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Abstract. We investigate an application of RFIDs referred to in the literature
as group scanning, in which several tags are “simultaneously” scanned by a
reader device. Our goal is to study the group scanning problem in strong ad-
versarial models. We present a security model for this application and give a for-
mal description of the attending security requirements, focusing on the privacy
(anonymity) of the grouped tags, and/ or forward-security properties. Our model
is based on the Universal Composability framework and supports re-usability
(through modularity of security guarantees). We introduce novel protocols that
realize the security models, focusing on efficient solutions based on off-the-shelf
components, such as highly optimized pseudo-random function designs that re-
quire fewer than 2000 Gate-Equivalents.

1 Introduction and previous work

Radio Frequency Identification (RFID) tags were initially developed as small electronic
hardware components whose main function is to broadcast a unique identifying number
upon request. The simplest type of RFID tags are passive devices—i.e., without an
internal power source of their own, relying on an antenna coil to capture RF power
broadcast by an RFID reader. In this paper, we focus on tags that additionally feature a
basic integrated circuit and memory. This IC can be used to process challenges issued
by the RFID reader and to generate an appropriate response. For details on these tags,
and more generally on the standards for RFID systems, the reader is referred to the
Electronic Protocol Code [11] and the ISO 18000 standard [12].

The low cost and high convenience value of RFID tags gives them the potential for
massive deployment. Accordingly, they have found increased adoption in manufactur-
ing (assembly-line oversight), supply chain management, inventory control, business
automation applications, and in counterfeit prevention. Initial designs of RFID identifi-
cation protocols focused on performance issues with lesser attention paid to resilience
and security. As the technology has matured and found application into high-security
and/or high-integrity settings, the need for support of stronger security features has
been recognized. Many works have looked into the issue of secure identification and
authentication, including [1–3, 6, 7, 9, 10, 14, 15, 19–25].
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Ari Juels introduced the security context of a new RFID application—which he
called a yoking-proof [13], that involves generating evidence of simultaneous presence
of two tags in the range of an RFID reader. As noted in [13], interesting security engi-
neering challenges arise in regards to yoking-proofs when the trusted server (or Verifier)
is not online during the scan activity. The first proposed protocol introduced in [13] was
later found to be insecure [18, 5]. Yoking-proofs have been extended to grouping-proofs
in which groups of tags prove simultaneous presence in the range of an RFID reader—
see e.g. [18, 17, 5]. In this paper, we examine the latter solutions and identify similar
weaknesses in their design.

Our main contribution in this paper is to present a comprehensive security frame-
work for RFID grouping-proofs, including a formal description of the attending security
requirements. In previous work, the group scanning application has only been described
at relatively informal levels, making it difficult to provide side-to-side comparisons be-
tween alternative proposals. We then construct practical solutions guided by the security
requirements and constraints of this novel model. This gives us confidence that our so-
lutions will avoid design pitfalls and stand scrutiny.

As Juels already pointed out, there are several practical scenarios where grouping-
proofs could substantially expand the capabilities of RFID-based systems. For example,
some products may need to be shipped together in groups and one may want to mon-
itor their progress through the supply chain—e.g., of hardware components or kits. A
different scenario would be to support enforcement of safety regulations requiring that
drugs be shipped (or dispensed) accompanied by information leaflets. Other situations
include environments that require a high level of security, such as airports. In this case,
it may be necessary to couple an identifier, such as an electronic passport, with a physi-
cal person or with any of his/her belongings, such as their bags. Similarly, one may want
to enforce that access to certain resources only be granted if appropriate groups (or a
threshold) of entities/objects are present. In battlefield contexts, weaponry or equipment
may have to be linked to specific personnel, so that it may only be used or operated by
the intended users.

In some of the above scenarios, the RFID reader may not enjoy continuous con-
nectivity with the trusted Verifier, and delayed confirmation may be acceptable. For
instance, this may be the case with supply chain applications, due to the increased frag-
mentation and outsourcing of manufacturing functions. A supplier of partially assem-
bled kits may perform scanning activities that will be verified later when the kits are
assembled at a different site. Moreover, since the grouping-proof problem is a rela-
tively simple primitive, other applications of it are likely to emerge in the future. There-
fore, efficient and optimized realizations of this primitive that achieve strong security
guarantees—such as we describe in this paper—are practically relevant contributions in
the design space of RFID protocols.

The organization of this paper is as follows: A comprehensive adversarial threat
model is introduced and discussed in Section 2. In Section 3 we examine the weaknesses
of currently available scanning proofs. In Section 4 we propose three RFID proofs for
simultaneous group scanning: a basic (non-anonymous) grouping-proof followed by a
version that adds support for anonymity, and an additional version that is both anony-



mous and forward-secure. In the Appendix, we include proof sketches that the schemes
are secure in the Universal Composability framework.

2 RFID deployments and threat model

A typical deployment of an RFID system involves three types of legitimate entities:
tags, readers and a Verifier. The tags are attached to, or embedded in, objects to be
identified. They consist of a transponder and an RF coupling element. The coupling
element has an antenna coil to capture RF power, clock pulses and data from the RFID
reader. In this paper we focus on passive RFID tags that have no power of their own
but have a small footprint CMOS integrated circuit, ROM, RAM and non-volatile EEP-
ROM. The RFID readers typically contain a transceiver, a control unit and a coupling
element, to interrogate tags. They implement a radio interface to the tags and a high
level interface to the Verifier that processes captured data.

The Verifier (a back-end server) is a trusted entity that maintains a database con-
taining the information needed to identify tags, including their identification numbers.
In our protocols, since the integrity of the whole RFID system is entirely dependent
on the proper behavior of the Verifier, we assume that the Verifier is physically secure
and not attackable. (In principle, it is possible to relax such assumptions and consider
mechanisms that prevent the Verifier from collecting user-behavior information, or to
make the Verifier auditable. We refer the reader to [21] for approaches in this setting,
but do not explore it here.)

Grouping-proofs involve several tags being scanned by an RFID reader in the same
session. The reader establishes a communication channel that links the tags of a group
and enables the tags to generate a proof of “simultaneous presence” within its broadcast
range. The proof should be verifiable by the Verifier. Throughout this paper, we assume
the following about the environment characterizing group scanning applications:

– The tags are passive, i.e., have no power of their own. They have very limited
computation and communication capabilities. However, we assume that they are
able to perform basic (symmetric-key) cryptographic operations such as generating
pseudo-random numbers and evaluating pseudo-random functions. Such tags are
already commercially available.

– RFID tags do not maintain clocks or keep time. However, the activity time span of
a tag during a single session can be limited using techniques such as measuring the
discharge rate of capacitors, as described in [13]. (A capacitor acts effectively like
an onboad timer, which expires when the capacitor is fully discharged.)

– RFID readers establish communication channels that link the tags of a group. This
takes place at the data link layer of the RFID network: after tags that claim to
belong to a group are “identified” (tags may use pseudonyms) a common (wireless)
channel linking the tags via the reader is established.

– RFID readers are potentially untrusted. The only trusted entity is a Verifier, that
may share with the tags some secret information, such as cryptographic keys.

– RFID readers are trusted to manage the interrogation of tags. They enable the tags
of a group to generate a grouping proof during an interrogation session, and keep a



record of such proofs for each session. These records cannot be manipulated by the
adversary. In the offline case readers must also store private information regarding
interrogation challenges obtained from the Verifier.

– The Verifier is a trusted entity, that may share some secret information with the
tags such as cryptographic keys. The Verifier has a secure channel (private and
authenticated) that links it to the (authenticated) RFID readers.

– Grouping proofs are only valid if they are generated according to their protocol in
the presence of an authorized RFID reader. In particular if the flows of the protocol
are ordered, the ordering cannot be violated. Also, proofs generated during different
sessions are not valid (even if correct).

The Verifier can be online or offline and different solutions are required in each
case. We further distinguish between online fully-interactive mode and online batch
mode. The interaction of the Verifier in batch mode is restricted to broadcasting a chal-
lenge that is valid for a (short) time span, collecting responses from the tags (via RFID
reader intermediates), and checking for legitimate group interactions—the Verifier in
batch mode never unicasts messages to particular groups of tags. In contrast, in fully-
interactive mode the Verifier can receive and send messages to specifics tags through-
out the protocol execution. In contrast, the interaction of the Verifier in batch mode is
restricted to broadcasting a challenge that is valid for a (short) time span, collecting
responses from the tags (via RFID reader intermediates), and checking for legitimate
group interactions—the Verifier in batch mode never unicasts messages to particular
groups of tags.

It is straightforward to design solutions for the fully-interactive mode of the grouping-
proof problem—indeed, it is sufficient for individual tags to authenticate themselves
to the Verifier, which will then decide on the success of the grouping-proof by using
auxiliary data, e.g., the tag identifiers of the groups. Therefore, research on grouping-
proofs has focused on the offline case, with some results also targeted at the online
batch modality. Accordingly, in this paper, we focus on offline solutions, except for the
forward-secure protocol, where we only describe a solution in the online batch mode.

2.1 Attacks on RFID tags

Several types of attacks against RFID systems have been described in the literatrure.
While each of these are classical types known in other platforms, unique aspects of the
RFID domain make it worthwhile to discuss them anew.

– Denial-of-Service (DoS) attacks: The adversary causes tags to assume a state from
which they can no longer function properly. Tags become either temporarily or
permanently incapacitated.

– Unauthorized tag cloning: The adversary captures keys or other tag data that allow
for impersonation.

– Unauthorized tracing: The adversary should not be able to trace and/or recognizes
tags through rogue readers.

– Replay attacks: The adversary uses a tag’s response to a rogue reader’s challenge
to impersonate the tag.



– Interleaving and reflection attacks: These are concurrency attacks in which the
adversary succeeds in combining combines flows from different instantiations to
get a new valid transcript.

These attacks are exacerbated by the mobility of the tags, allowing them to be manipu-
lated at a distance by covert readers.

2.2 The threat model for RFID

RFID tags are a challenging platform from an information assurance standpoint. Their
extremely limited computational capabilities of RFID tags imply that traditional multi-
party computation techniques for securing communication protocols are not feasible,
and that instead lightweight approaches must be considered. Yet the robustness and se-
curity requirements for RFID applications can be quite significant. Ultimately, security
solutions for RFID applications must take as rigorous a view of security as other types
of applications.

Accordingly, our threat model assumes a Byzantine adversary. In this model all
legitimate entities (tags, readers, the Verifier) and the adversary have polynomially
bounded resources. The adversary controls the delivery schedule of the communication
channels, and may eavesdrop into, or modify, their contents, The adversary may also
instantiate new channels and directly interact with honest parties. However, we assume
that the Verifier is a trusted entity that cannot be corrupted, and that the reader-Verifier
channels are secure.

We are mainly concerned with security issues at the protocol layer and not with
physical or link layer issues, such as the coupling design, the power-up and collision ar-
bitration processes and the air-RFID interface—For details on physical/link layer issues
the reader is referred to [11, 12].

2.3 Guidelines for secure RFID applications

Below we present effective strategies that can be used to thwart the attacks described in
Section 2.1. These strategies are incorporated in the design of our protocols.

– DoS attacks: One way to prevent the adversary from causing tags to assume an
unsafe state is by having each tag share with the Verifier a permanent secret key
ktag , (Assuming here that the cost of public-key cryptography in tags is too high
for the application in question, a likely scenario.) When a tag is challenged by an
RFID reader it will generate a response using this key.

– Cloning attacks: The Verifier should be able to check a tag’s response, but the ad-
versary should not be able to access a tag’s identifying data. The adversary should
not be able to access a tag’s identifying data. However the Verifier should be able
to check a tag’s response. The response must therefore corroborate (but not reveal!)
knowledge of the tag’s secret data. Of course it It should be hard for the adver-
sary to extract secret data from the tag’s response. This can be assured by using
cryptographic one-way functions.



Fig. 1. The yoking-proof [13]
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– Unauthorized tracing: The adversary should not be able to link tag responses to
particular tags. This can be guaranteed by (pseudo-)randomizing the values of the
tags’ responses. Since all entities in an RFID system are assumed to have polyno-
mially bounded resources, it is sufficient for these values to be cryptographically
pseudo-random.

– Interleaving and Replay attacks: To prevent the adversary from constructing valid
transcripts by combining flows from different sessions,the flows of any particular
session should be strongly linked. This can be assured by binding all messages in a
session to the secret key and to fresh (pseudo-)random values.

– Generic concurrency-based attacks: Protocols that are secure in isolation may be-
come vulnerable under concurrent execution (with other instances of itself or of
other protocols). To guarantee security against such attacks it is necessary to model
security in a concurrency-aware model. In this paper, we use the Universal Com-
posability model, which in addition to capturing threats arising from concurrency,
allows for secure protocol re-use—e.g., as a building block for more complex ap-
plications.

3 Previous Work: RFID Grouping-Proofs

In this section we describe three grouping-proofs proposed in the literature and discuss
their vulnerabilities.

3.1 The Yoking-proof. This is a proof of simultaneous presence of two tags tagA, tagB

in the range of a reader [13]. The tags have secret keys kA, kB , known to the Verifier
but not the READER, and counters cA, cB . The reader scans the tags sequentially. The
protocol is described in Fig. 1. MAC(·)(·) is a keyed
message authentication code, f(·)(·) a keyed hash function and PAB the resulting yoking-
proof. The reader scans the tags sequentially. The tags have secret keys kA, kB , known
to the Verifier but not the reader, and counters, cA, cB , and use a keyed message au-
thentication code and a keyed hash function to compute a “yoking-proof ”.



Saito and Sakurai observed [18] that a minimalist version of this proof (that does not
use counters) is subject to an interleaving attack in which the adversary combines flows
from different sessions (obtained by rogue readers) to get a valid proof. The attack was
shown [5] to extend to the full version of the proof, (Figure 1), but it was also shown
that it can be easily be prevented.

There are two other weaknesses we shall discuss here. The first concerns the fact
that the tags in the yoking-proof do not (and cannot) check each other’s computation.
This implies that in the offline mode unrelated tags can participate in a yoking ses-
sion, and that the failure will only be detected by the Verifier at some later time, not
by the reader. While, from an authentication perspective, this may not represent a se-
curity threat, in many practical applications it is an undesirable waste of resources, and
could be characterized as a DoS vulnerability. To appreciate how accidental pairing
may create challenges to real-world applications—e.g., where yoking is used to ensure
that components are grouped in a shipment, consider the following scenario. A reader
is configured to take temporary measures after a failed yoking attempt, e.g., notify an
assembly worker of a missing component in a shipment pallet. This capability is denied
if a tag (either accidentally or maliciously) engages in yoking sessions with unrelated
tags, and possibly even with itself—for the latter, we refer the reader to the modified
re-play attack scenario described in [18]. Accidental occurrences of this type might not
be unlikely, in particular with anonymous yoking-proofs, and they are facilitated by the
fact that the scanning range of readers may vary according to different environmental
conditions. (making it difficult to use topological constraints to limit readers to interact
with only one pair or group of tags at a time). Additionally, undesirable yoking may re-
sult simply because the typically small RFID tags are easily misplaced or surreptitiously
introduced.

In order to prevent this kind of vulnerability, in our protocols we use a group secret
key kgroup, which is shared by all the tags belonging to that group.3

A more serious weakness concerns the nature of the “proof” PAB generated by the
tags: this is not a proof that tagA and tagB were scanned simultaneously while in the
presence of an authorized reader. Indeed, one cannot exclude the possibility that PAB

was generated while the tags were in the presence of a rogue reader, and that at a later
time PAB was replayed by a corrupted tag (impersonating successively tagA and tagB)
in the presence of the authorized reader. To avoid this kind of attack in our protocols
the challenge of authorized tags will include a nonce (rsys).

An anonymous version (using pseudonyms) of the yoking-proof was proposed in [5].
No security proof is given, and it is not clear how the reader can pair tags from their
pseudonyms—a similar problem occurs with the clumping-proofs which will be dis-
cussed in some detail below.

3.2 Proofs for multiple RFID tags. These extend yoking-proofs to handle arbitrary
number of tags in a group [18] and use time-stamps, to thwart re-play attacks. Pira-

3 Although group keys will prevent faulty tags from participating in a grouping-proof that in-
volves non-faulty tags, they cannot prevent malicious tags from submitting an invalid proof to
a reader, since proofs can only be verified by the Verifier. Our last protocol (Section 4.3), in
which the groups are authenticated by the reader, addresses this issue.



Fig. 2. The clumping proof
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muthu [17] adapted the protocols in [18] to include random values in lieu of time-
stamps. replaced the time-stamps by random numbers. This is important, because time-
stamps can be predicted, allowing for attacks that collect prior responses and combine
them to forge proofs of simultaneous interaction. As with the yoking-proofs, these fail
to satisfy the security guidelines in Section 2.3. In particular, the random numbers used
and are vulnerable to a multi-proof session attacks [16].

3.3 Clumping-proofs for multiple RFID tags [16]. These combine the strengths of
yoking-proofs and multiple tag proofs and address some of their weaknesses. The tags
use counters and the reader uses a keyed hash of a time-stamp, t = gkV

(timestamp),
obtained from the Verifier, to make its requests unpredictable. (kV is a secret key shared
by the reader and the Verifier). The reader parses t and uses its parts in its requests to
the tags. The protocol uses a special-purpose function Nun to anonymize tags. The
function is lightweight (using only shifts and adds) and satisfies a Strong Avalanche
Criterion, to make it more resilient to cryptanalysis. For details, we refer the reader
to [16]. Note that the clumping-proofs use counters to reduce the search complexity of
the Verifier. However their value is updated regardless of the received flows, so they can
be incremented arbitrarily by the adversary (via rogue readers). Therefore, they cannot
be relied upon to identify tags, and in the worst case an exhaustive search through the
keys may have to be used. A security proof of the clumping-proof protocol is provided
in the Random Oracle Model [4]. However, this does not address concurrency threats,
a substantial limitation of the analysis, considering that the original yoking-proofs [13]
admit a similar security proof and are vulnerable to concurrency-based attacks.



4 Our Protocols: Robust grouping-proofs

We present three RFID grouping proofs. The first one does not provide anonymity, the
second adds support to anonymity and the third improves on the second by incorporat-
ing forward-secrecy.

In the first protocol, the proof sent from the tags to the reader and from the reader to
the Verifier includes a group identifier IDgroup. For the second protocol, no identifier is
passed to the reader: the proof uses values that depend on the group’s identifier and key
and on the Verifier’s challenge but the dependency is known only to the Verifier. Thus,
only the Verifier is able to match the proof with a given group of tags: this guarantees
unlinkability and anonymity. In the third protocol the secret keys and the group keys of
the tags are updated after each execution, thus providing forward-secrecy.

There are two reasons why we present different protocols. First, prior work on
group scanning has considered both the anonymous and non-anonymous settings. Since
anonymizing protocols requires additional computational steps and correspondingly
larger tag circuitry, simpler alternatives are preferred whenever anonymity is not a con-
cern. Second, the introduction of protocols of increasing complexity follows a natural
pedagogical progress that facilitates the understanding of the protocols structure.

Although for simplicity we illustrate our protocols with two tags, the extension
to any number of tags is straightforward. Irrespective of the number of tags involved,
a specific tag in the group always plays the role of “initiator,” transmitting either a
counter (in the non-anonymous protocol), a random number, or a random password (in
the other versions). This has the security benefit of curtailing reflection attacks. (Where
a tag performs multiple roles in the same protocol instance.) To implement this feature,
it is not necessary that tags engage in any sort of real-time agreement protocol, it is
sufficient to hard-code the behavior of tags.

We only consider situations in which the Verifier is not online while the tags are
scanned as this is the most challenging case. As commonly done, we assume that readers
and the Verifier communicate through authenticated channels. We also assume that each
tag stores in non-volatile memory two secret keys (both shared with the Verifier): a
group key kgroup used to prove membership in a group, and an identification key ktag

used to authenticate protocol flows. The Verifier stores these values (for each tag) in a
database D = {IDtag, ktag , kgroup}. Tags instances are denoted as tagA or tagB , and
the key for instance tagA is written in shorthand as kA.

Each protocol starts with a reader broadcasting a random challenge rsys, which
is obtained from the trusted Verifier at regular intervals. This challenge defines the
scanning period, i.e., each group should be scanned at most once between consecu-
tive challenge values. In other words, the Verifier cannot (without further assumptions)
determine simultaneity of a group scan to a finer time interval than the scanning period.

4.1 A robust grouping-proof

Our first non-anonymous grouping-proof is presented for two tags, tagA and tagB,
where tagA is the initiator tag—see Fig. 3. The current state of the group is deter-
mined by a counter c stored by the initiator tag. The counter is updated with each



Fig. 3. A robust grouping-proof—for two tags
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execution of the protocol. Each group is assigned an identifier IDgroup and the Ver-
ifier stores these values together with the private keys of each tag in a database D =
{(IDtag, ktag , kgroup)}. The protocol has three phases. In the first phase the reader
challenges

the tags in its range with rsys and the tags respond with their group identifier IDAB .
In the second phase—which takes place at the data-link layer—the tags are linked by
channels through the reader. In the third, the tags prove membership in their group.

Each phase can be executed concurrently with all the tags in the group, except that
the third phase must be initiated by the initiator tag (tagA in the diagram). The vari-
ous phases cannot be consolidated without loss of some security feature, or worse, of
determinate outcome. In fact, if we removed the first phase (rsys) the protocol would
be subject to a “full-replay” attack (Section 2.3). If we removed the second phase (the
exchange of IDAB), the reader would be unable to match the tags so that the group
itself would be undefined. Phase three consists of three rounds of communication, and
each is crucial to provide the data for the proof. If we were to suppress the exchange
of sB and xB , or if we did not implement the timeout, then replay attacks would be
successful. Also, the implementation of the third round enables an authorized reader



to detect certain protocol failures immediately, namely those that lead the initiator tag
to timeout. The update of the counter c immediately after it is sent by tagA allows the
state to be updated even if the protocol round should be interrupted. This, along with
timers prevents replay attacks.
The use of rsys also prevents “Full-Replay” attacks. In fact, each reader receives a set
(or one at a time, if online) of specific rsys values from the server. Thus it is not possi-
ble for another reader to send to the server a proof that was collected by another reader,
because the latter would detect an incorrect value of rsys for that specific reader.

The extension of the protocol to more than two tags is achieved as follows. In the
first and second phases, the reader communicates with all tags concurrently. In the first
round of the third phase, the reader communicates only with the initiator tag; it commu-
nicates with all other tags concurrently in the second round; and again with the initiator
tag in the third round, providing it with concatenated answers from the second round.

In the protocol each tagX uses its group key kAB to evaluate f(kAB ; rsys||c), where
f is a pseudo-random function and “||” denotes concatenation. This is parsed to get
numbers rX , sX of equal length, used to identify the parties of the group and prove
membership in the group. Tags use their secret key to confirm correctness of the proof.
The proof of simultaneous scanning is PAB = (rsys, IDAB , c, rA, sB , xA, xB). In our
protocol, it is possible for an authorized reader to know whether grouped tags were
actually scanned or not because, in the latter case, one or more of the tags would time-
out. This represents an improvement over the past protocols, in which the success or
failure of the yoking- or grouping-proof could only be detected by the Verifier. This
protocol can be implemented very efficiently, with a footprint of fewer than 2000 Gate-
Equivalents. For a discussion on optimized implementations of pseudo-random func-
tions suitable for RFID applications, we refer the reader to [25].

Security analysis. The universal composability (UC) framework defines the security
of a protocol in terms of its simulatability by an idealized functionality F (which can
be thought of as specifications of the achievable security goals for the protocol). F is a
trusted entity that can be invoked by using appropriate calls. We say that a protocol ρ

UC-realizes F , if for any adversary A, any real-world simulation of ρ in the presence
of A can be emulated by an ideal-world simulation in which the adversary invokes F ,
in such a way that no polynomial-time environmentZ can distinguish between the two
simulations. In ideal-world simulations, the adversary has access to all the outputs of
F , as in the real-world it can eavesdrop into all communications.

For our first protocol the functionalityFgroup comprises the behavior expected of a
grouping-proof. It is invoked by five calls: activate, initiate, link, complete, and verify.
The first call is used by the environment Z to activate the system by instantiating the
Verifier, an authorized reader and some tags. Note that keys initially shared between
the Verifier and the tags are not under control of the adversary in this model—in the
UC model this is called a trusted setup. The second call is used by readers to initiate
an interrogation session, and corresponds to an rsys challenge, and by tags to declare
their group membership. The call link, links the tags specified in activate, and the call
initiate for tags gives their response to the reader’s challenge. The call complete is for



initiator tags and completes a proof: it corresponds to xA. The call verify can be used
to submit a putative proof transcript to the Verifier.

The adversary can arbitrarily invoke Fgroup and is given access to all the outputs
of the responses of Fgroup. In particular,A mediates between all parties involved in its
interactions with Fgroup.

All the outputs resulting from calls to Fgroup, except for the tag calls that produce
identifiers, are random strings. The functionality keeps a record of every output string,
and uses these strings in the same way as the protocol ρ uses the corresponding outputs.
Fgroup will only accept (verify) those proofs that it has generated itself during a partic-
ular session as a result of the activation of the system, the initiation and linking by an
authorized reader, the initiation of all the tags that belong to a particular group, and the
completion by an initiator tag (in this order). In the full version of this paper we shall
show that our first protocol UC-realizes the Fgroup functionality.

4.2 A robust anonymous grouping-proof

For our second protocol, group identifiers are replaced by randomized group pseudonyms
psgroup. To protect against de-synchronization failure or attacks, one (or more in the
group of n > 2 tags) of the tags must maintain both a current and an earlier version of
the state of their pseudonyms. For this purpose all tags in a group store in non-volatile
memory one or more values of a pseudo-random number rtag .4 Initiator tags store only
the current value, while the other tags in group store two values, rold

tag , rcur
tag . These

values are used to compute the group pseudonym. First f(kgroup; rsys||rtag) is eval-
uated, where rsys is the random challenge of the Verifier. Then, this is parsed to get
two numbers psgroup, cnf tag, of equal length, where cnf tag is a confirmation used to
authenticate the pseudonym. Initiator tags compute one pseudonym psgroup; the other
tags compute two pseudonyms psold

group and pscur
group (in a similar way).

The tags in group update the value(s) of their group pseudonyms with each suc-
cessful execution of their part of the grouping protocol. The protocol is presented in
Fig. 4, where tagA is the initiator and for simplicity we depict only one additional tag,
tagB . It is easy to see how this protocol can be extended to groups of n > 2 tags. In
particular, the reader will link all the tags for which at least one pseudonym is psgroup,
provided there are n such tags.

The Verifier keeps a database D = (rsys, {(ktag , kgroup, psgroup)}) that links, for
session rsys, the secret key of each tag to its group key and the group pseudonym
of the corresponding initiator tag. The pseudonyms are updated with each successful
execution of the protocol (using the next value of rsys). The database D is also used
to optimize the performance of the protocol: if the adversary has not challenged the
tags of group since their last interaction (e.g., via rogue readers), then the value of the
pseudonym in D will be the one that is actually used by the initiator tag, and therefore
the corresponding secret keys can be found directly (one lookup) and used to verify the
correctness of the authenticator xtag of the initiator tag. The secret keys of the other

4 We use rtag instead of rgroup to distinguish between the actions of individual tags in group

during the execution of the protocol. The values of these numbers are the same for all tags in
group when the adversary is passive.



Fig. 4. A robust anonymous grouping-proof—for two tags
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tags in group can be found in the database D from the group key kgroup, and used
to verify the correctness of their authenticators. If no value in D corresponds to the
pseudonym used by the initiator tag then the Verifier will have to find the secret key of
the initiator from its authenticator xtag = f(ktag ; rsys||psgroup) by exhaustive search
over all secret keys (of initiator tags). The pseudo-random numbers rtag are initialized
with random values rA: for the initiator tagA: rtag ← rA, while for all other tagX in
its group: (rold

X , rcur
X ) ← (rA, rA).

Observe that initiator tags respond with only one pseudonym and therefore can be
distinguished from other tags (which respond with two pseudonyms). There are several
ways to address this privacy issue, if it is of concern. One way is to assign to all tags
a pair of pseudonyms, and identify groups by selecting those sets of tags that have one
pseudonym ps∗ in common. There will always be at least one tag in this set for which
pscur

group = ps∗. The reader elects an initiator tag among those tags sharing the common
pseudonym deterministically, probabilistically, or in some ad hoc way: e.g., the first to
respond. The reader informs the initiator tag of its selection and indicates to the other
tags which pseudonym ps∗ is current. In this modification of the protocol all rounds are
executed concurrently.

As in the previous protocol, each step is essential. The main difference is that in
the anonymous protocol, the tags exchange pseudonyms psAB and psold

AB , pscur
AB , rather

than a group identifier. The functionality provided by this step, however, is analogous
in the two protocols and enables the Verifier to identify the group.



It is important to notice that even though the values that the reader receives for each
completed round vary, if a malicious reader interrupts the session (round), preventing
the pseudonym update, and then re-uses rsys, it can link the two scannings. However,
the power of this attack is limited because a single round with a non-faulty reader at any
point will restore unlinkability. We shall refer to this property as, session unlinkability.
More formally we have:

Definition 1. An RFID protocol has session unlinkability if, any adversary, given any
two tag interrogations Int1, Int2, (not necessarily complete, or by authorized readers),
where Int1 takes place before5 Int2, and a history of earlier interrogations, cannot
decide (with probability better than 0.5 +ε, ε negligible) whether these involve the same
tag or not, provided that either:

– The interrogation Int1 completed normally (successfully), or
– An interrogation of the tag involved in Int1 completed successfully after Int1 and

before Int2.

Security analysis. The functionality Fsa group of our second protocol comprises the
behavior expected of an anonymous grouping-proof with session unlinkability. The
functionality Fsa group is that same as Fgroup except that:

1. The outputs of all its invocations are random numbers, including tag identifiers.
2. If a tag is initiated with the same reader challenge in a session, as in an earlier

session that it was not allowed to complete (and no sessions with this tag completed
in the interim), then Fsa group will output identical values.

This means that the adversary can link the (uncompleted) scannings throughout a given
session. However in the next session, Fsa group will use a different (random) number,
so linkability does not extend to any other sessions. In the full version of this paper we
shall show that our second protocol UC-realizes the Fsa group functionality.

Notice that our second protocol is not able to provide forward-security: secrecy is
no longer guaranteed if the secret keys are compromised.

4.3 A robust grouping-proof with forward-secrecy

In our last protocol—see Fig.5, the secret keys and the group keys of tags are updated
after each protocol execution for forward-secrecy. All tags, including initiator tags, store
two pairs of keys: group keys ki

group and secret keys ki
tag , i ∈ {old, cur}, as well as a

pair of random numbers ri
tag , i ∈ {old, cur}. The Verifier stores in a database D the

current values (rsys, {(k
t
tag , k

t
group, pst

group), t∈{old, cur}}): this allows it to link the
values of the keys of each tag to the corresponding group pseudonym. At the end of each
rsys challenge session, the entries in D of all tags in the groups for which the reader
has returned a valid proof Pgroup are updated: (kt

tag , k
t
group, pst

group) ← (yt, ut, rt),
5 A temporal relationship, as observed by the adversary. Note that if the adversary observes two

interrogations overlapping in time, it can certainly assert that they do not belong to the same
tag, since tags are currently technologically limited to single-threaded execution.



Fig. 5. An anonymous grouping-proof with forward-secrecy—for two tags
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t ∈ {old, cur}, using the equal-length parsings f(kt
group; rsys||r

t
tag) = rt||st||ut||vt

and f(kt
tag; rsys||r

t) = xt||yt (the use of the other parsed values is explained below).
Since there are no non-volatile values to anchor the key and pseudonym updates to,
we shall use the update chain itself as an anchor. This means that the state of the tags
and the Verifier must be synchronized. In particular the adversary should not be able
to manipulate valid group scans so as to de-synchronize the system. There are several
ways in which this can be achieved. The solution we propose is to have the Verifier
(a trusted party) give all authorized readers a table D̂ = (rsys, {(pst

group, v
t
group), t ∈

{old, cur}}) whose values can be used to authenticate authorized readers to tags. The
entries in this table are obtained by parsing f(kt

group; rsys, r
t
tag) = rt||st||ut||vt as

above, and assigning: (pst
group, v

t
group)← (rt, vt), t∈{old, cur}. In this case however

the next value of the challenge rsys is used in the evaluation of f . The values in D̂ are
updated for all groups in the system, at the beginning of each new rsys session.

The protocol is given in Fig. 5 for two tags, tagA, tagB, with tagA the initiator. In
this protocol, adversarial readers cannot disable tags permanently by de-synchronizing



them from the Verifier, because the tags discard old key values kold
group, k

old
tag , r

old
tag only

after the Verifier has confirmed that it has updated its corresponding values. More
specifically, if the reader is not adversarial, then pscur

AB = pscur
A = pscur

B , and the
tags will update both current and old key and number values. If the reader is adversarial
and has not returned the proof PAB then pscur

AB 6= pscur
A , or pscur

B , and the updates will
not affect old values, which therefore remain the same as those stored in the database
D̂. The state of the tags will only return to stable when an authorized reader returns a
valid proof to the Verifier. Note that due to the state synchronization requirements, the
protocol in Fig. 5 can only be implemented in online batch mode, not true offline mode.
In the full paper, we discuss the batch offline case.

Forward-secrecy applies to periods during which the groups of tags are scanned by
authorized readers that are not faulty. More specifically, a group of tags that is compro-
mised can be traced back to the first interaction after the last non-faulty scanning ses-
sion, and no further. We shall refer to this property as, forward session-secrecy. More
formally we have:

Definition 2. An RFID protocol has forward session-secrecy if session unlinkability
holds for all sessions Int1 and Int2 as in Defn. 1, provided that either Int1 successfully
completed prior to the corresponding tag(s) being compromised, or that a later session
of the tag(s) involved in Int1 completed successfully prior to its (their) compromise.

Security analysis. The functionality Ffss group of our third protocol comprises the
behavior expected of an anonymous grouping-proof with forward session-secrecy. The
functionality Ffss group models key compromise, that is it allows for adaptive corrup-
tion. Otherwise it is similar to Fsa group. This means that the adversary can link in-
complete scannings of non-compromised tags throughout a given session, but that this
does not extend to other sessions. In the full version of this paper we shall show that
our third protocol UC-realizes the Ffss group functionality.

5 Conclusion
Our main contribution in this paper is to present a security model for the group scan-
ning problem. In previous work, this application has been described at relatively infor-
mal levels, making it difficult to provide side-to-side comparisons between alternative
proposals. We have proposed three grouping-proofs that are provably secure in a very
strong setting that guarantees security under concurrent executions and provides for
safe re-use as a building block for more complex protocols. These proofs are also prac-
tically feasible, requiring only pseudo-random functions, which can be instantiated very
efficiently in integrated circuits using a variety of primitives as a starting point, such as
pseudo-random number generators or block ciphers.
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A Proof of Security and Security analysis

In the following, we give a sketch for the proof of security of our second protocol, for
anonymous RFID grouping-proofs (Section 4.2), in a universally composable frame-
work. Note in particular that we do not consider forward-security in our analysis and
moreover that we do not model key compromise. Corruption is therefore non-adaptive:
The adversary indicates at the beginning of the protocol which parties are corrupt. The
proof for the forward-secure case is deferred to a full version of the paper.

The universal composability (UC) framework defines security in terms of simulata-
bility of protocols by idealized functionalities (which can be thought of as specifica-
tions of the achievable security goals for the protocols). The great advantage of the UC
model is provided by the composability theorem [8]. More precisely, consider an ideal
functionality F that is securely realized by a protocol ρ. Let π be an arbitrary protocol
that makes ideal calls to multiple instances of F . Let πρ denote the composed protocol
which consists of running the protocol π and substituting calls to each instance of F by
calls to a distinct (fresh) instance of ρ. The universal composability theorem states that
the protocol πρ has essentially the same effect as protocol π, even if πρ has no access
to F .

In our case,F comprises the behavior expected of a yoking- or grouping-proof.F is
secure by specification. ρ represents our protocol, and we wish to prove that it realizes
F . F takes the following roles in the idealized protocol execution:

– Receives the challenges from corrupt readers, or generates them for honest readers;
– Answers challenges on behalf of the honest tags;
– Decides which tags are grouped;
– Collects the data for grouping-proofs from corrupt tags;



– Implements timeouts on honest tags (however, it does not provide punctual time
information, i.e., when the scanning occurred).

In order to prove the security of our anonymous grouping-proofs, we now show that
each behavior securely provided by F can be achieved, in the real world, through the
protocol. In other words, we simulate the operation of the protocol with access to F by
the real world operation of the protocol (which cannot rely on F).

We summarize key features of our protocols, which represent the real-world run:

– The challenges are represented by rsys and are received from the Verifier through
the reader.

– The communication among tags is always mediated by the reader. This means that
if a tag wants to talk to one or more other tags, it sends the message to the reader,
which forwards it to the proper tag(s). Of course, the reader in question could be
corrupt and modify messages, and moreover the adversary can directly modify or
interrupt any channels at will—with exception that, if the reader is honest, the ad-
versary cannot tamper with the contents of the channel connecting the reader and
the Verifier.

– In order to establish which tags are grouped, tags reply to the reader’s challenge,
transmitting their group pseudonyms. At this point, the reader is able to match the
tags that belong to the same group.

– Timeouts are implemented on tags, through capacitor discharges. The time needed
to discharge a capacitor is well known in advance.

– The choice of initiator tag is hard-coded in tags. One, and one only, of the tags
belonging to a group is the initiator (tagA).

In the ideal world, honest parties are controlled by an ideal functionality. The main
difference is that the values emitted by the ideal functionalityF (as answers of tags) are
generated as truly random values, as opposed to pseudo-random. More precisely, when-
ever ρ evaluates the function f(·; ·, ·) on a triple (kgroup; rsys, rtag), the functionalityF
first checks whether it has a record (funtion value, kgroup; rsys, rtag , t) in its database.
If so, it produces the value t as the result of the function evaluation. If a record is not
found, it enters one (funtion value, kgroup; rsys, rtag , t) in its database, where t is a
freshly generated random value, and returns t.

We note that the above specification of F makes several security guarantees ob-
vious: Unforgeability, anonymity, freedom from replays and other types of attacks are
achieved because to violate these guarantees the adversary would have to guess unseen
random, independently generated values.

Since the protocol may fail in a variety of ways, we must ensure that no combination
of failures exists, which may enable a probabilistic, polynomial-time environment Z ,
which selects the initial inputs and observes the final outputs of all parties in a protocol
run, and which may interact with the adversary in an arbitrary fashion during the run, to
distinguish (with non-negligible probability) between real and ideal protocol runs. That
is the definition of secure simulation in the UC model.

The real and ideal protocol runs could diverge in many ways. We discuss below the
significant cases, and why they cannot be used to distinguish between them.



1. A match (successful proof or partial proof among a subset of the tags) occurs in
the real-world, while in the ideal-world the match is unsuccessful. This implies that
the adversary was able to modify some values in the channels (via reflection, re-
play, mangling, injection, delay, etc.) and force tags to reproduce pseudo-random
values correctly from unequal inputs. However, since the adversary ignores the
value of the honest tags’ authentication keys, the pseudo-random values observed
by the adversary in exchanges are indistinguishable from random and therefore the
adversary cannot have a non-negligible probability of forcing such outcome.

2. A mismatch (failed proof attempt) occurs in the real-world, while in the ideal world
the same proof (or partial proof involving a subset of the tags) succeeds. This im-
plies that the randomly generated values in the ideal world corresponding to evalu-
ations of the function f(·; ·, ·) on different triples led to a coincidental match. Since
in this case the values are generated by F independently and at random, the chance
of a coincidence is negligible.

3. A non-corrupt tag has a slightly different timeout value that can be used to distin-
guish it from other tags, violating anonymity. We note that, if such physical mea-
surement attacks are to be considered, and anonymity must be provided, then tags
must be manufactured to sufficient precision that such variations cannot be prof-
itably used to distinguish tags.

Among the cases discussed above, the only interesting one is (1), which exploits the
definition of pseudo-randomness. In particular, case (1) can be quantified. For instance,
the probability of real-ideal distinguishability can be directly related to the strength
of the pseudo-random function to resist a pre-specified number of queries. In the full
version of this paper we plan to elaborate on the concrete security guarantees provided
by the scheme.


