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Abstract. In this paper we consider c-secure fingerprinting codes for
copyright protection. We construct a probabilistic fingerprint code and
show that at least one colluder in a coalition of up to ¢ users can be
traced with high probability. We prove that this code is shorter than the
Boneh-Shaw code. In addition, we show that it is asymptotically optimal
when c is constant.
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1 Introduction

Digital fingerprinting is a watermarking technique that protects the intellectual
property of multimedia data. It consists of uniquely marking each copy of the
data in such a way that the positions marked and their values are kept secret.
This marking allows a distributor to detect any unauthorized copy and trace it
back to the owner (buyer) of the original copy.

Collusions of dishonest buyers are a major threat to digital fingerprinting.
Although the collusion cannot detect the marks where their copies agree, they
can detect the positions of the marks where the copies differ by comparing
copies. Thus they can make pirate copies that either cannot be linked to any
particular buyer, or that are linked to other buyers, in which case innocent buyers
are framed. A fingerprinting scheme that enables the capture of a member of
a collusion of ¢ buyers with probability greater than 1 — ¢ is called c-secure
with € error. In [1,2], D. Boneh and J. Shaw give a general construction for
fingerprinting c-secure codes with ¢ error. For n possible buyers, given £ > 0,
a code with n codewords of length £ = 32¢*log(2n/e) log(16¢? log(2n/c)/¢) is
constructed allowing at least one of the colluders to be identified with probability
at least 1 —e¢.

We present in this paper a construction for binary probabilistic c-secure fin-
gerprinting codes which are shorter than those obtained by using the Boneh-
Shaw construction. The basic idea is that each bit position of a codeword (each
mark), is assigned a value 0 or value 1 with a certain specified probability. That
is, the bits in each codeword are scattered randomly with each bit selected in-
dependently.

While it is possible to apply the general construction of Boneh-Shaw for
the case when ¢ is constant, such a construction is not very efficient due to



the large length ¢ = 32c*log(2)log(L) when ¢ is relatively small. In fact, there
are several improvements for the code lengths when ¢ is small. In particular,
Sebe and Joancomarti [4] have shown that for ¢ = 2, collusion security can be
obtained by using dual Hamming codes [7]. These codes have lengths that are
much shorter than those of the general construction in [1,2]. Sebe and Domingo-
Ferrer [3] further constructed 3-secure codes that are shorter than the codes
n [1,2]. No other results are known that improve the code length when ¢ > 3.
In this paper, we extend these results and present a construction for c-secure
codes whose length is £ = In(2)/g(c) for any ¢ > 2, where g(c) depends only
on c¢. For constant ¢, this improves on the construction of [1,2] by a factor of
O(ln %) For the special case when ¢ = 3, our construction gives codes of length
£ =98511n(2), which is better than [3] when n > 6000.

The paper is organized as follows. We define our notation in Section 2. In Sec-
tion 3 we present our construction of probabilistic c-secure fingerprinting codes.
In Section 4 we show that these codes are optimal. We conclude in Section 5.

2 Model and Definitions

Definition 1. An (£,n)-code over alphabet X' is a set of n distinct words in X*
that have length £. Each codeword, also called watermark, is to be embedded in a
data object to be given to a buyer. The information in the watermark allows its
creator to identify the user or users who illicitly distribute forged copies of the
watermarked object. In this paper we are concerned with the case ¥ = {0,1}.

Naturally, users may form coalitions in order to break a watermarking scheme.
For example two colluders may run a diff on their copies and determine the
bit positions where these differ, which of course must belong to the watermark.
Therefore, they can damage the watermark by changing these bit positions. Of
course, if all users collude then there is nothing we can do. So we assume that
each coalition has at most ¢ colluders for some fixed 1 < ¢ < n, where n is the
total number of users. As in [1,2,4] we shall assume that the colluders can only
modify the bit positions of their codewords that differ. This is known as the
Marking Assumption.

Definition 2 (Marking Assumption). Let W = {ws,...,w.} be the set of
codewords of an (£,n)-code given to a coalition C of ¢ users. Then the coalition
C can only produce codewords that belong to I'(C), where:

NC)={ze Xt |Vie{l,....0} : (wi[i] = ... = w.[i]) = (2[i] = w1[i])}.

The positions i where wi[i] = ... = w.[i] are called hidden positions. The Mark-
ing Assumption tells us that values in the hidden positions cannot be changed by
the collusion. For a binary code, we have I'(C) = {z € X |Vie {1,...,£},3j €

{1,...,¢c} : 2[i] = w;[i]}.

Definition 3. A code is totally c-secure if, for any coalition C of at most ¢ users
we can identify ot least one colluder by using information from the codeword z



forged by C. That is, there exists a deterministic tracing algorithm A such that,
for all colluding strategies of C: A(z) € C. Furthermore, a code is c-secure with
€ error if there is a probabilistic tracing algorithm A such that for all colluding
strategies of C: Pr[A(z) & C] < e, where the probability is taken over the random
coin tosses of A and C.

3 Probabilistic c-Secure Fingerprinting Codes

We now construct a c-secure code for n users with ¢ error over X' = {0,1}. Let
{1,...,n} the set of n users and p = 1 € (0,1). We define our c-secure codes
as follows. Let F.. be an (¢,n)-code whose codewords are chosen at random and
independently in such a way that:

Vo e F.,Vie {1,...,0} : Prz[i] = 1] = p,

where z[i] is the i" bit of z. The code F, is kept secret. As we will show, despite
its simplicity, this code is very efficient at detecting coalition users.

Let C C {1,...,n} be a coalition and z a codeword illegally constructed by
C. Let z, be the codeword given to user u € {1,...,n}. We shall consider the
asymmetric Hamming distance Ho(u,2) = #{i | z4[¢] = 1 A 2[i] = 0}. Let u*
be a user for whom Hy(u*, z) is minimal, that is: Ho(u*, 2) < Hg(u, z) for all
w € {1,...,n}. We shall show that:

Lemma 1. Pr[u* ¢ C] < e O0)+Inn,

Proof. Let |C| = c. For k € {0,...,c}, let BE(C) be the set of all bit positions
in which the coalition C sees exactly k bits 0 and ¢ — k bits 1, that is Bf(C) =
i€ {l,...,0} | #{u € C | zy[i] =0} = k}. Define d(z,y) =1lifz =1 and y =0,
and d(z,y) = 0 otherwise. For u € {1,...,n}\C and i € {1,...,¢}, let:

4i(,C) = d(afil 1) — = 3 d(eall, 26l

veC
By definition, we have:
¢ 1
Zdi(u,C) = Ho(u,2) — - Z Hy(v,2) .
4 c
i=1 veC

We now show that:
Vi
€
Pr [;di(u,C) < 0] <.

Assume that i € BE(C) and let pif = Pr[2[i] =0|i € B§(C)]. Since u € C, zy
is independent of all z, with v € C. This means that z,[i] is independent of
z[i] and i. Furthermore, d(z,[i], z[{]) equals 1 when z,[i{] = 1 and z[i] = 0, and



0 otherwise. On the other hand, ) . d(zy[i], z[4]) equals ¢ — k when z[i] = 0,
and 0 otherwise. Therefore the distribution of d;(u,C) given i € BE(C) is

xyfi] 2[i] di(u,C)  probability

0 0 r-1  QA-pof .
01 0 a-p-p)
1 0 k ol

1 1 0 p(1 - pi)

Since Prli € B§(C)] = (§) (1 — p)*p°F, we get:

d,’(U,C) = {

Since pi’ = 0, pi¢ = 1 (from the Marking Assumption) and 0 < pi¥ < 1 for all
0 < k < ¢, we obtain that d;(u, C) is bounded below by the random variable D;,
whose distribution is:

— 1 with probability (§)(1 —p)*™1p¢ Fpif, 1 <k <
with probability (;)(1 — p)kpc=*+1pi, 1 <k <¢;
otherwise.

Salao

kE — 1 with probability (;)(1—p)**'pc=* 1<k <ec-1;
_ p.—J ¢  with probability (;)(1— ) e k+1, 1<k<c-1;
7)1 with probability (1 — p)¢
0 otherwise.

Note that p =1, so we have:

E(Di) = (1-p)p+ ; (Z) 1-ppt ((1 -p)(=-1) +p§>
=(1—p)cp—;§;(;)(l p*p° ’“(1 p—%)
:(l—p)cp_(1_p)g(z)(1 kck+1§<) kgt
= (1=p)p = (1=p) (1= (1= )" =) + ¢ (1= p)e = (1= )0

By applying Lemma 2 (Appendix) to the random variables Xi,..., X, with
0=E(D;)/(1+ E(D;)) and a = -1, b =1, we get:

4
Pr lZDiSO

i=1

< e—g(c)l’

where (1 — 8)E(D;) + da = 0, and

(1_ )2 2c

o(0) = 39" (BD) - /(b= a) = g T



Since D; < d;(u,C), and by the definition of u*,

1
HO(U*VZ) S E Z HO(UJZ)J
vel

we get:
Pr [u* ¢ C] S nPr [Ho(u,z) = HO(U*;Z)] S G*Q(C)Z'HHW:_

Hence Lemma 1 is proven.

We can now state our main theorem.

Theorem 1. Let ¢ > 2 be constant. Then for all € > 0, n > 1, there is a
(€,n)-code with £ = O(In ) that is c-secure with € error.

Proof. We will catch any user v whose Hy(u,w) is minimal. Then apply Lemma 1
to get Pru ¢ C] < €. Here the constant inside the big O is bounded above by

O

4 Asymptotic Optimality

Boneh and Shaw proved that O(clog 1) is a lower bound for the length of c-secure
codes [1,2]. This implies that for constant ¢ our codes with length £ = O(In 1)
are asymptotically optimal, provided that e < n~? for some constant a > 0,
which is normally the case. In general, for constant ¢ and arbitrary € > 0 our
codes are more efficient than those obtained from the general construction in [1,
2] by a factor O(2).

In the case when ¢ = 3 our code has length £ = 98511In(%), which is better
than [3] for relatively small values of n. For example when ¢ = 1071%, our code
lengths for n = 8000, 16000, 32000 are ¢ = 315352, 322180, 329008, whereas the
corresponding code lengths in [3] and [1,2] are £ = 439992, 879984, 1759968 and
£ = 5619790, 5742669, 5865627 respectively.

5 Conclusion

We have presented probabilistic fingerprinting codes that are secure against col-
lusions. The codes are shorter than the Boneh-Shaw codes.
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Appendix

Lemma 2. Let X7, X5, ..., X, be bounded, independent, identically distributed
random variables, with (the same) expected value x and range [a,b]. Then the
following inequality holds for all 0 < § < 1:

< e—éﬁz(w—a)(b—a)_lf.

Pr lzt: D; < (1 = 8)z + da)

i=1

Proof. Let D} = Di=2_ Applying the Chernoff-Hoeffding bound [5,6] on £ inde-

b—a
pendent, identically distributed, random variables X{, X3, ..., X}, whose range
is [0, 1] and whose expected value is z' = $=2, gives us:

¢
Pr lz D;<(1- 6);10'] < 5%t

i=1

By substituting back D} = Dbi_ —2, and 2’ = =2 we get:

< e*%JZ(wfa)(bfa)_ll.

(E;:l Dz)_ea r—a

Simplifying this inequality gives us:

< e—%(SZ(:c—a)(b—a)_lf_

t
Pr lz D; < £((1 — &)z + da)

i=1

Lemma 2 is now proven.



