only figured this was a symptom of how Prolog 
backwards chaining works and how my facts and rule were 
programmed.  As I did not have much experience with 
Prolog or any logic programming language, this problem is 



still alluding me, and do not have a solution to this problem, 
yet. 

Conclusion and Future Work 

Although I did not solve the problem that I am having with 
my implementation of the expert system I worked on, I did 
learn a lot about Expert Systems and how they are created.  
Most of the work that a person would perform in an expert 
system, like the one I built, is in creating a user interface 
and, what I think is most difficult, engineering the 
knowledge base.  Prolog, the logic language used, is a very 
different approach to programming compared to how most 
people program.  Although not much detail was put into 
the knowledge base for this particular domain, there are 
many intricacies within the language that were not 
explored that could have made a much more tweaked 
knowledge base. 

 In the near future, I plan on exploring more of the prolog 
language within the SWI-Prolog program in order to learn 
how to make better defined data and rules.  Once I am able 
to properly program in Prolog, I will be able to engineer a 
knowledge base with precision, and at that point I could 
make a more interesting expert system.  With as much data 
and expert information out there, there is no limit to the 
amount of domains that expert systems can be built for. 

References 

Huntington, D. 2002. Back to Basics – Backward Chaining: Expert 
System Fundamentals.  PCAI Volume 16 Issue 4. 

Anjaneyulu, K S R. 1998.  Expert Systems: An Introduction.  
Resonance journal of science education Volume 3 Issue 3. 46-58 

Ogu, E. 2013.  Basic Concepts of Expert System Shells and an 
Efficient Model for Knowledge Acquisition.  International 
Journal of Science and Research Volume 2 Issue 4. 554-559 

"Artificial Intelligence and Expert Systems." Artificial 
Intelligence and Expert Systems. PerfectLogic Corporation, 
2013. Web. 20 July 2013. 
<http://www.perfectlogic.com/articles/AI/ExpertSystems/E
xpertSystems.html>. 

Noran, Ovidiu S. "The Evolution of Expert Systems." 
Griffith University School of Computing and Information 
Technology, n.d. Web. 
<http://www.ict.griffith.edu.au/noran/Docs/ES-
Evolution.pdf>. 

Aaby, A. "Prolog Tutorial." Prolog Tutorial. LIX - École 
Polytechnique, 2 May 1997. Web. 15 July 2013. 
<http://www.lix.polytechnique.fr/~liberti/public/computing
/prog/prolog/prolog-tutorial.html>. 


