
Algorithms Required For The Midterm Exam 
 

 Sample Mean: 
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where n  is the number of points in the dataset, 
ix  are the x  values from each point in the 

dataset, and 
iy  are the y  values from each point in the dataset. 

 

 Biased Sample Variance: 
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where x  is the Sample Mean of the x ’s, y  is the Sample Mean of the y ’s, n  is the number of 

points in the dataset, 
ix  are the x  values from each point in the dataset, and 

iy  are the y  values 

from each point in the dataset. 

 

We could also find the Sum of Squared Differences first and then divide by n  to find variance: 
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 Biased Sample Covariance: 
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where x  is the Sample Mean of the x ’s, y  is the Sample Mean of the y ’s, n  is the number of 

points in the dataset, 
ix  are the x  values from each point in the dataset, and 

iy  are the y  values 

from each point in the dataset. 

 

We could also find the Sum of Product of Differences first and then divide by n  to find the 

covariance between the x ’s and the y ’s: 
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 Linear Regression y  : 

o Slope: 
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where 
1w  is the weight (Slope) from the equation 

0 1y w w x  , x  is the Sample Mean of the x

’s, y  is the Sample Mean of the y ’s, n  is the number of points in the dataset, 
ix  are the x  

values from each point in the dataset, and 
iy  are the y  values from each point in the dataset.  m  

is also used for Slope. 

 

o Intercept: 

 
0 1w w x y    

where 
0w  is the weight (Intercept) from the equation 

0 1y w w x  , x  is the Sample Mean of the 

x ’s, and y  is the Sample Mean of the y ’s.  b  is also used for Intercept. 

 

 Classification using a Separating Plane z : 

o Sample Mean for each Class: 
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where Class 1n  is the number of points in the Class 1 dataset, Class 2n  is the number of points in the 

Class 2 dataset, ,Class 1ix  are the x  values from each point in the Class 1 dataset, ,Class 2ix  are the x  

values from each point in the Class 2 dataset, ,Class 1iy  are the y  values from each point in the 

Class 1 dataset, and ,Class 2iy  are the y  values from each point in the Class 2 dataset. 

 

  



o Midpoint: 
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where 
Class 1x  is the Sample Mean of the x ’s in Class 1, 

Class 2x  is the Sample Mean of the x ’s in 

Class 2, 
Class 1y  is the Sample Mean of the y ’s in Class 1, 

Class 2y  is the Sample Mean of the y ’s 

in Class 2.  

 

o Normal Vector n : 

 “Normal” to the separating line at the 0z   level set for the plane z . 
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where 
Positive Classx  is the Sample Mean of the x ’s for whatever class you want the plane z  to 

produce positive values, 
Positive Classy  is the Sample Mean of the y ’s for whatever class you want 

the plane z  to produce positive values, 
midpointx  is the x  value from the midpoint, 

midpointy  is the 

y  value from the midpoint, 
xn  is the x  value of the normal vector, and 

yn  is the y  value of the 

normal vector. 

 

o Normalized Normal Vector: 

 “Normalized” such that the magnitude of the normal vector is 1. 
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where n  is the normal vector, xn  is the x  value of the normal vector, yn  is the y  value of the 

normal vector,   is the angle toward which the that the normalized normal vector is pointing. 

Concentrate on this version: 

    normalized cos ,sin n   

 



o Separating Plane z : 
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where   is the angle toward which the that the normalized normal vector is pointing and 

 0 0,x y  is the starting point from which the normalized normal vector points. Remember the 

normalized normal vector ALWAYS points toward a class. For the purposes of this test, it will 

ALWAYS point toward a class mean …the one that we want to be "positive". 

 

 The separating line that 
normalizedn  is normal to is the 0z   level set. 

 

o Weights: 
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where 0w , 
1w , and 2w  are the weights from 0 1 2z w w x w y   ,   is the angle toward which the 

that the normalized normal vector is pointing and  0 0,x y  is the starting point from which the 

normalized normal vector points. 

 

  



 Probability: 

o Product Rule: 
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o Total Probability (Marginalization): 
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o Bayes’ Rule: 
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o Conditional Independence: 
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 k-Nearest Neighbor: 

 

function K-NEAREST-NEIGHBOR ( labelled-dataset, k, unlabeled-vector ) return class-label 

 sort the labelled-dataset by closest distance to the unlabeled-vector 

 return the class-label based on the majority vote of the class labels of the k closest 

labelled vectors from the sorted labelled-dataset 

  

 

 Logistic Regression (using the Perceptron Learning Rule): 
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where r  stands for row and c  stands for column related to the m n  matrix of training data, 

1, ,r m ,  0,1, ,c n , 1n

r

x  is the row vector from the m n  matrix of training data 

with ,0 1rx   as the first component  ,1 ,2 ,1, , , ,r r r r nx x xx  where ,r cx  is the cu,  0,1ry   is 

the class label associated with each row vector 
rx , 1nw  is the current weight vector with 

 0 1 2, , , , nw w w ww ,  h
w   is the logistic function using the current weight vector w  (the 

function that we’re try to fit), and   is the learning rate. 



 A* Search: 

 

function A-STAR-SEARCH ( problem ) returns a solution or failure 

 node   a node with STATE   problem.INITIAL-STATE, PATH-COST   0 

 frontier   a priority queue ordered by PATH-COST (i.e.      f n g n h n   where 

 g n  is the actual cost to reach the node and  h n , the heuristic, is the cost to get 

from the node to the goal) with node as the only element 

 explored   an empty set 

 

 loop do 

  if EMPTY?( frontier ) then return failure 

  node   POP( frontier ) /* chooses the node with the lowest  f n  in frontier */ 

  if problem.GOAL-TEST( node.State ) then return SOLUTION( node ) 

  add node.STATE to explored 

  for each action in problem.ACTIONS( node.STATE ) do 

   child   CHILD-NODE( problem, node, action ) 

   if child.STATE is not in explored or frontier then 

    frontier   INSERT( child, frontier ) 

   /* PATH-COST:      f n g n h n   where  

 g n  is the actual cost to reach the node and  

 h n , the heuristic, is the cost to get from the node to the goal */ 

   else if child.STATE is in frontier with higher PATH-COST then 

    replace that frontier node with child 

    


