Algorithms Required For The Midterm Exam

e Sample Mean:
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where n is the number of points in the dataset, x; are the x values from each point in the
dataset, and y, are the y values from each point in the dataset.

e Biased Sample Variance:
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where X is the Sample Mean of the x’s, y is the Sample Mean of the y ’s, n is the number of

points in the dataset, x; are the x values from each point in the dataset, and y, are the y values
from each point in the dataset.

We could also find the Sum of Squared Differences first and then divide by n to find variance:
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e Biased Sample Covariance:
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where X is the Sample Mean of the x’s, y is the Sample Mean of the y ’s, n is the number of
points in the dataset, x; are the x values from each point in the dataset, and y, are the y values
from each point in the dataset.

cov

We could also find the Sum of Product of Differences first and then divide by n to find the
covariance between the x’s and the y ’s:
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e Linear Regression vy :
o Slope:
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where w, is the weight (Slope) from the equation y =w, +w,x, X is the Sample Mean of the x
’s, ¥ is the Sample Mean of the y’s, n is the number of points in the dataset, x. are the x

values from each point in the dataset, and y. are the y values from each point in the dataset. m
is also used for Slope.

o Intercept:
W, =-WX+Yy
where w, is the weight (Intercept) from the equation y =w, +w,x, X is the Sample Mean of the
X’s,and y is the Sample Mean of the y’s. b is also used for Intercept.

e Classification using a Separating Plane z:
o Sample Mean for each Class:
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where ng,, IS the number of points in the Class 1 dataset, n.,, is the number of points in the
Class 2 dataset, X, ..., are the x values from each point in the Class 1 dataset, X; .,.,, are the x
values from each point in the Class 2 dataset, Y, ..., are the y values from each point in the
Class 1 dataset, and Y, ., are the y values from each point in the Class 2 dataset.



o Midpoint:
(Xmidpoint’ ymidpoint)
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where X, IS the Sample Mean of the x’s in Class 1, X, is the Sample Mean of the x’s in

Class 2, Y., IS the Sample Mean of the y ’sin Class 1, Y., IS the Sample Mean of the y ’s
in Class 2.

o Normal Vector ni:
= “Normal” to the separating line at the z=0 level set for the plane z .
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Where Xooqive ciass 15 the Sample Mean of the x’s for whatever class you want the plane z to

produce positive values, Y, qi.cuss 1S the Sample Mean of the y ’s for whatever class you want
the plane z to produce positive values, X is the x value from the midpoint, y, ;... IS the

midpoint
y value from the midpoint, n, is the x value of the normal vector, and n, is the y value of the
normal vector.

o Normalized Normal Vector:
= “Normalized” such that the magnitude of the normal vector is 1.
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where i is the normal vector, n, is the x value of the normal vector, n, isthe y value of the

normal vector, @ is the angle toward which the that the normalized normal vector is pointing.
Concentrate on this version:

normalized —

i =(cos(6),sin(6))



o Separating Plane z:
Z= ﬁnormalized .(X_XO)
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where @ is the angle toward which the that the normalized normal vector is pointing and
(X, Yo ) is the starting point from which the normalized normal vector points. Remember the

normalized normal vector ALWAY'S points toward a class. For the purposes of this test, it will
ALWAYS point toward a class mean ...the one that we want to be "positive".

* The separating line that N, ..,.q 1S Normal to is the z=0 level set.

o Weights:
w, =—cos(8)x, —sin(8)y,
w, =cos(6)
w, =sin(6)

where w,, w,, and w, are the weights from z =w, + wx+w,y, @ is the angle toward which the
that the normalized normal vector is pointing and (X, y, ) is the starting point from which the
normalized normal vector points.



e Probability:
o Product Rule:

P(AB)=P(AB)P(B) or P(AB)=P(B|A)P(A)

P(AB|X)=P(AB,X)P(B,X) or P(AB|X)=P(BJAX)P(AX)

o Total Probability (Marginalization):
P(A)= P(A|x)P(x )+ P(A|ﬁx)P(ﬁx)

o Bayes’ Rule:
P(A|B)=—P(BL/?I)3F))(A)
_ P(B[A)P(A)
~ P(B|A)P(A)+P(B|-A)P(-A)

Total Probability

o Conditional Independence:
P(AB|X)=P(AX)P(B|X)

P(AB,C|X)=P(AX)P(B|X)P(C|X)
e k-Nearest Neighbor:

function K-NEAREST-NEIGHBOR ( labelled-dataset, k, unlabeled-vector ) return class-label
sort the labelled-dataset by closest distance to the unlabeled-vector
return the class-label based on the majority vote of the class labels of the k closest
labelled vectors from the sorted labelled-dataset

e Logistic Regression (using the Perceptron Learning Rule):

W, < W, —ai((hw(x,)— yr)xm)

Simultaneously update for ¢=0,1,2,...,n

where r stands for row and ¢ stands for column related to the mxn matrix of training data,
r=1....m, ¢c=01...,n, X, € R™ is the row vector from the mxn matrix of training data

with x ;=1 as the first component x, :(1 X, 15 X X ) where X, isthecu, y, €{0,1} is
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the class label associated with each row vector x,, w e R™ is the current weight vector with
W =(W,, W, W,,...,W, ), h, () is the logistic function using the current weight vector w (the
function that we’re try to fit), and « is the learning rate.



e A* Search:

function A-STAR-SEARCH ( problem ) returns a solution or failure
node <« anode with STATE = problem.INITIAL-STATE, PATH-CoST = 0

frontier «— a priority queue ordered by PATH-CosT (i.e. f(n)=g(n)+h(n) where
g(n) is the actual cost to reach the node and h(n), the heuristic, is the cost to get

from the node to the goal) with node as the only element
explored <« an empty set

loop do
if EMPTY?( frontier ) then return failure

node <« Por( frontier ) /* chooses the node with the lowest f (n) in frontier */

if problem.GoAL-TEST( node.State ) then return SoLUTION( hode )
add node.STATE to explored
for each action in problem.AcTioNs( node.STATE ) do

child «~ CHiLD-NoDE( problem, node, action )

if child.STATE is not in explored or frontier then

frontier < INSERT( child, frontier )
[* PATH-CosT: f(n)=g(n)+h(n) where
g(n) is the actual cost to reach the node and

h(n) , the heuristic, is the cost to get from the node to the goal */

else if child.STATE is in frontier with higher PATH-COST then
replace that frontier node with child



