
Abstract 

The A* algorithm was developed to be an 
improvement over Edsger Dijkstra’s original graph 
search algorithm, commonly known as Dijkstra’s 
algorithm. A* was able to achieve this by using 
heuristics to intelligently choose paths that lead to 
the goal more quickly.  This allows neighbors with 
higher cost to be pruned resulting in an optimal 
path being discovered.  This algorithm has been 
detrimental in game development and robotic 
pathfinding.  Now, nearly forty years after A* was 
proposed, new approaches are able to improve 
even more on this performance.  By using path 
expansion, jump points, and symmetry reduction 
the Jump Point Search algorithm may be the future 
of AI in games and robotics. 

1 Introduction 

Jump Point Search (JPS) is a specialized, optimal algorithm 
used for traversing uniform-cost grid environments.  The 
algorithm is ideal for traversing 8-way grid-based map 
representations, though it can be customized to 
accommodate other types of grids.  JPS is consistently more 
than ten times faster than traditional A* implementations in 
benchmarks for modern games such as Baldur’s Gate II: 
Shadows of Amn and Dragon Age: Origins  (Harabor & 
Grastien, 2011). The general concept of JPS is path 
expansion and symmetry reduction in which the path is 
expanded quickly in the best known direction.  This can be 
thought of as intelligent expansion, where neighbors can be 
cleverly pruned for a highly-focused, yet agile, search 
algorithm. 
 The common representation of maps as uniform-cost 
grids are found in a multitude of pathfinding environments.  
This contributes to a high level of path symmetry.  “Unless 
handled properly, symmetry can force search algorithms to 
evaluate many equivalent states and prevents real progress 
toward the goal.”  (Harabor & Grastien, 2011) 
 JPS uses jump points to to expand selected nodes on the 
grid.  Jump Points allow a traversal between two points 
without the need to expand the intermediate nodes.  Along 
with reduced computational overhead, JPS also features 

optimal pathfinding, no need for preprocessing, and no 
memory overheads.   

2 Prior Work 

Several variants of the A* algorithm have addressed similar 
issues as JPS (Patel, 2013).  In an attempt to reduce the 
memory overhead, Beam Search places a limit on the 
number of nodes stored in the open set.  When the limit has 
been reached then the node with the worst-possible chance 
of finding the goal is dropped. 
 Iterative Deepening attemps to move ahead using a 
technique where a path is examined until its value only 
increases marginally, and it’s assumed that this is as close to 
the goal as the current path will get.  Next, another path is 
examined similarly, until a complete path has been found 
 Bidirectional search conducts two searches in parallel.  
One search starts at the beginning node and searches for the 
goal node while the other search starts at the goal node and 
works towards the start node.  When the two paths meet, 
then the final path has been found. 
 Theta*  is very similar to JPS.  The difference is that 
Theta* typically uses precomputation to find corners on the 
map.  These corners are usually based on obstacles in the 
map.  Theta* links paths between these corners to the goal 
while mainly ignoring the actual grids on the map during the 
search process.    
 Other specialized variations exist, however JPS is a more 
universal model.  This holds true because grids are a very 
common way of representing maps whether it is for games, 
robotics, global positioning systems (GPS), simulations, or 
other AI applications. 

3 Pathfinding with Jump Point Search 

JPS can be implemented as an optimization to the A* 
algorithm with minor changes.  JPS excels in large, open 
areas of a map.  It is in these open areas that JPS can skip, or 
jump, over a large number of intermediate nodes that would 
otherwise be expanded using a traditional A* algorithm.  
Recognition of symmetry allows JPS to eliminate many 
other potential nodes as well.  With a little more focus on 
calculation at each expanded node, JPS is able to eliminate 
large amounts of potential path nodes. 
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3.1 Jump Points 

Jump points are the basis of the JPS algorithm.  An example 
of this idea for straight and diagonal jump points can be 
seen in Figure 1, respectively.  The figure above makes it 
obvious that when moving in a stright line to the successor 
node that there is no need to evaluate any neighbor nodes 
along the path. 

3.2 Intelligent Neighbor Pruning 

Using A*, when expanding a new node, the neighbors of 
that node are usually added to the open set of nodes to be 
looked at.  However, this isn’t necessary for optimal 
pathfinding in most cases.  If the parent nodes location in 
relation to the expanded node is considered then it is found 
that any of the expanded node’s neighbors that could have 
been reached directly from the parent can be eliminated  
(Podhraski, 2013).  This is a simple realization considering 
that if the neighbor node had been a better choice from the 
parent then it would have been expanded in the first place. 
 The exception to the rule is when expanding a node 
adjacent to a blocked node.  In this case, the paths that could 
not be reached directly from the parent must be considered.  
It is important to understand that the currently expanded 
node is already the optimal path to that node, otherwise it 
would not have been expanded.  This is the basis of pruning 
neighbors that would only serve as an intermediary to the 
currently expanded node  (Witmer, 2013).   

3.3 Symmetry Reduction 

JPS experiences the largest efficiency improvements in 
large, open areas of maps.  This allows jumping to the next 
waypoint, or checkpoint where the expanded node being 
jumped to is closer to the goal.  But the calculation to 
choose the next jump node can be computationaly 
demanding.  This is where symmetry reduction steps in to 
drastically reduce the size of the problem domain.   
 Explained simply, consider that the start node and goal 
node are on the same vertical row, meaning the goal node 
can be reached in a straight horizontal line from the start 
node.  Then, one blocked node is placed directly in the 
center.  This creates two parallel optimal paths around the 
blocked node to the goal.  If the goal can be reached at the 
same cost using both paths then symmetry reduction should 

be used to remove one of these paths from consideration  
(Harabor D. , Shortest Path - Fast Pathfinding via Symmetry 
Breaking, 2011).  This is one of the benefits of intelligent 
neighbor pruning. 

4 Path Comparisons 

The testing environment for the path comparisons were 
conducted using a Manhattan heuristic.  The results show 
how A* and JPS pathfinding algorithms navigate through a 
simple maze.  
 

In the above figures, white represents the start node, black is 
the goal node, dark gray nodes are blocked, light blue nodes 
are expaned nodes, and light gray nodes are frontier nodes.  
It’s easy to see the reduced overhead of JPS.  The 
algorithms expands on the jump points which are usually 
wall edges that create a path around the object.  The result is 
far less nodes on the frontier and far less nodes expanded.  It 
is also obvious from the figures that both return the optimal 
path.   

Figure 1: Examples of straight (a) and diagonal (b) jump points.  

Dashed lines indicate a sequence of interim node evaluations that 

reached a dead end.  Strong lines indicate eventual successor 

nodes.  (Harabor & Grastien, 2011) 

Figure 2: A* path results  (Xu, 2013) 

Figure 3: JPS path results  (Xu, 2013) 



4.1 Future Work 

Figure 4, above, shows the output from the JPS_Algorithm 
implementation I have constructed.  This program takes in a 
mapfile consisting of blank nodes represented by the dash 
symbol, ‘-‘, a start node represented by the letter ‘S’, a goal 
node represented by the letter ‘G’, and blocked nodes 
represented by the letter ‘X’.  It then uses JPS and a 
Manhattan heuristic to navigate to the goal node.  The 
resulting path is shown represented by the letter ‘o’.  The 
output is shown here.  Not shown in Figure 4, the list of 
steps taken to arrive at the goal are displayed along with the 
calculated time it took to find the optimal solution in the 
program.   
 In the next iteration of this project I would like to abstract 
the grid and map logic into separate classes and substitute 
different search algorithms to devise comparison metrics.  I 
would be interested to find out the speed differences 
between popular search algorithms such as Best-First, 
Breadth-First, HPA*, Djikstra, A* and Theta* to name a 
few.  I would also be curious as to how these algorithms 
perform on different map types.  It is my theory that JPS 
could rival Best-First Search in a straight line to the goal.  
My curiousity is more concerned with complex maps with 
several dead-ends and multiple paths to the goal with trivial 
differences. 

5 Conclusion 

When the A* algorithm was developed nearly a decade after 
Dijkstra’s Algorithm, it revolutionized pathfinding methods.  
A* has stood strong as a versatile tool for searches.  Now, 
new techniques are being developed that can exploit A* to 
get better performance in specific applications.  Jump Point 
Search offers enhanced performance and lower memory cost 
than a traditional A* implementation for uniform-cost grid-
based maps.   
 It’s hard not to see a future for Jump Point Search in AI.  
A* has been established as a basic universal pathfinder, but 

the specialized algorithms are making headway and 
improving the metrics of A* tenfold in some areas. 
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