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Abstract

We present a Group Key Exchange protocol which extends in a natural way the Diffie-Hellman
protocol. Our protocol is scalable: it has two rounds (for n > 2 parties) and the number of modular
exponentiations per user is constant. It is secure against a passive adversary if the Diffie-Hellman
problem is intractable.
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1 Introduction

To communicate securely over an insecure public network messages must be encrypted. Key Exchange (KE)
protocols allow two parties to exchange a secret encryption key. With Group Key Exchange (Conference
Key Distribution) protocols, groups of two or more parties exchange a group secret key. KE is central to
cryptography and has attracted a lot of attention (e.g., [13, 17]). Research has focused on both security
and efficiency. Many practical systems have been proposed in the literature (e.g., [14, 32]). The most
familiar KE protocol is the Diffie-Hellman protocol [13]. Several Group Key Exchange (GKE) protocols
have also been proposed. Some of the earlier ones [17, 22, 15, 6] had inadequate security or were rather
impractical. In general, designing GKE protocols can be particularly challenging because of the complexity
of the interactions between the many parties. Several provably secure Authenticated GKE protocols have
been proposed [11, 12, 21, 8]. These protocols improve significantly on earlier work, however they are not
scalable: either the number of rounds required is O(n), or the number of exponentiations is O(n) (n is the
number of group members).

In this paper we present a scalable GKE protocol which is proven secure in the passive adversary case,

with forward secrecy [14], if the Diffie-Hellman problem is intractable. Our protocol extends in a natural

*The protocol in this paper was presented at Eurocrypt '94 and appeared in the Proceedings [10]. The proof of security
for groups with an even number of parties appeared in the Pre-proceedings [9].
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way the Diffie-Hellman protocol to n > 2 parties and is based on one of the Ingemarsson, Tang and Wong
protocols [17] which uses symmetric functions. That protocol has many attractive features, however it is
insecure because the information exchanged by the group members makes it possible for a passive adversary
to compute the key [17]. Our protocol uses a cyclic function of degree 2, which prevents this attack while
retaining the efficiency of the former protocol. It has two rounds and requires O(1) (constant) modular

exponentiations per user. We do not address group robustness —see [29, 21, 27] for the dynamics of groups.

Research and subsequent work. The motivation for this paper is to give a security proof for the
protocol first presented at Eurocrypt 94 [10]. Since this protocol first appeared, it has been used extensively
in the literature because of its efficiency [24, 26]. However, several authors have commented on the lack
of proof of security. Indeed since no security proofs were given in [10], subsequent work (e.g., [12, 8])
viewed this protocol as being purely heuristic. Bresson-Chevassut-Pointcheval [11] and Bresson-Chevassut-
Pointcheval-Quisquater [12] use the GKE protocol of Steiner-Tzudik-Weidner [28] that requires O(n)-
rounds, while our protocol requires only 2 rounds. Recently, Katz-Yung [20] analyzed GKE protocols in
a formal security model based on indistinguishability and described a scalable compiler that transforms
any GKE that is secure against a passive adversary into an authenticated GKE that is secure against an
adversary who controls all communication in the network. They proved that in this model the security of our
protocol reduces to the Decisional Diffie-Hellman (DDH) problem. This problem is regarded as intractable
for most settings. However, in the Gap Diffie-Hellman group it can be solved in polynomial time, while no
probabilistic algorithm can solve the Computational Diffie-Hellman problem with non-negligible advantage

in polynomial time [7, 18, 19].

2 Definitions

We consider public networks in which members of a group can broadcast messages (bit strings) to each
other in the presence of a (polynomially bounded) passive adversary A (an eavesdropper). A may read
the broadcast messages and keep a log of transcripts of past executions (a history) but cannot modify

messages.

Definition 2.1. Let k be a security parameter and Uy, Us, ..., Uy, n = poly(k) (a polynomial in k), be
members (interactive polynomial-time Turing Machines with history tapes) of a group that take part in a
protocol P to generate a group key. Protocol P is called a Group Key Ezchange (GKE) if: when all group

members follow the protocol as specified, then each member U; will compute the same key K = K.



Definition 2.2. Let P be a GKE protocol and A a passive adversary. Assume that A has witnessed

polynomially-many instances of P and let K be the key output by the last instance.
1. P guarantees privacy if it is computationally infeasible for A to compute K.

2. P guarantees secrecy if A cannot distinguish K from a random bit string of the same length with

probability better than 1 + ¢, where ¢ is negligible (in k).

Remark 2.3. Privacy was used in [9] to show that our GKE protocol is a natural multi-party extension of
the original (two party) Diffie-Hellman protocol. Secrecy is a stronger version of security, and is currently
used as the definition of security for passive adversaries. It was introduced for KE protocols by Bellare-
Rogaway [1] (and Bird et al. [5]), and later extended for multi-party applications by Bresson et al. [11, 12].
To convert a requirement that it is hard to compute a key into a requirement that the key is pseudorandom,
one can use the random-oracle heuristic of Bellare-Rogaway [1] in which keys are randomized by using a
function selected randomly from a family of universal hash functions. This converts a computational (or
search) problem into a decisional problem. In applications, one may use the the Secure Hash Algorithm

SHA-1 [26, 24].

Definition 2.4. Let Z, = Z/pZ be the integers modulo p, and let g € Z, and G = {g*mod p,z € Z} the

integers modulo p generated by g. The following problems refer to computations or decisions in G.

1. The Computational Diffie-Hellman (CDH) problem [13] (a search problem): given numbers p, g and
random numbers z,y € G, find '°%Ymod p. That is, if z = ¢*mod p and y = ¢’ mod p, find

g®®mod p.

2. The Decisional Diffie-Hellman (DDH) problem [13]: given numbers p, g and random numbers z,y, z €

G, decide if: z = 2'°8Y mod p.

3. The squaring Computational Diffie-Hellman (s-CDH) problem [23, 30]: given numbers p, g and a

random number z € G, find z'°8s® mod p. That is, if z = g* mod p, find g‘l2 mod p.

4. The squaring Decisional Diffie-Hellman (s-DDH) problem [31]: given numbers p, g and random num-

bers z,z € G, decide if: z = £'°8% mod p.

The generator g is usually taken to be a unit of Z,, in which case the problems involve computations or
decisions in cyclic subgroups (G, g) of the group Zy of units of Z,. These problems extend in a natural

way to problems in general families of cyclic groups {(G, g)} generated by sampler functions, whose group



operation can be computed efficiently (in k).! For most applications p is prime, and sometimes the order
of ¢ is also prime. In this paper we shall not restrict ourselves to groups of prime order. However it is
important that the group parameters be selected appropriately, if we want the problem to be intractable
(for example, the order of g must have a large prime factor; also for the ss-DDH and DDH problems, if p is
prime then ¢ must be a quadratic residue modulo p). For appropriate group parameters, both the CDH and
the DDH problem have remained intractable for more than 25 years. However, in the Gap Diffie-Hellman
group the DDH problem is tractable, while the CDH problem is intractable [7, 18, 19].

The equivalence of s-CDH and CDH and the equivalence of ss-DDH and DDH respectively, have been
discussed and researched extensively in the literature (see e.g., [23, 31, 30]). For the computational problems
we have equivalence in the generic case (with the same complexity) under the high and medium granularity
assumptions [23, 30], but for low granularity we do not know. For the decisional problems we know less [23,

30]. However we do know that there is no reduction from DDH to s-DDH in the generic model [23, 31].

3 The Group Key Exchange protocol

A center chooses the parameters of the system: a security parameter k, a prime p = ©(2°%), ¢ > 1 constant,
and an element g € Z, of order ¢ = ©(2F). If this has to be verified then the factorization of g is given

(alternatively, a zero-knowledge proof [16] that g has order g is given). The center publishes p, g and gq.
Protocol 1. Let Uy, Us,...,Uy,, n = poly(k), be a group of parties? that want to generate a group key.

Round 1. Each party U;, i = 1,2,...,n, selects a random r; € Z;, and broadcasts® z; := g™ modp.
Round 2. Each party U;, i = 1,2, ...,n, broadcasts X; := (zj+1/zi—1)""modp, where the indices are taken

in a cycle.

Key Computation. Each party U;, i = 1,2,...,n, computes the key:

K’i = (zi_l)"” - ‘Xv,ini1 . Xz-n_ﬁ? st XZ'_Q modp. (1)

Lemma 3.1 Protocol 1 is a Group Key Exchange. That is, if all parties adhere to the protocol then each

will compute the same key:

K = gT1T2+T2T3+"'+7"n7"1 modp.

'For a general classification of discrete-log based problems see Steiner [27].
2The group is dynamic: our only restriction is that it is polynomially bounded.
3Tt suffices to send it to Uit1.



Indeed, let A;_1 = (Zi—l)” = ghi-1mi (modp), A; = (zi—l)” - X; = ghititt (modp), Ai—l—l = (Zi—l)” - X; -
Xit1 = ¢"+1"i+2 (modp), etc. Then K; = Aj—1- Aj - Ajt1--- Ai—o = K (modp). O

In the special case when there are only two parties, X; = Xo = 1 and K = ¢g""2 17271 = ¢2r1"2(modp).

This is essentially the Diffie-Hellman KE (in this case there is no need to broadcast X7, Xs).

Theorem 3.2. [10] Let n be even. Protocol 1 guarantees privacy if, and only if, the CDH problem is

intractable.

Proof. [9] If the CDH problem is feasible then clearly the group key K can easily be computed from the
broadcast data. Suppose that the CDH problem is intractable. We shall prove that Protocol 1 guarantees
privacy by contradiction. Let A be a passive adversary that succeeds with non-negligible probability in
computing the group key K; = (2,)™- X7~ 1.X2"2... X,, 1 modp of U;. We show how to use the program
of A to solve the CDH problem by simulating its input. First observe that it is easy to simulate a history
of transcripts of previous executions by selecting for each execution the exponents r; € Z;, i = 1,2,...,n
at random.

Let p,g,zn,21, be an instance of the CDH problem. Input to A: p,g, a history of transcripts

and the transcript z1,29,...,2, and X1, Xs,..., X, obtained from the CDH instance as follows. Select
by, bs,...,b,—1 at random from Z, and compute:
29 =2y ¢g"?mod p, z3:=2 g% modp, z4 =2z - g™ modp, ..., zp_1:=2,_3-¢" "modp. (2)

Then it is easy to compute X; := z,°2 = (g'%8s%1)b2 = (gh2)%8 21 = (25/2,)'%% %! (modp), and similarly

X9, X3,..., X, 9. From (2), since n is even, we get,
Zn = 29-g 2 = -9 M = 0 = 2, 9.gt2bamb2 (modp), 3)
2z = z3-g_b3 = z5-g_b3_b5 = ... = zn_l-g_b3_b5_"'_b"*1 (modp).

So one can compute: X, 1 := (z,_1) 27?7702 (modp). Indeed, from (3) and the definition of

X1, we have: Xp_1 = (zn/mm_g) %01 = g(-br—bam—ba-2)slogoen—t = (5 y=br—ba—mbn=> (modp).
Similarly X, := (z,) % 0%~ "0-1 = (2,/2,_1)!%¢** (modp). Note that the probability distribution of
29,23,...,2n—1 and X1, X9, ..., X, is identical to that of the real input of the adversary A.

We now have the necessary input for A: p, g, a history, and the transcript 21,...,2,, X1,...,X,. By
our assumption 4 will output the corresponding key K;. From Kj, by using (1) with ¢ = 1, it is easy to

compute (z,)"°8s*1 modp, since all the X; are known. It is well known [4, 25] that it is feasible to compute



n-th residues in Z, when n is polynomially bounded. It may not be possible to find the exact residue that
corresponds to (zn)loggz1 modp, if there are many (if ¢ is prime there is only one), so choose one at random.
With non-negligible probability, bounded by 1/n, this will be the right one. Consequently, by using the

loggz

program of A we get (zy) !modp with non-negligible probability. Since no restrictions are put on the

input p, g, zn, 21, we get a solution for a general instance of the CDH problem. O

Corollary 3.3. [10] Theorem 3.2 can easily be extended to allow for the case when the number of parties

1s odd by slightly modifying Protocol 1.

Proof. [9] If the number of parties is odd then one party, say the last one, behaves virtually as two

independent machines. Alternatively, for symmetry, all parties behave as two virtual machines. O

In the next two theorems we will not need to distinguish the cases when the number of parties is even

or odd.
Theorem 3.4. Protocol 1 guarantees secrecy if, and only if, the DDH problem is intractable.

Proof. (See also [20]) This is similar to the proof of Theorem 3.2. Let A be a passive adversary that
can distinguish the key K; from a random key with probability better than guessing, and let p, g, 2y, 21, 2
be an instance of the DDH problem. Input to A: p,g, a history and the transcript z1, 29, ...,2, and
X1,Xo,..., X, obtained from the DDH instance as follows. Select by, b3, ...,b,_1 at random from Z; and

compute:
2y = gbi mod p, X; = (Z’H-l/zifl)bi = (zi-f-l/zifl)logg & (IIlOdp), 1=2,3,...,n—1,

and X1 := 2,2 /2 = (22)'°8*1 /2 (modp), X, := z/(2n)" ' = 2/(2n_1)"%8s* (modp). Note that in X; and
X,, we have replaced the Diffie-Hellman value (z,)'°8s%! = (21)'°6s* (modp) by the “test” value z. By our

assumption, A will succeed for the given instance of the DDH problem. The converse is trivial. O

Theorem 3.5. Protocol 1 guarantees privacy (secrecy) if the s-CDH problem (the s-DDH problem) is

intractable.

Proof. First we deal with privacy. Let A be a passive adversary that can compute the key K = K; with
non-negligible probability and let p,g, 2z, € Z, be an instance of the s-CDH problem. Input to A: p,g,

a history and the transcript z1,29,...,2,, X1, Xo,..., X, obtained from the s-CDH instance as follows.
Select by, b, ...,b,—1 at random from Z; and compute:
21 = 2p - g mod p, 29 := 2, - ¢2mod p, ..., zZno:= 2y g 2mod p, z,_ 1 := 2z - ¢°»~1 mod p,



and X := 2% = (g)'%8s % = (29/2,)1%%6% (modp), Xo := 2,2 ' = (23/2)'%% %2 (modp), ..., Xp_1 :=
zn:{”‘”*2 = (2n/2n_2)'%%s *»=1 (modp) and X, := PRGOS (21/2n—1)'%8s * (modp). So we get the input
for A. Let K; be the output. From K; we get (2,)'°s* modp using (1) and as in last lines of the proof of

Theorem 3.2. Then compute:
log,21 , , —b1 — log,2n —b1\log,zn — . —b1ylog,zn — log,2zn
(2n) 8"t « 2, 71 = (21) 89" - (771 )%™ = (21 - g7 1) %™ = (2,) %% (modp). (4)

This is a solution for the given instance of the s-CDH problem.
Next consider secrecy. Suppose that A can distinguish K7 from a random key, and let p, g, z,, 2z be an
instance of the s-DDH problem. Input to A: p, g, a history and the transcript z1, 22, - - - , 2, X1, X2, ..., X,

obtained from the s-DDH instance by selecting b1,bo,...,b,—1 at random from Z; and computing,
21 =2z - ¢" ' mod p, 22 := g mod p, z3:=g¢*modp, ..., zn_1 := ¢""'mod p.

Then X; := (zi41/7i—1)%modp, for i = 2,3,...,n — 1. Replace the s-CDH value (2,)'°s*" mod p in (4)

log, 21 b1

by the “test” value z to get (zy) - 2, " = z (modp) and thus z - 2" = (z,)'°¢* (modp). Then
X1 = 22/(z- 2,7) = (22/20)'°8* (modp). Similarly X,, := (z - znbl)/znb"‘1 = (21/2n-1)"%8* (modp),
since (z,,)%89%" = (21)!°8s*» (modp). So we get the input for A. By our assumption, A will succeed for the

given instance of the s-DDH problem. O

Corollary 3.6. Theorems 3.2 and 3.5 can easily be extended to any family of groups (G,g) for which the

order of g is a known prime q.

Proof. The proofs are identical, except that there is no need to compute n-th residue roots. Instead
(22)"1°8s* mod p (for Theorem 3.2) and (z,)"'°%¢*» mod p (for Theorem 3.5), are raised to the power

n~'mod g. O

Remark 3.7. Protocol 1 focuses on security in the passive adversary case. For Authenticated GKE we
may use the Katz-Yung compiler [20] mentioned earlier, which will transform a GKE that is secure against

a passive adversary into an authenticated GKE that is secure against an active adversary.

Remark 3.8. We conclude by considering the possible links between Theorem 3.2, Corollary 3.3, Theo-
rem 3.4 and Theorem 3.5. Let A = B denote that problem A is reducible? to problem B. We have:

4 4 is reducible to B if there is an algorithm that transforms any solution of B to a solution of A, that is: if A is hard then
so is B.



1. If ss=CDH = CDH then Theorem 3.2 and Corollary 3.3 imply Theorem 3.5 (privacy).

2. If s-DDH = DDH then Theorem 3.4 implies Theorem 3.5 (secrecy).

3. If CDH = s-CDH then Theorem 3.5 (privacy) implies Theorem 3.2 and Corollary 3.3.

4. If DDH = s-DDH then Theorem 3.5 (secrecy) implies Theorem 3.4.

From [30] (which extends the results in [23]) we have the following relationships between the problems
CDH, DDH, s-CDH and s-DDH:

1. It is unlikely that DDH = s-DDH, because this does not hold in the generic model.

2. CDH = s-CDH for high and medium granularity, but it is not known if this extends to low granularity.

The same holds for: s-CDH = CDH and s-DDH = DDH (although there are indications that the
last two reductions may hold for low granularities). These reductions apply only to subgroups of

known order.
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