
Algorithms Required For The Midterm Exam

 Sample Mean:

1

n

i

i

x

x
n




 and 1

n

i

i

y

y
n




where n is the number of points in the dataset,
ix are the x values from each point in the

dataset, and
iy are the y values from each point in the dataset.

 Biased Sample Variance:

 
22

,biased ,biased

1

1
var

n

x x i

i

s x x
n 

   and  
22

,biased ,biased

1

1
var

n

y y i

i

s y y
n 

  

where x is the Sample Mean of the x ’s, y is the Sample Mean of the y ’s, n is the number of

points in the dataset,
ix are the x values from each point in the dataset, and

iy are the y values

from each point in the dataset.

We could also find the Sum of Squared Differences first and then divide by n to find variance:

 
2

1

SSD
n

x i

i

x x


  and  
2

1

SSD
n

y i

i

y y


 

2

,biased ,biased

1
var SSDx x xs

n
  and 2

,biased ,biased

1
var SSDy y ys

n
 

 Biased Sample Covariance:

    , ,biased
1

1
cov

n

i ix y
i

x x y y
n 

  

where x is the Sample Mean of the x ’s, y is the Sample Mean of the y ’s, n is the number of

points in the dataset,
ix are the x values from each point in the dataset, and

iy are the y values

from each point in the dataset.

We could also find the Sum of Product of Differences first and then divide by n to find the

covariance between the x ’s and the y ’s:

  

 

,

1

,, ,biased

SPD

1
cov SPD

n

x y i i

i

x yx y

x x y y

n



  





 Linear Regression y :

o Slope:

 , ,biased

1

,biased

cov

var

1

x y

x

w

n




,SPD

1

x y

n

  

 

1

2

1

SSDx

n

i i

i

n

i

i

x x y y

x x





 









where
1w is the weight (Slope) from the equation

0 1y w w x  , x is the Sample Mean of the x

’s, y is the Sample Mean of the y ’s, n is the number of points in the dataset,
ix are the x

values from each point in the dataset, and
iy are the y values from each point in the dataset. m

is also used for Slope.

o Intercept:

0 1w w x y  

where
0w is the weight (Intercept) from the equation

0 1y w w x  , x is the Sample Mean of the

x ’s, and y is the Sample Mean of the y ’s. b is also used for Intercept.

 Classification using a Separating Plane z :

o Sample Mean for each Class:

 
Class 1 Class 1

Class 1 Class 1

,Class 1 ,Class 1

1 1

Class 1 Class 1

,

,

n n

i i

i i

x y

x y

n n

 

 
 
 
 
 

  and

 
Class 2 Class 2

Class 2 Class 2

,Class 2 ,Class 2

1 1

Class 2 Class 2

,

,

n n

i i

i i

x y

x y

n n

 

 
 
 
 
 

 

where Class 1n is the number of points in the Class 1 dataset, Class 2n is the number of points in the

Class 2 dataset, ,Class 1ix are the x values from each point in the Class 1 dataset, ,Class 2ix are the x

values from each point in the Class 2 dataset, ,Class 1iy are the y values from each point in the

Class 1 dataset, and ,Class 2iy are the y values from each point in the Class 2 dataset.

o Midpoint:

 midpoint midpoint

Class 1 Class 2 Class 1 Class 2

,

,
2 2

x y

x x y y  
 
 

where
Class 1x is the Sample Mean of the x ’s in Class 1,

Class 2x is the Sample Mean of the x ’s in

Class 2,
Class 1y is the Sample Mean of the y ’s in Class 1,

Class 2y is the Sample Mean of the y ’s

in Class 2.

o Normal Vector n :

 “Normal” to the separating line at the 0z  level set for the plane z .

   

 

 

Positive Class Sample Mean midpoint

Ending Point Starting Point

Positive Class Positive Class midpoint midpoint

Positive Class midpoint Positive Class midpoint

, ,

,

,x y

x y x y

x x y y

n n

 

 

  



n p p

where
Positive Classx is the Sample Mean of the x ’s for whatever class you want the plane z to

produce positive values,
Positive Classy is the Sample Mean of the y ’s for whatever class you want

the plane z to produce positive values,
midpointx is the x value from the midpoint,

midpointy is the

y value from the midpoint,
xn is the x value of the normal vector, and

yn is the y value of the

normal vector.

o Normalized Normal Vector:

 “Normalized” such that the magnitude of the normal vector is 1.

 

    

normalized

2 2

2 2 2 2

,

,

cos ,sin

x y

x y

yx

x y x y

n n

n n

nn

n n n n

 






 
 
  
 



n
n

n

where n is the normal vector, xn is the x value of the normal vector, yn is the y value of the

normal vector,  is the angle toward which the that the normalized normal vector is pointing.

Concentrate on this version:

    normalized cos ,sin n

o Separating Plane z :

 

        

 

      

       

       

 

normalized 0

0 0

Starting PointDirection to Positive Class
for the

Separating
Line 0

0 0

0 0

0 0

0

cos ,sin , ,

cos ,sin ,

cos sin

cos cos sin sin

cos

z

z

x y x y

x x y y

x x y y

x x y y

x

 

 

 

   





 

  
 
 
 
 

  

   

   

  

n x x

        0

0 1 2

sin cos siny x y

w w x w y

   

  

where  is the angle toward which the that the normalized normal vector is pointing and

 0 0,x y is the starting point from which the normalized normal vector points. Remember the

normalized normal vector ALWAYS points toward a class. For the purposes of this test, it will

ALWAYS point toward a class mean …the one that we want to be "positive".

 The separating line that
normalizedn is normal to is the 0z  level set.

o Weights:

   

 

 

0 0 0

1

2

cos sin

cos

sin

w x y

w

w

 





  





where 0w ,
1w , and 2w are the weights from 0 1 2z w w x w y   ,  is the angle toward which the

that the normalized normal vector is pointing and  0 0,x y is the starting point from which the

normalized normal vector points.

 Probability:

o Product Rule:

           

           

, or ,

, , , or , , ,

P A B P A B P B P A B P B A P A

P A B X P A B X P B X P A B X P B A X P A X

 

 

o Total Probability (Marginalization):

         P A P A X P X P A X P X   

o Bayes’ Rule:

 
   

 

   

       
Total Probability

P B A P A
P A B

P B

P B A P A

P B A P A P B A P A




  

o Conditional Independence:

     

       

,

, ,

P A B X P A X P B X

P A B C X P A X P B X P C X





 k-Nearest Neighbor:

function K-NEAREST-NEIGHBOR (labelled-dataset, k, unlabeled-vector) return class-label

 sort the labelled-dataset by closest distance to the unlabeled-vector

 return the class-label based on the majority vote of the class labels of the k closest

labelled vectors from the sorted labelled-dataset

 Logistic Regression (using the Perceptron Learning Rule):

   ,

1

Simultaneously update for 0,1,2, ,

m

c c r r r c

r

c n

w w h y x




   w
x

where r stands for row and c stands for column related to the m n matrix of training data,

1, ,r m , 0,1, ,c n , 1n

r

x is the row vector from the m n matrix of training data

with ,0 1rx  as the first component  ,1 ,2 ,1, , , ,r r r r nx x xx where ,r cx is the cu,  0,1ry  is

the class label associated with each row vector
rx , 1nw is the current weight vector with

 0 1 2, , , , nw w w ww ,  h
w is the logistic function using the current weight vector w (the

function that we’re try to fit), and  is the learning rate.

 A* Search:

function A-STAR-SEARCH (problem) returns a solution or failure

 node  a node with STATE  problem.INITIAL-STATE, PATH-COST  0

 frontier  a priority queue ordered by PATH-COST (i.e.      f n g n h n  where

 g n is the actual cost to reach the node and  h n , the heuristic, is the cost to get

from the node to the goal) with node as the only element

 explored  an empty set

 loop do

 if EMPTY?(frontier) then return failure

 node  POP(frontier) /* chooses the node with the lowest  f n in frontier */

 if problem.GOAL-TEST(node.State) then return SOLUTION(node)

 add node.STATE to explored

 for each action in problem.ACTIONS(node.STATE) do

 child  CHILD-NODE(problem, node, action)

 if child.STATE is not in explored or frontier then

 frontier  INSERT(child, frontier)

 /* PATH-COST:      f n g n h n  where

 g n is the actual cost to reach the node and

 h n , the heuristic, is the cost to get from the node to the goal */

 else if child.STATE is in frontier with higher PATH-COST then

 replace that frontier node with child

