
Abstract

The A* algorithm was developed to be an
improvement over Edsger Dijkstra’s original graph
search algorithm, commonly known as Dijkstra’s
algorithm. A* was able to achieve this by using
heuristics to intelligently choose paths that lead to
the goal more quickly. This allows neighbors with
higher cost to be pruned resulting in an optimal
path being discovered. This algorithm has been
detrimental in game development and robotic
pathfinding. Now, nearly forty years after A* was
proposed, new approaches are able to improve
even more on this performance. By using path
expansion, jump points, and symmetry reduction
the Jump Point Search algorithm may be the future
of AI in games and robotics.

1 Introduction

Jump Point Search (JPS) is a specialized, optimal algorithm
used for traversing uniform-cost grid environments. The
algorithm is ideal for traversing 8-way grid-based map
representations, though it can be customized to
accommodate other types of grids. JPS is consistently more
than ten times faster than traditional A* implementations in
benchmarks for modern games such as Baldur’s Gate II:
Shadows of Amn and Dragon Age: Origins (Harabor &
Grastien, 2011). The general concept of JPS is path
expansion and symmetry reduction in which the path is
expanded quickly in the best known direction. This can be
thought of as intelligent expansion, where neighbors can be
cleverly pruned for a highly-focused, yet agile, search
algorithm.
 The common representation of maps as uniform-cost
grids are found in a multitude of pathfinding environments.
This contributes to a high level of path symmetry. “Unless
handled properly, symmetry can force search algorithms to
evaluate many equivalent states and prevents real progress
toward the goal.” (Harabor & Grastien, 2011)
 JPS uses jump points to to expand selected nodes on the
grid. Jump Points allow a traversal between two points
without the need to expand the intermediate nodes. Along
with reduced computational overhead, JPS also features

optimal pathfinding, no need for preprocessing, and no
memory overheads.

2 Prior Work

Several variants of the A* algorithm have addressed similar
issues as JPS (Patel, 2013). In an attempt to reduce the
memory overhead, Beam Search places a limit on the
number of nodes stored in the open set. When the limit has
been reached then the node with the worst-possible chance
of finding the goal is dropped.
 Iterative Deepening attemps to move ahead using a
technique where a path is examined until its value only
increases marginally, and it’s assumed that this is as close to
the goal as the current path will get. Next, another path is
examined similarly, until a complete path has been found
 Bidirectional search conducts two searches in parallel.
One search starts at the beginning node and searches for the
goal node while the other search starts at the goal node and
works towards the start node. When the two paths meet,
then the final path has been found.
 Theta* is very similar to JPS. The difference is that
Theta* typically uses precomputation to find corners on the
map. These corners are usually based on obstacles in the
map. Theta* links paths between these corners to the goal
while mainly ignoring the actual grids on the map during the
search process.
 Other specialized variations exist, however JPS is a more
universal model. This holds true because grids are a very
common way of representing maps whether it is for games,
robotics, global positioning systems (GPS), simulations, or
other AI applications.

3 Pathfinding with Jump Point Search

JPS can be implemented as an optimization to the A*
algorithm with minor changes. JPS excels in large, open
areas of a map. It is in these open areas that JPS can skip, or
jump, over a large number of intermediate nodes that would
otherwise be expanded using a traditional A* algorithm.
Recognition of symmetry allows JPS to eliminate many
other potential nodes as well. With a little more focus on
calculation at each expanded node, JPS is able to eliminate
large amounts of potential path nodes.

Jump Point Search Analysis


Bryan Tanner
Florida State University

bst12@my.fsu.edu

3.1 Jump Points

Jump points are the basis of the JPS algorithm. An example
of this idea for straight and diagonal jump points can be
seen in Figure 1, respectively. The figure above makes it
obvious that when moving in a stright line to the successor
node that there is no need to evaluate any neighbor nodes
along the path.

3.2 Intelligent Neighbor Pruning

Using A*, when expanding a new node, the neighbors of
that node are usually added to the open set of nodes to be
looked at. However, this isn’t necessary for optimal
pathfinding in most cases. If the parent nodes location in
relation to the expanded node is considered then it is found
that any of the expanded node’s neighbors that could have
been reached directly from the parent can be eliminated
(Podhraski, 2013). This is a simple realization considering
that if the neighbor node had been a better choice from the
parent then it would have been expanded in the first place.
 The exception to the rule is when expanding a node
adjacent to a blocked node. In this case, the paths that could
not be reached directly from the parent must be considered.
It is important to understand that the currently expanded
node is already the optimal path to that node, otherwise it
would not have been expanded. This is the basis of pruning
neighbors that would only serve as an intermediary to the
currently expanded node (Witmer, 2013).

3.3 Symmetry Reduction

JPS experiences the largest efficiency improvements in
large, open areas of maps. This allows jumping to the next
waypoint, or checkpoint where the expanded node being
jumped to is closer to the goal. But the calculation to
choose the next jump node can be computationaly
demanding. This is where symmetry reduction steps in to
drastically reduce the size of the problem domain.
 Explained simply, consider that the start node and goal
node are on the same vertical row, meaning the goal node
can be reached in a straight horizontal line from the start
node. Then, one blocked node is placed directly in the
center. This creates two parallel optimal paths around the
blocked node to the goal. If the goal can be reached at the
same cost using both paths then symmetry reduction should

be used to remove one of these paths from consideration
(Harabor D. , Shortest Path - Fast Pathfinding via Symmetry
Breaking, 2011). This is one of the benefits of intelligent
neighbor pruning.

4 Path Comparisons

The testing environment for the path comparisons were
conducted using a Manhattan heuristic. The results show
how A* and JPS pathfinding algorithms navigate through a
simple maze.

In the above figures, white represents the start node, black is
the goal node, dark gray nodes are blocked, light blue nodes
are expaned nodes, and light gray nodes are frontier nodes.
It’s easy to see the reduced overhead of JPS. The
algorithms expands on the jump points which are usually
wall edges that create a path around the object. The result is
far less nodes on the frontier and far less nodes expanded. It
is also obvious from the figures that both return the optimal
path.

Figure 1: Examples of straight (a) and diagonal (b) jump points.

Dashed lines indicate a sequence of interim node evaluations that

reached a dead end. Strong lines indicate eventual successor

nodes. (Harabor & Grastien, 2011)

Figure 2: A* path results (Xu, 2013)

Figure 3: JPS path results (Xu, 2013)

4.1 Future Work

Figure 4, above, shows the output from the JPS_Algorithm
implementation I have constructed. This program takes in a
mapfile consisting of blank nodes represented by the dash
symbol, ‘-‘, a start node represented by the letter ‘S’, a goal
node represented by the letter ‘G’, and blocked nodes
represented by the letter ‘X’. It then uses JPS and a
Manhattan heuristic to navigate to the goal node. The
resulting path is shown represented by the letter ‘o’. The
output is shown here. Not shown in Figure 4, the list of
steps taken to arrive at the goal are displayed along with the
calculated time it took to find the optimal solution in the
program.
 In the next iteration of this project I would like to abstract
the grid and map logic into separate classes and substitute
different search algorithms to devise comparison metrics. I
would be interested to find out the speed differences
between popular search algorithms such as Best-First,
Breadth-First, HPA*, Djikstra, A* and Theta* to name a
few. I would also be curious as to how these algorithms
perform on different map types. It is my theory that JPS
could rival Best-First Search in a straight line to the goal.
My curiousity is more concerned with complex maps with
several dead-ends and multiple paths to the goal with trivial
differences.

5 Conclusion

When the A* algorithm was developed nearly a decade after
Dijkstra’s Algorithm, it revolutionized pathfinding methods.
A* has stood strong as a versatile tool for searches. Now,
new techniques are being developed that can exploit A* to
get better performance in specific applications. Jump Point
Search offers enhanced performance and lower memory cost
than a traditional A* implementation for uniform-cost grid-
based maps.
 It’s hard not to see a future for Jump Point Search in AI.
A* has been established as a basic universal pathfinder, but

the specialized algorithms are making headway and
improving the metrics of A* tenfold in some areas.

References

Harabor, D. (2011, Aug 26). Shortest Path - Fast

Pathfinding via Symmetry Breaking. Retrieved

from www.wordpress.com:

http://harablog.wordpress.com/2011/08/26/fast-

pathfinding-via-symmetry-breaking/

Harabor, D. (2011, Sep 7). Shortest Path - Jump Point

Search. Retrieved from www.wordpress.com:

http://harablog.wordpress.com/2011/09/07/jump-

point-search/

Harabor, D. (2011, Sep 1). Shortest Path - Rectangular

Symmetry Reduction. Retrieved from

www.wordpress.com:

http://harablog.wordpress.com/2011/09/01/rectang

ular-symmetry-reduction/

Harabor, D., & Grastien, A. (2011). Online Graph Pruning

for Pathfinding on Grid Maps. Association for the

Advancement of Artificial Intelligence (AAAI).

Patel, A. (2013, Jul 18). Variants of A*. Retrieved from

www.stanford.edu:

http://theory.stanford.edu/~amitp/GameProgrammi

ng/Variations.html

Podhraski, T. (2013, Mar 12). How to Speed Up A*

Pathfinding With the Jump Point Search

Algorithm. Retrieved from www.tutsplus.com:

http://gamedev.tutsplus.com/tutorials/implementati

on/speed-up-a-star-pathfinding-with-the-jump-

point-search-algorithm/

Witmer, N. (2013, May 5). Jump Point Search Explained.

Retrieved from www.zerowidth.com:

http://zerowidth.com/2013/05/05/jump-point-

search-explained.html

Xu, X. (2013). Pathfinding Visual. Retrieved from

www.github.com:

http://qiao.github.io/PathFinding.js/visual/

Figure 4: Output from JPS_Algorithm

