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Abstract—Most critical infrastructures can be modeled as
cyber-physical systems whose cyber components control un-
derlying physical processes so as to optimize system objectives
based on physical properties/constraints and the current and
estimated state of the system. Such systems usually require
performance guarantees and support for security: wrongly
received or missed commands can render the entire system
unstable. Yet, securing cyber-physical systems with heteroge-
neous components is still an open and challenging problem.

In this paper we propose a trusted computing architecture
for critical infrastructure protection based on the trusted
computing paradigm. We discuss the threat model, the vul-
nerabilities, real-time availability, run-time integrity and show
how to get resilience against intentional and unintentional faults
by using trusted computing enabled components and an access
control structure that enforces need-to-get-now (availability)
policies. We conclude by showing how this approach can be
used to secure substation automation systems of an IEC/TR
61850-90-5-compliant electricity grid.
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I. INTRODUCTION

The Stuxnet worm has shown how vulnerable indus-
trial facilities are to malware attacks. The crucial nature
of services provided by critical infrastructure systems and
the potentially devastating effects of such attacks highlight
the necessity for solutions that provide effective protection
from malware threats. However real-time availability is also
vitally important. Controllers should have access to state
information in real-time: correct messages delivered at the
wrong time may lead to erroneous responses and system
failure. To mitigate such threats from both intentional and
unintentional actors new technologies that augment trust in
emerging infrastructure systems are needed. The Trusted
Computing (TC) paradigm [1] supports application plat-
forms for secure distributed applications and enforces the
integrity of execution targets. This prevents the execution of
untrusted software and also addresses insider threats. How-
ever TC architectures offer only static (load-time) protection,
so one has to address the possibility of run-time attacks
that bypass TC protection and build on exploits that subvert
machine code execution.

A. Our contribution
We describe a Trusted Computing (TC) architecture that

combines TC engines with a real-time access control infras-
tructure for system protection.

The paper is organized as follows. In Section II the pro-
tection afforded by TC platforms is discussed. In Section III
we define a threat model for TC-compliant critical infras-
tructures and a security framework that takes into account
natural faults, system vulnerabilities, bad actors and captures
real-time system behavior. In Section IV we describe an
access control system that supports need-to-get-now poli-
cies. In Section V we discuss run-time attacks and their
impact on TC-compliant systems and consider methods to
mitigate such attacks. Ultimately, to thwart run-time attacks,
TC-compliant devices will have to operate with a limited
enumerated set of functions and, employ real-time dynamic
integrity monitoring. Finally, in Section VI we show how
our architecture can be used to secure substation automation
systems of an IEC/TR 61850-90-5-compliant electricity grid.

B. Related Work
Trusted Computing (TC) technologies have been used in

various applications to augment trust in distributed systems.
In [2] the authors integrate TC components with Kerberos
[3] to implement authorization based on attestation. In [4] a
timing side-channel is used for verifying TPM proximity,
and in [5] a TPM is used to secure direct recording of
electronic voting machines by binding voter choices to keys
in trusted storage. In [6] a small trusted hardware device,
TrInc, based on a trusted counter and a key is used to address
equivocation in distributed systems.

There is a lot of work in the literature for protecting
systems from run-time threats, yet these remain a major
concern. Recent proposals use taint analysis and dynamic in-
tegrity monitoring of run-time software behavior to identify
and track security violations [7], [8], [9]. Various methods
exist to enable tracking, such as code instrumentation, binary
re-writing and architectural tracking support. Though effort
is made in some papers to optimize the performance of the
monitoring process (through identifying unnecessary checks,
etc.), there is a non-trivial performance overhead associated
with dynamic measurement [7].



II. TRUSTED COMPUTING FOR CRITICAL
INFRASTRUCTURE PROTECTION

The Trusted Computing Group (TCG) [1] has published
specifications for architectures and interfaces for several
computing implementations. Platforms based on these are
expected to meet the functional and reliability requirements
of computer systems and provide increased assurance of
trust. As such, they are well suited to support and pro-
tect critical infrastructures. The Trusted Platform Module
(TPM) [10] and the Trusted Network Connect (TNC) [11]
are two such architectures.

The TPM binds data to platform configurations of hard-
ware systems to enhance software security. It has two basic
capabilities: remote attestation and sealed storage, and is
supported by a range of cryptographic primitives. TPMs
employ trusted engines, called roots of trust, to establish
trust in the expected behavior of the system. Trust is based
on an integrity protected boot process in which executable
code and associated configuration data is measured before
it is executed—this requires that a hash of the BIOS code
is stored in a Platform Configuration Register (PCR). For
remote attestation the TPM uses an attestation identity key to
assert the state of the current software environment to a third
party—by signing PCR values. Sealed storage is used to
protect cryptographic keys. To encrypt/decrypt/authenticate,
keys are released, conditional on the current software state
(using current PCR values). The TCG requires that TPMs be
physically protected from tampering. This includes binding
the TPM to physical parts of the platform (e.g. the mother-
board).

The TNC is a Trusted Computing (TC) architecture for
trusted network applications. What distinguishes TNC from
other interoperability architectures is the requirement that the
OS configuration of the client and server is checked prior to
a communication channel being established. A trusted link
between a client and server is established only if:

1) The identity of the client and server is trusted. A
Public Key Infrastructure is used to establish trust-
links between a Root Authority and the TPMs of the
client/server.

2) The client has real-time access to the server.
3) The client and server are authenticated. A root of trust

on the TPM of both parties is invoked to release the
required keys to execute a handshake protocol [11].

4) The integrity of communicated data, and if necessary
the confidentiality, is enforced by the TPM.

III. A THREAT MODEL AND SECURITY FRAMEWORK

The TPM prevents compromised components of TC-
compliant systems from executing. As a result, if we exclude
run-time (execution) threats, malicious (Byzantine) threats
are reduced to DoS threats that can be addressed with
redundancy.

There are two kinds of faults that may affect a
TC-compliant critical infrastructure: natural (this includes
accidents) and adversarial (intentional/malicious/insider).
Natural faults can be predicted, in the sense that an upper
bound on the probability of such faults can be estimated.
Redundancy can then be used to reduce this probability to
below an acceptable threshold. Malicious DoS faults cannot
be predicted. However they are overt and, because of the
TPM and TNC integrity verification, must be physical (e.g.,
involve tampering the TPM chip). So there is a cost involved.
One way to thwart them is to make the cost high enough
to prevent them. There are several security models that
use economics and risk analysis based on redundancy [12]
that are appropriate for threat models with overt faults.
These assume a bound on adversarial resources and an
architecture with sufficient redundancy to make such DoS
attacks prohibitively expensive.

In our approach for critical infrastructure protection we
shall assume an architecture that has sufficient redundancy
so that the probability that the system will fail due to natural
faults is negligible (e.g., less than 2−20) and, the cost of a
successful DoS attack by compromising system components
is prohibitive for a resource bounded adversary.

Our security framework for a critical infrastructure C
consists of:

1) A real-time model that captures its functionality in-
cluding a faults distribution F on components [13].

2) A set S of specifications, policies and security require-
ments that identifies the vulnerabilities V that need to
be protected.

3) An S-profiler that emulates the behavior of C in real-
time subject to S. The profiler is defined by a software
program that runs in real-time.

4) A proof that the S-profiler adheres to the security re-
quirements of S in real-time in the presence of faults/
disasters, accidents and malicious actors.

A. A security framework for critical infrastructures
We model a critical infrastructure by a finite state hybrid

real-time automaton C = (τ, A,Q, q0, D,F ,S,V) [13], with
τ : t1, t2 . . . a time schedule, A a finite set of actions that
includes a special symbol “⊥”, Q 6= ∅ a finite set of states
that is partitioned into safe states Qs, critical states Qc, and
terminal states Qt, q0 ∈ Qs an initial state, D ⊂ Q×Q×A

a transition function that is time triggered, F a distribution
on Nature’s faults, S a set of specifications and V a set of
vulnerabilities.

D(ti) : q
ti,a
−→ q′ for (q, q′, a) ∈ D and ti ∈ τ,

describes the transition that action a causes at time ti. D

is deterministic when a ∈ A\{⊥} and probabilistic when
a =⊥; in this case, the posteriori state is selected by Nature
according to F .



The parties of the real-time automaton C are those spec-
ified by S: intelligent electronic devices, operators, the
adversary and Nature (the Environment). Nature controls the
temporal and location aspects of all events and schedules
state transitions in a timely manner according to τ , using
the distribution F to select from among her strategies
for component failure, and resolves concurrency issues by
linking events to their actual start time.

It is important that protection mechanisms of a critical
infrastructure adhere to the time-frame τ : command/control
information that arrives late may result in the system tran-
sitioning to a critical/terminal state. For our application in
Section VI the latency δ = ti+1 − ti specified by IEC/TR
61850-90-5 is ∼1ms.

We use a semantic security threat model extended to
capture real-time events. This restricts the adversary to
exploiting the vulnerabilities V specified in S, in particular:
those identified by the policies of the system, vulnerability
assessments, and gray-box penetration testing [14]. These
involve the components of the system such as control
systems, embedded systems and communication channels.

B. The good, the bad and the ugly
1) The good: The TPM protects system components from

behaving in an unexpected way. In particular, prior to the
execution of any trusted program an integrity check of
its state (against a stored PCR configuration) is required.
Consequently if the program is compromised it will not be
executed by the OS.

2) The bad: The TPM allows only trusted software to
execute. Therefore the integrity of trusted software (which
includes the OS) is a fundamental requirement in order to
ensure trust in the computing infrastructure. The system
software must be well designed, with no security holes
backdoors or vulnerabilities that could be exploited by an
adversary. An exploit in the OS may allow the adversary
to bypass the protection offered by the TPM. There are
several reasons why the design of software programs may
be faulty. A major reason is the complexity of the execution
environment (the OS and CPU hardware). Another is poor
software development practices.

3) The ugly: ‘Security is not necessarily composable’ [16].
Proof-carrying code is not closed with respect to compo-
sability in general. An interesting example involving routing
protocols is discussed in [15], where it is shown that a
routing protocol that is secure in isolation is not secure
when executed concurrently with itself. Consequently the
TPM provides integrity guarantees only at load-time, not
run-time.

An exploit of the OS may make it possible for the
adversary to change the execution flow of a trusted program.
There are several run-time attacks [17] that use metamorphic
malware such as the self-camouflaging Frankenstein [18] or
more generally, return oriented programming (ROP) [19].

For these the adversary must be able to control the execution
flow on the stack, and there are ways to prevent this [20];
however as pointed out earlier, even if there are no exploits,
concurrent execution of trusted code (that is not Universally
Composable) may lead to untrusted behavior.

IV. REAL-TIME AVAILABILITY THREATS FOR CRITICAL
INFRASTRUCTURES

Real-time availability threats for critical infrastructures
exploit the time required to deliver system resources. For
example, in an electricity grid controllers must have access
to state information in real-time. For substation automation
systems, synchrophasor streams are sent to controllers via
local networks. Protecting such streams is crucial. Typically
the synchrophasor reporting latency should less than 10ms

(to prevent cascading faults [21]). Real-time availability
faults occur when the time taken to deliver such information
is longer than the specified latency.

Real-time faults may be natural—e.g. critical state in-
formation may get dropped or not arrive in time to be
processed, or malicious—e.g. an insider may corrupt syn-
chrophasor data. Note that Quality of Service (QoS) or Best
Effort mechanisms are not appropriate for real-time threat
protection: an average delay less than the latency may still
result in real-time failure if the actual delay exceeds the
latency.

A. Access control
Access control models are trust infrastructures that man-

age the resources of computer or network systems. Early
models include Bell-LaPadula [22] that enforces need-to-
know (confidentiality) policies and Biba [23] that enforces
integrity policies. Role Based Access Control (RBAC) [24]
supports authorization policies and scales better than previ-
ous models. Extensions such as Temporal RBAC [25] and
Generalized Temporal RBAC [26] address real-time issues,
however they also do not scale well when the number of
subject and object attributes becomes large [27]. Attribute-
Based Access Control (ABAC) [27] assigns attributes to
subjects and objects. Authorization is defined for subject
descriptors that may include environment attributes such as
time, day, temperature, etc. ABAC encompasses the func-
tionality of RBAC by treating roles and security labels as
attributes and captures dynamic environmental and temporal
attributes.

B. Access control that enforces need-to-get-now policies
The communication system of a critical infrastructure

may be bandwidth-constrained. As such, it is important to
employ an access control model that can guarantee real-
time availability to high priority packets. The Internet Engi-
neering Task Force has proposed two computer networking
architectures, the Differentiated Services (DiffServ) [28] and
the Integrated Services (IntServ) [29], that statically partition



the bandwidth among different classes of traffic for QoS.
However these do not guarantee real-time availability. For a
critical infrastructure, protection from real-time availability
threats requires that packets with the highest priority are
guaranteed delivery. Consequently the network bandwidth
must be: (a) reserved for the highest priority packets and,
(b) sufficient so that all such packets are delivered.

To address this issue, we propose a real-time attribute
based access control mechanism that extends the function-
ality of IntServ and DiffServ. For any subject s, availability
to a resource o at time ti is determined based on a real-
time attribute attr(x; ti), x ∈ {s, o}, with values in a
linearly ordered set (L,º) of availability labels. The label
of attr(x, ti) is called priority when x = s and congestion
when x = o. Availability labels are dynamically determined
based on user events, temporal events, the context of the
requested service and system events.

To enforce real-time availability, high (critical) priority
packets must be forwarded in real-time when there are faults
(caused by Nature or the adversary). For this purpose we
shall assume that the network infrastructure has sufficient
redundancy to guarantee delivery of high priority packets
at a specified rate when only such packets are transmitted
(Section III). The following packet forwarding protocol
enforces need-to-get-now policies:

Queuing. Let P be a packet received by an edge router R

and Q the queue of R (an ordered list). If priority(P )
º priority(P ′) for some P ′ ∈ Q, or if Q = ∅,
then drop all packets P ′′ ∈ Q with priority(P )
Â priority(P ′′) and put P at the low priority end
of Q. Else drop P (so all packets in Q have the
same priority and, by our earlier assumption, no high
priority packet is dropped).

Forwarding. The lead (high priority) packet P in queue
Q of edge router R is forwarded if and only if,
priority(P ) º congestion(R).

This protocol guarantees delivery of high priority packets
assuming that the specified rate for high priority packets is
not exceeded. A packet forwarding protocol that guarantees
delivery for high priority packets and offers QoS for all other
packets is presented in [30].

V. RUN-TIME ATTACKS

Run-time attacks involve the imposition of unintended
behavior on a software target that is executing. In a return
oriented programming (ROP) attack [19] there is no need
to inject new malicious code: instead code in local libraries
may be used. ROP overwrites the stack with addresses that
point to existing code. Instead of calling a function, it sets
return addresses on the stack to the middle of instruction
sequences that end with a return instruction. After executing
the instruction, the return takes the next address from the
stack where execution continues, and increments the stack
pointer. For more details the reader is referred to [19], [20].

Attacks of this kind use small instruction sequences
instead of whole functions. Clearly the adversary must be
able to control the stack flow for such an attack, and there are
ways to prevent this [20]. However there may be run-time
attacks, that exploit other vulnerabilities using a minimal
footprint, or that exploit concurrency. There is therefore a
need to guarantee that during run-time the execution of a
program cannot deviate from the prescribed path.

A. Run-time threats for TC-compliant systems
The TC model relies on digests of static execution tar-

gets (software) as key integrity measurements. In order to
materially impact the integrity of a TPM, the adversary
must attack the platform software without requiring the
presence of malicious software that would be detected by
the TC structure. ROP attacks [19] do not require additional
malicious code to be injected onto the platform, but assume
that the attacker can divert control of execution. One way
to achieve this is with a network-based attack. If TPM hosts
are successfully exploited by such attacks, it will be possible
to alter their behavior in a manner that is not detected by
TC methodologies. However TNC architectures only enable
trusted network connections, thereby limiting the adversary’s
ability to launch remote network-based attacks.

To mitigate run-time threats for critical infrastructures,
any successful approach will have to:

Restrict exploits on platform software. To reduce the attack
surface, devices will need to be constrained on functionality
and resource usage, and operate with a structured, well-
defined, enumerated set of functions.

Employ methods that detect run-time compromise. There is
substantial work in the literature on techniques for dynam-
ically detecting software faults [7], [8], [9]. Although most
techniques carry significant computational overhead, critical
infrastructure systems can justifiably be expected to bear
the requisite computational resources. Dynamic integrity
monitoring is a technique that shows promise for protecting
infrastructures from run-time failures. However, the time
required to address such threats may increase the likelihood
of real-time availability failure.

VI. SECURE COMMUNICATION FOR THE ELECTRICITY
GRID

To demonstrate the effectiveness of our approach we
show how it can be used to protect the communication of
an IEC61850-90-5-compliant substation automation system
(SAS) of an electricity grid against real-time availability and
run-time integrity threats. IEC/TR 61850 [31] is a Technical
Report of the International Electrotechnical Commission that
offers advanced object oriented semantics for information
exchange in power system automation applications, SCADA,
and system protection. IEC/TR 61850-90-5 [21] extends it
by specifying the use of the IP transport protocol so that data



can be distributed to wide area network environments for low
cost monitoring, protection and control. Both IEC/TR 61850
and its extension do not address security issues.

For SAS communication robustness we use a TC archi-
tecture that integrates: a TPM with built-in non-migratable
trust (Section II), a Kerberos multicast authentication ser-
vice [30], a real-time attribute-based access control system
(Section IV-B) and cryptographic services for AES and
HMAC (SHA2). Protection against run-time attacks is as-
sured if all trusted software is well designed with no flaws
(Section III-B1). This assumption is reasonable for critical
infrastructures with a minimal OS.

A. A trusted IEC/TR 61850-90-5 profiler
SISCO recently released an open source software pack-

age [32] with a sample profiler that emulates IEC/TR 61850-
90-5-compliant systems. This profiler does not support any
security services. To capture real-time and run-time security
we extended the profiler as outlined above.

B. The testbed
A testbed with 17 TPM-enabled workstations connected

via a CISCO Catalyst 3560G series PoE48 switch was
established. The machines ran Ubuntu Linux and Windows
with an Intel Xeon E5506 2.13GHz x 4 CPU and 6GB
memory. A dedicated machine running the krb5 API acted
as a Kerberos 5 release 1.10 server, interfacing directly with
the Kerberos API.

C. Trusted substation automation systems
Trusted Computing for SAS is established by using TPM

and TNC interfaces (Section II) and a real-time access
control service to manage data feeds (Section IV). This
prevents trusted components that get compromised from
behaving abnormally, and guarantees real-time availability
for high priority packets, provided the SAS network
has sufficient redundancy (Section IV-B). The following
experiments were conducted.
Encryption/Decryption. AES was used in counter mode
to generate a keystream with a shared secret key. The
keystream was bitwise XORed with the payload of the
packet. The ciphertext was the resulting string together
with the value of the counter. For decryption, the same
keystream is generated and XORed with the ciphertext.
Note that the keystream can be computed offline, with only
the bitwise XOR done online. Over a course of 500 packet
transmissions the average time required for generating
the keystream was: at the producer 0.02175ms with
standard deviation σ = 0.00457ms, and at the subscriber
0.02413ms with σ = 0.00420ms.
Authentication. Both producers and subscribers computed
an HMAC of the ciphertext using SHA2. Over a course
of 500 packet transmissions the average time was: at the
producer 0.03063ms with σ = 0.00178ms, and at the

subscriber 0.03786ms with σ = 0.00167ms.
A producer must build the packet, encrypt the payload,

calculate an HMAC and transmit the packet. Each sub-
scriber that receives the packet must verify the HMAC and
decrypt the payload. The end-to-end time per packet is:
enc+dec+2mac ≈ 2mac, if the keystream is generated of-
fline. Using the earlier average estimates we get 0.06849ms.
This does not include transmission time, IEC/TR 61850-90-5
header generation, IP protocol formatting and other general
processing requirements. These are roughly 0.00069ms for
the producer and 0.54ms for the subscriber (the subscriber’s
value includes queuing delays). So the latency per packet
is bounded by 1.3ms, which is less then the 4ms latency
specified by IEC/TR 61850-90-5. For more details the reader
is referred to [33].
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